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Abstract
A compressible large eddy simulation (LES) is performed to study a pulsed jet actuator that is used to control a
turbulent axisymmetric bluff body wake. The actuator is driven at low-frequency (f = 200Hz, Stθ = 0.029) and high
amplitude (Cμ = 0.034). The numerical scheme and a suitable boundary condition for the pulsed jet are validated,
showing good agreement with experimental results. A comparison of the velocity boundary condition and the mov-
ing boundary condition shows that, in the vicinity of the orifice/slot and in the downstream region, the results from
these two methods are identical, while the fluid behaviour inside the cavity shows difference. An analysis of the
pulsed jet actuator shows that the phase lag of the cavity pressure is determined by the integration of the diaphragm
motion and the pulsed jet. The mean total pressure distribution shows that the total pressure loss is concentrated in
the vicinity of the slot. Dynamic mode decomposition (DMD) on the pressure field is used to extract coherent struc-
tures which oscillate with the same frequency as that of the diaphragm motion. Some small-scale high-frequency
structures are also apparent.

Nomenclature

A area
Cp pressure coefficient
Cp time averaged pressure coefficient
C′

p turbulent pressure coefficient
CpT total pressure coefficient
〈Cp〉 area-weighted averaged pressure coefficient
Cμ blowing coefficient
D diameter
DMD dynamic mode decomposition
f frequency
Re Reynolds number
LES large eddy simulation
Ls slot length
St Strouhal number
t time
û, v̂, ŵ velocity components
U, V , W time averaged velocity components
u, v, w turbulent velocity components
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Greek symbol

φ phase
ρ density
θ boundary layer momentum thickness

1.0 Introduction
The pulsed jet (synthetic jet, or zero-net-mass-flux jet) is generated by the periodic ingestion and expul-
sion of the working fluid through a slot or orifice [1]. Without any external flow source, the pulsed
jet is able to transfer momentum to the flow system with a wide range of frequency and amplitude
[2]. Therefore, it is widely used in aerodynamic flow control, especially in controlling bluff body wakes,
where the pressure drag can be reduced by pulsed jet forcing. For instance, by applying a high-frequency
periodic pulsed jet in the vicinity of an axisymmetric bluff body tailing edge, a base pressure recovery
of 33% is achieved by Oxlade et al. [3]. The forced wake is modelled with a weakly nonlinear model
by Rigas et al. [4]. Cabitza [5] applied the pulsed jet to a rectangular-sectioned bluff body and achieved
a base pressure recovery of 27%. Barros et al. [6] applied a positive flux pulsed jet together with the
Coanda effect to a similar geometry and achieved a drag reduction of 20%. The mechanism behind this
phenomenon was analysed by Haffner et al. [7], and the effect of asymmetric forcing is also investi-
gated [8]. The research by Pastoor et al. [9] shows that a 40% increase in base pressure is achievable
by applying a low-frequency pulsed jet to a D-shaped bluff body. The pulsed jet is also used to vary
the aerodynamic loads of a freely yawing axisymmetric bluff body by controlling the wake symmetry
[10, 11].

While the pulsed jet has been successfully applied experimentally for controlling the bluff body
wake, few numerical studies have been conducted to study the pulsed jet actuator. In previous work
[12–15], simulations of the actuator cavity and diaphragm are often omitted and the pulsed jet is
prescribed as a velocity boundary condition. This type of method benefits from lower computational
cost since the diaphragm, the cavity and the slot are omitted, while some characteristics of the pulsed
jet, such as the fluid motion inside the slot and cavity and the pressure character, are not fully under-
stood: while the actuators are usually of zero net mass flux design, the momentum flux is necessarily
non-zero.

