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SPECIAL FUNCTION POTENTIALS FOR THE 
LAPLACIAN 

H. D. FEGAN 

1. Introduction. The purpose of this paper is to study the operator 
A + q. Here A is the Laplace-Beltrami operator on a compact Lie group G 
and g is a matrix coefficient of a representation of G. We are able to 
calculate the powers of A + q acting on the function qku. This is done in 
Section 2 and the reader is refered there for definitions of the special 
functions q and u. 

The interest in the operator A + q comes originally from physics and 
in particular from the Schrodinger equation. This is described in [4]. Here 
we are restricting ourselves to mathematical questions and shall not con
sider any applications to physics. 

In this paper we take the heat equation with potential as 

(1.1) ( A + <?)/- (l/2wi)df/dt = 0 

with t G ^ , the upper half plane, and initial data / (x , 0) = qk(x)u(x). 
This equation can be solved and the solution is given by: 

THEOREM 1.1. The solution of equation (1.1) is 

/(x-/} - Vif~ "us £ ( n -^c—) «k+iuds' 
^%%J - co .7=0 \ r=0 S — Ck+T+i/ 

where ck+T+i is an eigenvalue for the Laplacian on G. 

This theorem is proved in Section 4 as Theorem 4.1. In Section 2 we 
explain which eigenvalue is Cfc+r+i- If ~ denotes the Fourier transform 

(1.2) l(t) =Ï~ e2*usg(s)ds 
J - C D 

then we can express this solution in terms of the Fourier transform. The 
result is 

(1.3) f(x,t)^j-t(U~j )lk+Ju. 

Some convention to deal with the poles of the function being transformed 
has to be adopted. This is explained in Section 4. To complete Section 4 
we write down the semigroup property for solutions of equation (1.1). 

Received May 25, 1981. 

1183 

https://doi.org/10.4153/CJM-1982-081-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-081-3


1184 H. D. FAGEN 

When we do this we obtain a rather complicated relation involving power 
series in q. 

Of course there are differential equations other than the heat equation. 
In Section 5 there is a description of the solutions of a class of equations. 
Let F be an analytic function of one variable and write L = A + q. Then 
for a function g we understand F(tL)g as 

(1.4) F{tL)g = E antnLng, 

where £ anXn is the Taylor series expansion of F. Then, formally at least, 
F(tL)g satisfies the equation 

(1.5) | (F(tL)g) = LF'QL)g. 

When F(x) = exp (2-irix) we obtain the solution of the heat equation 
described above. Our result is: 

THEOREM 1.2. With F, L and ck+r as before 

oo / j+l j+l -. \ 

F(tL)qku = Z ( E Htck+r) W- ^ -T - ) ?';+J". 
j=0 \ r=l 1=1 Cjc+r — Ck+l/ 

where in the product we omit the term with I — r. 

This is proved in Section 5 as Theorem 5.1. 
We can apply the result of Theorem 1.2 to the case of the heat equation. 

That is we put F(x) = e2irix. After some manipulation we obtain: 

THEOREM 1.3. The solution of the heat equation (1.1) is 

f = t ( Ê ( fï'—-1-—) r1') <ru>»'. 
r= l \ j=r-l \ 1=1 Ck+T — Cjc+i/ / 

This is proved as Theorem 5.2. One consequence of this is worth 
comment. 

COROLLARY 1.4. The functions 

£ (fr—-1-—)ik+iu 
J=T-1 \ l=l Ck+r — Ck+i/ 

are eigenfunctions of A + q with eigenvalues ck+r. 

This is proved as Corollary 5.3. 
We refer to this as a partial isospectral result. It says that the inter

section of the spectra of A and A + q is non-empty. Notice that the 
eigenfunctions of these operators are different even for the same eigen
value and that both spectra may contain eigenvalues not in this inter
section.Thus, only part of the spectra are common; hence, the reference 
to a partial isospectral result. 

https://doi.org/10.4153/CJM-1982-081-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-081-3


SPECIAL FUNCTION POTENTIALS 1185 

The paper is concluded by applying this result to the case F(x) = xn. 
Having calculated Lnqku in Section 2, we can now equate this with the 
expression given in Theorem 1.2. In this way we obtain the following 
identities: 

THEOREM 1.5. For each pair of positive integers j and n we have the follow
ing identities inj + 1 variables: 

a. iff ^ n then 

3+1 3+1 i 

E
si sj+i x - ^ n T~T #1 . . . Xj+i — 2—i Xr 1 1 » 

r=l 1=1 ^r % I 

where the first summation is over si,. . . , sj+i such that st > 0 and 

Si + • • • + Sj+! = n - j 

and in the product we omit the term with 1= r. 
b. if'j ^ n + 1 then 

.H-l j+l 1 

o = i>r
nn—i— -

where we again omit the term with I = r from the product. 

