
5

Complex analysis of transverse fields

In this chapter, we continue the discussion of transverse fields that are determined
by the location of the conductors. In the “central” region, far from the magnet ends,
the powerful methods of complex analysis1 can be applied to the calculation of
potentials, magnetic fields, multipoles and forces. Many of the topics in this chapter
are based on a series of important papers by Richard Beth and by Klaus Halbach.
Beginning with the field from a line current, we consider methods for calculating
the fields from current sheets. Then we use the complex form of Green’s theorem to
express the fields of block conductors in terms of contour integrals.

5.1 Complex representation of potentials and fields

We define the complex potential function as

WðzÞ ¼ uðx; yÞ þ ivðx; yÞ:
The real and imaginary parts of W must satisfy the Cauchy-Riemann equations,
which are expressed in Cartesian coordinates as

∂u
∂x

¼ ∂v
∂y

∂u
∂y

¼ � ∂v
∂x

:

(5.1)

From Equations 3.2 and 3.26 in free space in two dimensions, we have

Bx ¼ ∂Az

∂y
¼ �μ0

∂Vm

∂x

By ¼ � ∂Az

∂x
¼ �μ0

∂Vm

∂y
:

(5.2)

1 A brief summary of some important results from the theory of complex variables is given in Appendix E.
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These equations can be put into the form of the Cauchy-Riemann equations by
associating

u ¼ Az

v ¼ μ0Vm:

Thus in two dimensions, the vector and scalar potentials are related to each other as
the real and imaginary parts of the complex potential function

WðzÞ ¼ Az þ iμ0Vm: (5.3)

Now consider the derivative of the complex potential. A complex function with
a continuous derivative is known as an analytic function. A complex derivative
must give the same result independent of the manner that Δz approaches 0. In the
case when Δz ¼ Δx, we have

dW
dz

¼ ∂W
∂x

¼ ∂Az

∂x
þ iμ0

∂Vm

∂x
¼ �By � iBx:

If we had chosen Δz ¼ iΔy instead, we would obtain the same expression for B.
So in either case we find

i
dW
dz

¼ Bx � iBy:

Defining the complex magnetic field as2

BðzÞ ¼ Bx þ iBy; (5.4)

we find the relation between the magnetic field and the potential is

B	ðzÞ ¼ i
dW
dz

; (5.5)

where B* is the complex conjugate of B.[1]
We can transform the magnetic field between Cartesian and polar coordinates by

using the complex rotation variable. Let

Bc ¼ Bx þ iBy

Bp ¼ Br þ iBθ

2 Unfortunately, Beth and Halbach use different definitions for the complex magnetic field H and use different
systems of units, so some care must be exercised in comparing their results. We follow Halbach’s conventions
here in defining the components of H the same way as normal complex variables and using the SI system of
units.
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be the Cartesian and polar representations of a complex variable. Defining

R ¼ eiθ ¼ cos θþ i sin θ;

we can transform between the two representations using

Bp ¼ R	Bc

Bc ¼ RBp:
(5.6)

Consider the analytic function

f ðzÞ ¼ uðx; yÞ þ ivðx; yÞ: (5.7)

Differentiating the first Cauchy-Riemann Equation 5.1 with respect to x, we have

∂2u
∂x2

¼ ∂2v
∂x∂y

:

The fact that the second partial derivative has to exist follows from the analytic
nature of f ðzÞ.[2] Differentiating the second Cauchy-Riemann equation with
respect to y gives

∂2u
∂y2

¼ � ∂2v
∂x∂y

:

Combining these equations, we find that

∂2u
∂x2

þ ∂2u
∂y2

¼ 0:

Thus uðx; yÞ satisfies the Laplace equation. Similarly, we can differentiate the first
Cauchy-Riemann equation with y and the second with x to show that vðx; yÞ also
satisfies the Laplace equation. It follows that the real and imaginary parts of any
analytic function satisfy the Laplace equation.
Returning to Equation 5.7, consider the two curves

uðx; yÞ ¼ α1
vðx; yÞ ¼ β1;

where α1 and β1 are fixed values. Differentiating u with respect to x, we find

∂u
∂x

þ ∂u
∂y

dy
dx

¼ 0:

The slope of the curve is

mα ¼ dy

dx
¼ � ∂xu

∂yu
:
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Differentiating v with respect to x, we find

∂v
∂x

þ ∂v
∂y

dy
dx

¼ 0

and the slope of this curve is

mβ ¼ � ∂xv
∂yv

:

The product of the slopes is

mαmβ ¼ ∂xu
∂yu

∂xv
∂yv

:

Rewriting the numerator using the Cauchy-Riemann equations, we find

mαmβ ¼ ð∂yvÞð�∂yuÞ
∂yu∂yv

¼ �1:

From analytic geometry, this is the condition that indicates that two lines are
perpendicular. Thus the real and imaginary parts of an analytic function describe
orthogonal curves. This indicates in particular that the equipotential lines for Az and
Vm cross at right angles.