The boundary condition of the actuator is important for the numerical simulation of the pulsed jet
[16, 17]. Two techniques have been used: the moving boundary condition, where the volume of the
cavity is changed by boundary deformation, or the velocity boundary condition, where a velocity tran-
spiration boundary condition is applied to the diaphragm to compress or decompress the fluid without
changing the volume of the cavity. Some comparative studies have been conducted to achieve an opti-
mal simulation method. However, the conclusions are not consistent: the 2D compressible simulation
result by Yoo et al. [18] and Jain et al. [19] demonstrates that there are obvious differences between the
velocity boundary condition result and the moving boundary condition one. The 3D numerical result
by Bazdidi-Tehrani et al. [20] shows that these two methods achieve an almost identical result with an
incompressible solver, while compressibility may introduce a noticeable difference. The incompressible
simulation conducted by Ma et al. [21] indicates that difference is only slight: the downstream velocity
structure is identical but slightly different inside the cavity. Since these conclusions are inconsistent,
both the moving boundary condition [22] and the velocity boundary condition are developed here to
verify these two methods and to validate the LES numerical scheme.

In the present study, we provide a further understanding of the flow inside and outside the actuator
and build a basis for further numerical simulation of the pulsed jet forced wake [23]. The actuator
boundary condition is compared to the experimental work by Feero et al. [24]. In particular, the total
pressure losses near the actuator slot are assessed. The DMD is used to analyse the pressure field in the
downstream region and on the base.
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Figure 1. (a) The computational domain, (b) the mesh for the numerical simulation (c) and (d) show
amplified views of the wake area and the jet slot, respectively.

2.0 Numerical methodology
2.1 Geometry definition and numerical scheme
Figure 1 shows the computational domain and mesh. It includes the pulsed jet actuator and a large
downstream area in which the pulsed jet develops. The diameter of the actuator is D = 0.1965m. The
computational domain is also cylindrical with a diameter of 5D and a length of 11D. The width and
length of the slot is Ws = 2mm and Ls = 10mm, respectively. In this study, the loudspeaker cone is sim-
plified as a diaphragm by keeping the cavity volume approximately unchanged: the diaphragm position
does not change the volume of the cavity significantly [25]. This simplification, therefore, provides a
close approximation to the experimental conditions. A detailed description of the actuator geometry can
be found in Oxlade [26]. The origin of the coordinate system is defined as the centre of the base. The
pressure coefficient Cp, Equation (1), is defined as

Cp = p − p∞
1
2
ρU2

∞
, (1)
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where p∞ is the pressure in the far field, U∞ is the reference velocity. Following Oxlade et al. [3], U∞
is defined as 15m/s in this study. The area-weighted averaged pressure coefficient on the base surface,
Equation (2), is

〈Cp〉 = 1

Ab

∫
φ

∫
r

Cp(r, φ)r dr dφ, (2)

where Ab is the area of the base. The total pressure coefficient, Equation (3), is defined as

CpT = pT − p∞
1
2
ρU2

∞
, (3)

where pT is the total pressure. The pressure coefficient Cp and the velocity components
(
û, v̂, ŵ

)
are

further decomposed into the time averaged component Cp, (U, V , W) and the turbulent component C′
p,

(u, v, w) with Equation (4):

Cp = Cp + C̃p + C′
p,(

û, v̂, ŵ
) = (U, V , W) + (u, v, w) . (4)

The pulsed jet velocity is expressed as a blowing coefficient, Equation (5), which is given by

Cμ = u2
f Aj

U2
∞Ab

, (5)

where uf is the amplitude of the pulsed jet, defined as the amplitude of the Fourier component of the jet
centre line velocity, and Aj is the area of the slot.

The open-source code OpenFOAM is used for the present numerical study. A three-dimensional
transient solver based on the PIMPLE algorithm is used to solve compressible Navier-Stokes equations,
Equation (6), given by

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · τ , (6)

where u is the velocity vector, τ is the stress tensor. The PIMPLE algorithm combines the PISO
(Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations), with the advantage of reduced Courant number restriction. LES is performed with the stan-
dard Smagorinsky subgrid model, which has been extensively verified by Krajnović and Fernandes [12]
and Parkin et al. [13]. The numerical scheme is second-order in time discretion. A first/second-order
linear-upwind discretisation is used for space terms. The velocity boundary of the computational domain
is defined as a zero-gradient boundary, and a non-reflecting pressure boundary is used to minimise the
pressure reflection. A no-slip boundary condition is used for the wall boundary of the actuator. A univer-
sal wall function based on Spalding’s law is used to reduce the mesh requirement in the near-wall region,
reducing the computational cost. A sparse mesh is used for the far field. In the vicinity of the body and in
the wake region, the mesh is refined: specifically, the mesh near the slot is further refined to simulate the
pulsed jet. A mesh with a total number of 4.5m nodes is used for the pulsed jet computational domain.
Since the velocity varies with phase, an adjustable time interval (keeping the Courant number less than
0.7) is used to save computational time while satisfying the CFL condition. Approximately 1,500 time
steps are resolved in every pulsed-jet period.