In this summary of the contents of this paper no description has been 
given of the contents of Section 2 and Section 3. These contain the 
technical results which make things work. 

Finally I should express thanks to all the mathematicians whose 
discussions have been most helpful. In particular to W. Lichtenstein for 
pointing out the possibility of calculating (A + q)nqku. 

2. The Laplacian plus a potential. In this section we introduce the 
functions q and uonG and then calculate (A + q) rqku. 

Let G be a compact, connected, simply connected Lie group and 
7T\ : G —> Aut V\ be the representation of G with highest weight X. In V\ 
let v\ be the highest weight vector and let ( , ) be a G-invariant inner 
product on V\. Then if we pick any two vectors v and w in V\ we can 
define q and u as follows: 

(2.1) q(g) = (vx,irx(g)v) 

and 

(2.2) u(g) = (vx, Trx(g)w). 

These are matrix coefficients of the representation T\. The significance of 
the role of the highest weight vector x̂ occurs for us when we consider 
the product qku. Clearly qku is a matrix coefficient in &)k+1V, the (k + 1)-
fold tensor product of V\. However, because of the use of v\ in the defini
tion of q and u we can identify the irreducible subrepresentation of 
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® f c+1F\ which has qku as a matrix coefficient. This subrepresentation is 
V(k+i)\, the representation with highest weight (k + 1)X. 

Now that we have defined q and u the following result is immediately 
obvious. 

LEMMA 2.1. The function qku is an eigenfunction for the Casimir operator 
with eigenvalue c((k + 1)X). 

Here c(/x) = (/x + 2p, JU) for a weight /A, p is half the sum of the positive 
roots and ( , ) is the negative of the Killing form, see [2] for more details 
of the notation. 

In this paper we shall use the notation L = A + q. Now we can calcu
late LTqku = (A + q)rqku. The result is given by: 

THEOREM 2.2. The powers of the Laplacian plus potential q satisfy 

Lrqku = E ( E * i . . . <#fti)<z""V 
3=0 

where the second summation is over all s t such that s t ^ 0 and 
si + . . . + sj+1 = r - j . 

The numbers ct are ct = c(i\). 

Proof. The proof proceeds by induction on r. First consider the case 
r = 1 then 

(2.3) Lqku = ck+1q
ku + qk+1u. 

Thus the result is true for r = 1. Now let 

&r,j = A^ Cjc+1 • • • Ck+j+1 

so that the result of the theorem reads 

(2.4) Lrqku = J2arijq
k+ju. 

By induction we suppose that this is true. Then 

(2.5) U^qHi = L(Zar,jq
k+iu) 

so that 

r 

(2.6) Lr+1qku = E (ck+j+iaTij + ar,j-i)q
k+Ju + cktlq

ku + qk+r+lu. 
3=1 

Since the coefficients arJ satisfy 

this completes the proof. 
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Now we observe that these coefficients ar>j satisfy the following: 

LEMMA 2.3. The infinite series/^=i arit
r~j has the sum 

oo j + 1 -J 

IX/-' = nrzT-r 
The proof of this is elementary and is left to the reader. 
Finally in this section we calculate (1 — tL)~lqku. We use the well 

known expansion 

(2.7) (1 - x) - 1 = 1 + x + x2 + 

Substituting x = tL into (2.7) yields 

oo 

(2.8) (1 - tL)~Yu = X) tTLrqku. 

Now by Theorem 2.2 we have 

(2.9) (1 - tL)-\ku = £ £ ar,/q
k+Ju. 

r=0 j=0 

Interchanging the order of summation in (2.9) gives 

oo oo 

(2.10) (1 - /L)-y« = Z E cir./'W+'u, 
3=0 r=j 

which by Lemma 2.3 is 

CO / j+1 -, \ 

(2.H) (i - tLrYu = z ( n Î—V")tjqk+iu-
We collect this together as the following result. 