2.2 Actuator boundary condition
In the current study, the pulsed jet actuator is included in the computational domain. The diaphragm peri-
odically ingests and expels the working fluid through a slot to generate the pulsed jet. The diaphragm
boundary condition is prescribed as sinusoidal motion in time and parabolic distribution in space. Mane
et al. [27] demonstrate that for piezoelectric diaphragm a parabolic surface approximation is more
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Table 1. A summary of the boundary conditions for the main variables

Boundary name Velocity Pressure Temperature
Far-field Zero gradient Non-reflectional Fixed value
Diaphragm Equation (9) (velocity boundary case) or

moving wall (moving boundary case)
Zero gradient Zero gradient

Wall Non-slip Zero gradient Zero gradient

accurate than a logarithmic one. Hence, taking the diaphragm centre as the coordinate origin moving in
the x direction, the time-dependent diaphragm profile, Equation (7), is described by

x (y, z, t) = (
ay2 + by + cz2 + dz + e

)
sin (2π ft) , (7)

where a, b, c, d, e are constants. For an axisymmetric surface with the maximum displacement in the
centre and zero displacement at the edge, the constants c = a, b = d = 0, and e = − 1

4
aD2

d, where Dd is
the diameter of the diaphragm. Thus, Equation (7) becomes Equation (8)

x (y, z, t) =
(

ay2 + az2 − 1

4
aD2

d

)
sin (2π ft) . (8)

The velocity profile, Equation (9), is achieved by taking the time derivative of Equation (8):

ûd (y, z, t) =
(

ay2 + az2 − 1

4
aD2

d

)
2π f cos (2π ft) . (9)

The remaining unknown constant, a, is estimated assuming mass conservation with the incompress-
ible flow. Then, since the solver is compressible, an iterative calculation is conducted with a coarse mesh
to modify this number to match the pressure or velocity in the corresponding experiment.

The boundary conditions for the computational domain (Fig. 1(a)) can be summarised in Table 1. For
the far-field, a zero-gradient boundary is used for the velocity and a non-reflectional boundary condition
is used for the pressure. For the diaphragm boundary, as described above, a time-dependent parabolic
velocity profile or moving mesh is used. The non-slip wall boundary condition is applied to the bound-
aries except the diaphragm and the far-field, including the actuator wall, the base and the stationary
geometry inside the actuator, etc.

3.0 Boundary condition validation
In this section, the moving boundary condition and the velocity boundary condition are compared based
on the round pulsed jet actuator studied experimentally by Feero et al. [24]. The configuration investi-
gated is f /fH = 1.07(fH is the Helmholtz resonance frequency), pc = 160Pa (pc is the cavity pressure).
The boundary condition of the diaphragm is iterated to match the cavity pressure. The jet profile on the
orifice outlet plane is chosen as the criterion for validation.

Initially, 30 periods are calculated to achieve a stable result, after which another 30 periods are calcu-
lated to provide a phase-locked average. The numerical and experimental velocity magnitude distribution
near the orifice outlet plane at x/Do = 0.075 (Do is the diameter of the orifice) is normalised by the
maximum centre-line velocity, illustrated in Fig. 2. As noted by Feero et al. [24], and Mu et al. [28],
the hot-wire measurements in the experiment do not resolve reverse flow well, leading to uncertainty at
the ends of the nozzle (y/Do = ±0.5). Therefore, the comparison between the numerical results and the
experimental ones is focused on −0.45 ≤ y/Do ≤ 0.45. This figure shows that the phase-locked average
of the velocity distributions is identical for the two boundary conditions. Both results show a qualita-
tively good agreement with the experimental ones by Feero et al. [24], especially in the suction phase.
There is only a small difference near the orifice edge in the blowing phase.