THEOREM 2.4. The operator (1 — tL) has the inverse, when acting on qkut 

(i - tirYu = £ ( n 1—V-) tjik+lu-

3. Cauchy's formula for operators. The aim of this section is to 
take Cauchy's integral formula, 

and replace the complex number z by an operator. 
We shall state the result 

THEOREM 3.1. Let P be a normal differential operator with eigenvalues \j} 

t G C and y a simple closed curve containing {X,}. If G is an analytic func-
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Hon then 

G(tP)u = -—. I G(ts) -——-iids, 
2 TTl J y S — P 

for a smooth function u. 

Proof. First observe tha t if u is an eigenfunction of P with eigenvalue X 
then the equation reads 

(3.2) G(t\)u = ---. I ^-\uds. 
2-ïïlJ y S — X y 

This is jus t Cauchy 's integral formula. T o complete the proof we write u 
as a linear combination of eigenfunctions. Since P is normal, t ha t is 
P P * = P*P for P * the adjoint of P , the spectral theorem shows t h a t we 
can find an eigenfunction expansion of u, see [5]. 

Unfortunately we wish to apply this result to the case when P = L — 
A + q. In this case we have an increasing sequence of eigenvalues and so 
there is no closed contour y enclosing all of the eigenvalues. In this section 
we shall content ourselves with explaining the modification of Theorem 
3.1 in the case when G(x) = eoikx. 

T H E O R E M 3.2. Let P be a normal differential operator with eigenvalues {\j\ 
and t G C such that {t\j\ is contained in the upper half plane. Then 

ITJ-, 
elktPu = T1- I ———uds. 

7P' 

Proof. This follows by exactly the same argument as Theorem 3.1 once 
we have established 

(3.3) eiktz = — \ -—-ds. 
lirJ-œs — tZ 

This result is a s tandard result from the theory of Fourier transforms, 
see [3]. 

We now define a class of functions, ^ , with the proper ty t h a t / Ç *$ 
if and only if 

(3.4) f(tz) =~f°° -^l-ds. 
„ S — tZ 

Equat ion (3.3) shows tha t *& is non-empty since f(x) = eoikx is in fê. 
The following result is immediately obvious from the proof of Theorem 
3.2. 

COROLLARY 3.3. Let G G ^ then 

G{tP)u = ^ I °° -^^uds. 
twJ-^s — tP 
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4. The heat equation. In this section we apply the results of the 
previous section to give an integral expression for the solution of the 
equation 

Lf- (l/2iri)df/dt = 0 

subject to the initial data 

f(x, 0) = q(x)ku(x). 

Formally the solution is given by 

(4.1) f(x}t) = e2«itLq(x)ku(x). 

By Theorem 3.2 this is given by 

(4.2) /(«,0-^/y^M. 
Now it is clear that to give the integral expression for f we must recall 
the expression for (1 — tL)~lqku. Since we have 

(4.3) (s - L)~lqku = 5-x(l ~ s-lL)-lq*u 

then from Theorem 2.4 we find: 

(4.4) (5 - D-y« = £ ( n —V-) «*"«• 
We state the next result as a theorem. 

THEOREM 4.1. The solution of the heat equation 

Lf - (l/2wi)df/dt = 0 

subject to the initial dataf(x, 0) = q(x)ku(x) is 

'<*• *> - hi" **us £ ( n r~-) ^uds. 
^TJ -CO j=0 \ r=l S — Ck+r/ 

As a corollary to this we observe the following formula. 

COROLLARY 4.2. The solution to the above heat equation can be expressed 
in terms of Fourier transforms as 

ITT j=o \ r=si S — Ck+T/ 

Here we make the following notes on the Fourier transform. It is 
defined by 

(4.5) Ht) = fœ e*""mds. 
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The functions 1/(5 — ck+T) have poles on the real axis. In this case the 
Fourier transform is understood to be 

(4.6) f(t) = e*™%(t) 

where ga(s) — f(s — ia) for a a positive real number. Notice that Equa
tion (4.6) is independent of the choice of a. 

One consequence of this is the following identity. This is a straight 
forward application of the semigroup property for solutions of the heat 
equation. 

l ^ J - œ 3=0 \ T=l $ ~ Ck+r/ 

1 f*oo Too 00 00 / j+l+1 -1 \ 

= _ -U e^^ z E n —— ) 
T J - 0 0 " - 0 0 3=0 1=0 \ r=\ S — Ck+T/ 

X qk+i+ludxdy. 
S ~ Ck+j+l 

5. Other differential equations. In this section we give a formula 
for the solution of a class of differential equations. 

Let F be an analytic function of one variable. Then we understand 
F(tL)g as 

(5.1) F(tL)g = E antnL*g, 

where £ anXn is the Taylor series of F. Clearly if g is an eigenfunction of L 
then the series (5.1) converges from some / and 

(5.2) F(tL)g = F{t\)g 

where Lg = g\. If g is a linear combination of eigenfunctions we shall 
still have convergence in (5.1) but in general we do not have an expression 
as simple as (5.2). As one would expect the functions F(tL)g satisfy 
differential equations. For F(tL)g this equation is 

(5.3) I (F(tL)g) = LF'(tL)g. 

So for example if F(x) = exp (2wix) then we obtain a solution of the heat 
equation. This was seen in the previous section. 

We shall now state our theorem. 

THEOREM 5.1. Let L = A + q and Cj = c(j\) be as before. If F is an 
analytic function of one variable then 

00 / j+i j+i i \ 

F(tL)qku = Z ( Z Pitck+r) I P : - " — ) 1k+lu-
j=Q \ r=\ 1=1 Ck+r — Ck+i/ 

The prime with the product sign denotes that we omit the term with I = r. 
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Proof. First we order the eigenvalues of L : \lt X2, . . . , and the corre
sponding eigenfunctions uu u2, . . . . Let yn be a simple closed curve con
taining Xi, . . . , \n. Then as in Theorem 3.1 we have 

(5.4) F(tL)f = ^ F(fs) j^Jds, 

for any function/which is a linear combination of u1}. . . , un. Now choose 
a sequence of functions gn so that qku — gn is a linear combination of 
uu . . . , un. Applying (5.4) t o / = qku - gn gives 

(5.5) F(tL) (qku - gn) = ~--J^ ~ ^ (qku - gn)ds. 

Hence by Theorem 2.4 

(5.6) F{tL)(qku - gn) = - ^ / F(fc) £ ( fl 7 - 7 - ) ^ + W s 

-Lf 
2 T T * J ^ 

^fa) ~~Z~T; &^-
Now by the residue theorem 

(5.7) F(tL) (qku - gn) = ± Z ' F(tck+T) ( ff' l-—) qk+iu 
j=0 r=\ \ 1=1 Ck+r — Ck+l/ 

1 f W A 
—. ] ~ ygnds. 2wi~ yn 

In Equation (5.7) we have a prime with both the second sum and product. 
The prime with the sum indicates that we only have those r such that 
ck+r lies inside yn and the prime with the product indicates that we omit 
the term with / = r. 

To complete the proof of the theorem we let n tend to infinity. By the 
spectral theorem qku can be expanded in terms of U\, u2, . . . . Hence gn 

can be expanded in terms of un+i, un+2, . . . . Thus the term 

( -1 /2*0 f Ffàis-D^gnds 

only involves un+i, un+2, . . . . Since for any / we can find an n so ck+i, . . . , 
ck+j+i lie inside yn this means that as n tends to infinity the right hand side 
of the Equation (5.7) tends to the right hand side of the equation in the 
theorem, thus completing the proof. 

We can apply this to the heat equation. To do this take F{%) = e2irix in 
Theorem 5.1. 

THEOREM 5.2. The solution of the equation 

Lf - (l/2iri)df/dt = 0 
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subject to the initial dataf(x, 0) = qku is 

f = Ê ( Ê ( fi'-r-1--) ik+ju) «*'*•". 
r=l \ j=r-l \ 1=1 Ck+r ~~ Ck+U / 

Proof. In Theorem 5.1 take F = e27r?"* to give 

oo / j+1 j+1 -, \ 

(5.8) / = E ( z «*"'*"' ri' — V - ) **+'«-
Now interchange the order of summation. The expression in this theorem 
we shall refer to as the "Fourier" expansion of/. 