The flow structures identified by the Q-criterion (Q >0) from both the moving boundary and the
velocity boundary are shown in Fig. 3. The streamwise velocity is normalised by its maximum and
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Figure 2. Spatial distribution of normalised velocity magnitude near the orifice outlet plane over six
phases. —, Moving boundary. – –, Velocity boundary. -o-, Experimental result by Feero et al. [24].
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Figure 3. Qcriterion iso-surface contoured by normalised streamwise velocity û/ûmax (contour range:
−0.6 ≤ û/ûmax ≤ 0.6) at φ = 0, 1/2π , π , 3/2π . (a–d) Moving boundary condition. (e–h) Velocity bound-
ary condition. The transparent grey area shows the wall boundary of the actuator. For more details of
the actuator geometry, see Feero et al. [24].

imposed on the iso-surface of Q-criterion. These figures illustrate that the vorticity structure produced
by these two methods is almost identical in the downstream region outside the actuator. The coherent
structure inside the cavity, however, shows significant differences. By comparing Fig. 3(a)–(d) with
Fig. 3(e)–(h), it is clear that with the velocity boundary, the flow structure inside the cavity is weaker
and smaller than that achieved by the moving boundary condition. In the moving boundary condition,
the diaphragm boundary is a moving wall boundary, which is the same as the piezoelectric diaphragm
motion, while the velocity boundary condition uses a velocity inlet/outlet boundary to approximate such
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Figure 4. A whole orthographic view of the Q criterion iso-surface contoured by normalised streamwise
velocity (contour range: −0.1 ≤ û/ûmax ≤ 0.3).

motion. Therefore, with the velocity boundary condition, a considerable portion of the flow is sucked
into the diaphragm instead of being reflected. Hence, inside the cavity, the velocity boundary result is
probably less accurate than the moving boundary result.

The computational cost of the moving boundary condition is compared with the velocity boundary
condition by assessing the computational time with the same computational resource and numerical
settings. Since mesh deformation is performed at every iteration in the moving boundary method, to
complete the same computation the computational time with the moving boundary condition tm com-
pared to that with the velocity boundary condition tv is about tm/tv ≈ 250%. In conclusion, when the
downstream interaction between the pulsed jet with the outer fluid is of interest, the velocity boundary
condition can achieve very similar results compared to the moving boundary condition but with a lower
computational cost. Conversely, if the fluid motion inside the cavity is important, the moving boundary
condition should be used.

4.0 Characteristics of the pulsed jet actuator
In the following sections, the pulsed jet actuator for control of the bluff body wake is studied with the
velocity boundary condition, since it requires less computational cost and the analysis is focused on the
area away from the diaphragm. The pulsed jet frequency is f = 200 Hz, the Strouhal number based on
the boundary layer momentum thickness θ = 2.14mm [3] is Stθ = 0.029, and the pulsed jet velocity
coefficient at the slot outlet is Cμ = 0.034.

The pulsed jet structures generated by the actuator are identified with the Q-criterion and illustrated
in Fig. 4. It shows that the actuator generates a series of counter-rotating vorticity rings moving down-
stream, which confirms that the pulsed jet structures observed experimentally in the 2D PIV plane by

https://doi.org/10.1017/aer.2023.89 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.89


The Aeronautical Journal 903

(a) (b)
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Figure 5. Amplified view of the Q criterion iso-surface contoured by the normalised streamwise velocity
at φ = 1

2
π , π , 3

2
π , 2π (contour range: −0.1 ≤ û/ûmax ≤ 0.3).

Oxlade et al. [3] are in the form of rings. Tracing the pulsed jet generated near the slot edge (Fig. 5), in
the initial stage (φ = 1

2
π ), the pulsed jet remains coherent as a pair of rings in the vicinity of the inner

and outer edges of the slot. The spanwise variation of the jet structure is weak, thus the jet is quasi-
two-dimensional. As these vorticity rings propagate downstream (φ = π ∼ 2π ), the perturbation in the
azimuthal direction grows, which leads the vorticity ring to gradually break up into three-dimensional
structures. After φ = 2π , the separated vorticity rings rapidly decay, breaking down into small-scale
turbulence and eventually dissipating. From their generation near the slot edge, the pulsed jet rings lose
coherence after about two periods.

A typical history of the normalised cavity pressure Cp/Cpmax, the diaphragm velocity ûd/ûdmax, and
the streamwise velocity on the slot outlet plane û/ûmax is in Fig. 6. It shows that the phase of the cavity
pressure fluctuation is about 2

5
π ahead of the pulsed jet and the diaphragm velocity. This is a physical

phenomenon because the pressure gradient is a prerequisite for the formation of the pulsed jet [1]. The
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Figure 6. A typical history of the normalised cavity pressure Cp/Cpmax, the normalised diaphragm
motion velocity ûd/ûdmax and the normalised streamwise velocity û/ûmax on the slot outlet plane.

Figure 7. (a) A schematic of the CV bounded by the CS (dashed line). (b) Comparison of the numerical
result with the theoretical one calculated using Equation (13).

diaphragm velocity indicates the cavity size: positive ûd/ûdmax means that the diaphragm is compressing
the cavity, thus when the positive ûd/ûdmax comes to an end in the time series, the cavity size is minimum;
in turn, negative ûd/ûdmax indicates that the cavity is expanding. By correlating the pressure fluctuation
to the diaphragm motion, it is evident that the maximum pressure appears when the cavity size is close
to the maximum, while the minimum pressure appears when the cavity size is near a minimum. A
theoretical analysis is conducted to analyse the cavity pressure phase.

Taking the cavity as a control volume (CV) bounded by the control surfaces (CS), which includes the
diaphragm, the slot inlet, and the cavity wall (Fig. 7(a)), the conservation of mass, Equation (10), can
be written as ∫

CV

∂ρ

∂t
dV +

∫
CS

ρ (U · n) dA = 0, (10)
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where V is the volume of the control volume, A is the area of the control surface. Since the pressure
fluctuation propagates with the speed of sound, we assume that in the CV, the pressure and the density
are spatially uniform but change in time, thus Equation (10) becomes Equation (11),

∂ρ

∂t
V + ρ

∫
CSs

ûsdA − ρ

∫
CSd

ûddA = 0, (11)

where ûs is the streamwise velocity of the pulsed jet, ûd is the streamwise velocity of the diaphragm, d
denotes diaphragm, and s denotes the slot. Rearranging this equation to get Equation (12),

1

ρ

∂ρ

∂t
V = ∂lnρ

∂t
V =

∫
CSd

ûddA −
∫

CSs

ûsdA. (12)

With the assumption of the ideal gas law, ρ = p/RT , and constant temperature, we obtain
Equation (13),

∂lnp

∂t
∝ 1

V
(∫

CSd

ûddA −
∫

CSs

ûsdA

)
. (13)

To validate the model given by Equation (13), the theoretical result is compared to the numerical
one with phase-locked averages. The theoretical estimate of ∂lnp/∂t is computed by calculating the
right-hand side of the equation with the streamwise diaphragm velocity ud, the streamwise velocity
at the inlet of the slot us and the cavity volume V . The numerical estimate of ∂lnp/∂t is obtained
directly. Figure 7(b) shows that the model is able to represent the phase change of the pressure well.
The normalised magnitude of the pressure gradient ∂lnp/∂t also shows good agreement.

The model takes the difference between axial mass flux at the diaphragm and that at the slot inlet, so
it clarifies whether the flow can be adequately described by temporal changes with a spatially averaged
velocity alone. Practically, then one could use a harmonically varying, parabolic-shaped diaphragm at
the inlet, and measured velocity at the slot to compare to simulation data. Equation (13) shows that
the phase of the cavity pressure is determined by time integration of the pulsed jet and the diaphragm
motion. The domain from the diaphragm face to the external flow supports a spatially evolving pressure
wave that predominantly propagates downstream, and ignores any pressure reflections inside the cavity.
Pressure changes downstream of the slot can also propagate upstream to the diaphragm since the flow
inside the slot is subsonic. The pressure propagating downstream manifests as a pressure wave which
causes a large pressure fluctuation on the base.