To justify interchanging the order of summation we need to consider 
questions of convergence. Since Cj — c(j\) we have 

(5.9) Cj = (j\J\ + 2p> = j 2 (X,X) + 2j(\, p) 

so Cj = 0(j2). Thus there is the bound 

(5.10) fir I < _l_r 

i i c w - ck+l\ (r\)2 

where r = integer part [j + 1/2] and c is a constant. Notice that this 
bound is not the best possible. On the other hand, since / lies in the upper 
half plane the real part of 2wit is negative. Hence we have 

(5 .11) \e2irick+r'\ < e-{k+T)a 

for some positive constante*. The bounds (5.10) and (5.11) assure con
vergence for all the manipulations performed. 

One consequence of Theorem 5.2 is the following result. 

COROLLARY 5.3. The functions 

Z I P )lk+1u 
j=r-l \ 1=1 Cjc+r Ck+i/ 

are eigenfunctions of L with eigenvalues ck+r> 

Proof. This function is the coefficient of e2riCk+rt in the "Fourier" 
expansion of the solution to the equation Lf = (l/27ri) df/dt. 

This result is a partial isospectral result. That is part of the spectrum 
of A, namely ck+r, also appears as part of the spectrum of L. Notice, 
however, that the eigenfunctions of A and L are different, even for the 
same eigenvalue, and that the whole spectrum of A may be different from 
that of L. 

We can check more directly the result contained in Equation (5.8). 
To do this we expand / a s a power series in qk+ju. It is convenient to 
write this as 

oo 

(5.12) /(*,*) = T,e2'Uk+1+ugAt)qk+i(x)u(x). 
j=0 
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The functions gj{t) then satisfy the initial value problem: 

(5.13) go(0) = l,g,(0) = 0 , j * 0 , 

| g , 0 ) = 2« e
2" ' («+ ' -«+ '+ l ) 'gy_i-

We found this system from the initial data f(x, 0) = qk+ju and the 
equation 

Lf= (l/2*i)df/dt. 

It is easy to solve the system (5.13), for example by taking the Laplace 
transform, and after some manipulation we obtain (5.8). 

6. Some polynomial identities. In this section we take the formula 
from the previous section and calculate it in a special case. 

First let us recall the result of Theorem 5.1: 

oo / j+1 j+1 -j \ 

(6.1) F(tL)qku = E ( E Htck+r) J ! — ~-—) <Z*+'«-
j=0 \ r=l 1=1 Ck+r ~~ Ck+l> 

ter 

In this formula we use F(x) = xn. This gives us the following 

oo / j+1 j+1 -, \ 

(6.2) L\ku = E ( Z cl+r I T J—-T-) <Z*+'«-
y=0 \ r=l 1=1 Ck+r ~ Ck+V 

In Section 2 we calculated Lnqku as 

(6.3) Lnqku = £ ( E rf+i • • . cl&Jq^u. 
j=o 

If we equate (6.3) and (6.2) we obtain an identity. Then equating coeffi
cients of qk+iu we obtain the following. 

a) For j ^ n we have 

3+1 J+1 1 

(6.4) £ < & ! . . . c^U = E cn
k+r EI ' T - ^ r -

r=l 1=1 Ck+j — Ck+i 

where the first summation is over all si, . . . , sj+i such that Si + . . . + sj+i 
= n — j and Si > 0. 

b) In the case j ^ w + 1 we have 

j + i j + i 1 

(6.5) 0 = E *-r I I ' 
r=l i=l Ck+j — Ck+i 

In fact we have established rather more that (6.4) and (6.5). We state 
the result as a theorem. 

THEOREM 6.1. For each pair of positive integers j and n there is the 
following identity in j -f- 1 variables x i, . . . , X;+i.* 
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a) ifj S n then 
.7+1 3+1 l 

J_, Xi . . . Xj+i = 2^Xr [[ ~~~~~ > 
7"=1 1=1 ^r "^ l 

where the first summation is over st such that s\ + • • • + sj+i = n — j and 
st^ 0. 

b) ifj ^ n + 1 then 

3+1 i+l I 

o = E*r"n'—— • 

Proof. Both of these identities are polynomial identities involving sym
metric homogeneous polynomials. By Equations (6.4) and (6.5) we know 
that they are true for xr = ck+r. Taking values of k — 1, 2, . . . we obtain 
infinitely many distinct values of (xi, . . . , Xj+i) for which these identities 
are true. This completes the proof since we now have infinitely many 
zeros of a polynomial identity. 
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