Figure 8(a) shows the time-averaged total pressure distribution on a plane near the slot. This figure
shows that the total pressure loss is concentrated in the vicinity of the sharp slot edge which leads to
flow separation. The total pressure loss inside the cavity is relatively small since the flow velocity is low
there. Loss in total pressure from diaphragm to slot outlet is due to static pressure drop not recovered by
an increase in velocity. A time series of the total pressure coefficient at the slot inlet 〈CpTi〉 at x/Ls = −1,
the slot outlet 〈CpTo〉 at x/Ls = 0 and the difference between the inlet and the outlet 〈CpTio〉 is shown on
Fig. 8(c). In the constant blowing jet, the total pressure near the slot inlet is higher than that near the slot
outlet, while in the pulsed jet the periodic change of the cavity pressure and jet direction results in total
pressure variation. Thus, depending on the phase of the pulsed jet, the jet direction can be from the slot
inlet to the outlet or reverses, and the total pressure in the slot inlet can be either higher or lower than
the outlet.

The mean total pressure coefficient variation inside the slot is plotted in Fig. 8(d). Since the pulsed
jet is characterised by periodic changes in the jet direction and cavity pressure, the mean total pressure
coefficient is not constantly decreasing towards the outside. However, it is still clear that the total pressure
coefficient dramatically decreases near the slot edge, i,e., at near x/Ls = −1 and x/Ls = 0. To reduce
the total pressure loss through the slot, a round edge is applied to the slot. Figure 8(b) and (d) show that
the total pressure loss in the round edge slot is lower than that in the sharp edge slot. By using a round
edge, the total pressure coefficient in the middle of the slot (x/Ls = −0.5) is increased from 〈CpT〉 = 0.02
to 〈CpT〉 = 0.05. However, since the vortex rings generated by a round edge is weaker than that generated
by the sharp edge, it is likely to provide a reduced influence on the wake.
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(a) (b)

(d)(c)

Figure 8. The mean total pressure CpT distribution in the vicinity of the slot for (a) the sharp edge slot
and (b) the round edge slot. (c) A time series of the area-weighted averaged total pressure coefficient at
the slot inlet 〈CpTi〉, the slot outlet 〈CpTo〉, and the difference between the inlet and the outlet 〈CpTio〉 for
the slot with a sharp edge. (d) Area-weighted averaged mean total pressure coefficient 〈CpT〉 along the
slot. x/Ls = 0 is the outlet of the slot, and x/Ls = −1 is the entry of the slot.

5.0 Dynamic mode decomposition of pressure field
In this section, DMD [29] is applied to study the pressure field downstream of the actuator and on the
actuator base. DMD is a data-based equation-free decomposition method to extract the dominating
mode of a dynamic system. It is able to extract low-rank physically interpretable flow features of
a high-dimensional field according to their frequency. In the present work, following the exact
DMD algorithm described by Kutz et al. [30], the DMD modes of the pressure field in the range
0 ≤ x/D ≤ 10, −2.5 ≤ y/D ≤ 2.5 have been decomposed without excluding the long-time mean. The
number of sampling points in the spatial coordinate is 400 × 200. The temporal coordinate, each period
(TU∞/D = 0.38) is sampled with 100 snapshots. A total number of five periods are sampled to conduct
the decomposition. With the DMD modes φ, the approximate state of the dynamic system x (t) can be
reconstructed by Equation (14),

x (t) ≈
N∑

k=1

φkexp (ωkt) ak, (14)

where ωk = log (λk) /
t, λ is the DMD eigenvalue. The growth rate σ is defined as σ = Re (ω), indicat-
ing whether the corresponding modes are growing, decaying or stable. The oscillation frequency of the
DMD modes f is defined as f = |Im (ω) /2π |. Following Schmid et al. [31], the amplitude of each DMD
mode |ak| is achieved by projecting the data sequence on the identified dynamic modes. Assembling
the multiple data sequences into matrix form X, the Equation (14) can be rewritten as Equation (15),
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Table 2. Summary of the first four dominant DMD modes

Mode λ σ f (Hz)
1 0.9980 + 0.0628i 0.0018 200
2 0.9921 + 0.1254i -0.5525 400
3 0.9822 + 0.1874i -0.8796 600
4 0.9685 + 0.2486i -1.4690 800

Figure 9. DMD spectrum of the actuator pressure field in the downstream. (a) The amplitude |a| of
each DMD mode against frequency. (b) The growth rate σ of each DMD mode, the size of the cycle
indicating the amplitude of the mode.

⎡
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1
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2
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...

⎤
⎥⎥⎦

︸ ︷︷ ︸
Vand

. (15)

Figure 9(a) shows the amplitude of the DMD modes against the corresponding frequency. The mean
mode is omitted. Four DMD modes dominate the pressure field, each one corresponding to f = 200Hz,
400Hz, 600Hz and 800Hz. Detailed information can be found in Table 2. Since negative frequency is
unphysical, Im (ω) /2π is used as x coordinate to illustrate the full map of the growth rate σ (Fig. 9(b)).
The first four dominating DMD modes are located in the close vicinity of the σ = 0 axis. The detailed
growth rate (see Table 2) indicates that these DMD modes are stabilised without growing or decaying.
Since the pressure wave is generated periodically, the peak magnitude between two successive waves is
neither growing or decaying.

The first three modes are illustrated in Fig. 10. The first is characterised by a pair of high-amplitude
regions in the vicinity of the slot and a large wave downstream. The other two DMD modes show that
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Figure 10. Visualisation of the first three DMD modes in the downstream region.

Figure 11. Visualisation of the first three DMD modes on the actuator base.

downstream a series of high-frequency small-scaled harmonic structures exist. The oscillation frequency
of these structures is several times higher than the first mode.

The time-resolved pressure data on the base is collected from 64 equispaced probe locations described
by Rigas et al. [32] to analyse the structure of the pressure wave on the base. Since the spatial resolu-
tion is significantly lower than the temporal resolution, an augmented matrix obtained by stacking the
state multiple times is used to perform DMD [33, 34]. The amplitude map and the growth map are
identical to that of the downstream DMD (Table 2) and therefore is not displayed. The first three base
DMD modes, which oscillate at frequency f = 200Hz, 400Hz, and 600Hz respectively, are displayed in
Fig. 11. These modes are axisymmetric since the pressure wave generated by the axisymmetric actuator
is axisymmetric.

6.0 Conclusions
Numerical simulation of the pulsed jet actuator is conducted with a 3D compressible LES simulation.
An analysis is performed to study the effects of boundary conditions for the pulsed jet and its pressure
characteristics. The cavity pressure, the total pressure loss in the slot and the downstream pressure field
are analysed using a theoretical model, total pressure fields and DMD, respectively. The pulsed jet is
driven at f = 200Hz (Stθ = 0.029) and Cμ = 0.034.

Validation of the boundary condition shows that in the vicinity of the slot and in the downstream
region the velocity boundary condition is able to achieve almost identical results as the moving boundary
condition but at a lower computational cost. Both results agree well with the corresponding experimental
result by Feero et al. [24]. However, inside the cavity, the cavity flow reflection from the diaphragm is
stronger with the moving boundary condition than that with the velocity boundary condition. Therefore,
when studying the pulsed jet outside the cavity or downstream, the velocity boundary condition can be
used at a lower computational cost. When simulating the flow structures inside the cavity, the moving
boundary condition will probably lead to more reliable results.

The result of the pulsed jet shows that the periodic motion of the diaphragm generates pressure waves
which cause significant pressure fluctuations on the actuator base. An analysis of the cavity pressure
phase lag shows that it is determined by the time integration of the pulsed jet and the diaphragm motion.
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The mean total pressure distribution shows that the total pressure loss is concentrated in the vicinity of
the slot edge where there is strong separation at sharp edges. Total pressure loss is reduced with rounded
edges, increasing the total pressure coefficient in the middle of the slot (x/Ls = −0.5) from 〈CpT〉 = 0.02
to 〈CpT〉 = 0.05, while a sharp edge is more efficient at generating pulsed jet vorticity. The downstream
pressure field of the actuator is analysed with the DMD, which is used to extract coherent structures
oscillating with the same frequency as the diaphragm motion. Meanwhile, it shows that some small-
scaled high-frequency substructures exist. The pressure wave on the base is analysed by DMD, showing
that the DMD modes of the pressure wave are axisymmetric.
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