5.2 Maxwell’s equations in complex conjugate coordinates

Instead of defining complex variables as functions of x and y, it is sometimes more
convenient to use z and z* as the independent variables. These are known as
complex conjugate coordinates.[3]We can write the partial derivatives with respect
to x and y in terms of these variables as

∂
∂x

¼ ∂
∂z

þ ∂
∂z	

∂
∂y

¼ i
∂
∂z

� ∂
∂z	

� �
:

(5.8)

The corresponding derivatives with respect to z and z* are

2
∂
∂z

¼ ∂
∂x

� i
∂
∂y

2
∂
∂z	

¼ ∂
∂x

þ i
∂
∂y

:

(5.9)
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We can use Equation 5.8 to write the magnetostatic Maxwell equations in complex
coordinates. The divergence equation

∂xHx þ ∂yHy ¼ 0

becomes [1]

∂H
∂z

þ ∂H	

∂z	
¼ 0; (5.10)

where H ¼ Hx þ iHy is the complex magnetic field intensity. The curl equation

∂xHy � ∂yHx ¼ Jz ≡ σ

can be transformed using Equation 5.8 into the form

�i∂zH þ i∂z	 H	 ¼ σ:

This can be further simplified using Equation 5.10, resulting in two forms for the
curl equation.[1]

2i
∂H	

∂z	
¼ σ

�2i
∂H
∂z

¼ σ:

(5.11)

Operating on the complex potential in Equation 5.3, we find

2
∂W
∂z	

¼ ð∂xAz � ∂yμ0VmÞ þ ið∂xμ0Vm þ ∂yAzÞ:

The expressions in parentheses are the Cauchy-Riemann equations, which are thus
compactly incorporated into the expression [4]

∂W
∂z	

¼ 0: (5.12)

The r operator can be written as

r ¼ 2
∂
∂z	

r	 ¼ 2
∂
∂z

(5.13)

and the Laplacian is

r2 ¼ 4
∂2

∂z∂z	
: (5.14)
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5.3 Field from a line current

Consider a single filament of current that crosses the x-y plane at the location z and
an observation point zo, as shown in Figure 5.1. The displacement between these
two points is

zo � z ¼ Reiα: (5.15)

We know from Equation 1.26 that the field of the line current is

B
! ¼ μ0I

2πR
ð�x̂ sin αþ ŷ cos αÞ: (5.16)

Every filament in a magnet must have a return filament of the opposite polarity
somewhere. It is convenient to assume that all filaments have their currents return
through a filament at the coordinate origin. Considering Equation 3.9 for the vector
potential of a line current, we assume the complex potential for a filament and its
return is given by

W ¼ � μ0I
2π

½lnðzo � zÞ � lnðzo � 0Þ�:

The second term in this equation is constant for a given field point. In the cross-
section of any real magnet, there are equal numbers of filaments with positive and
negative currents. Thus summed over all the filaments in a magnet, the second
terms cancel out. The first terms do not cancel out in general because the filaments
have different positions z. Thus the potential for the line current is

WðzoÞ ¼ � μ0I
2π

lnðzo � zÞ: (5.17)

Figure 5.1 Geometry of a line current.
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Using Equations 5.5 and 5.15 with the derivative operating on the coordinates of
the field point zo, we get the magnetic field

Bx � i By ¼ �i
μ0I
2π

1

zo � z

¼ �i
μ0I
2πR

e�iα

¼ �i
μ0I
2πR

ðcos α� i sin αÞ;

(5.18)

which agrees with the result in Equation 5.16.
From Equation 5.15, the complex logarithm is

lnðzo � zÞ ¼ lnRþ iα:

Using Equations 5.3 and 5.17 we can confirm that the vector potential for a line
current is

Az ¼ � μ0I
2π

lnR (5.19)

and find that the scalar potential is

Vm ¼ � I
2π

α

¼ � I
2π

tan�1 yo � y
xo � x

� �
:

(5.20)

Although Equations 5.19 and 5.20 appear very different, they both lead to the fields
in Equation 5.18.
Assume that a line current is located at position z. Then, according to

Equation 5.18, the field intensity at the observation point zo is

H	ðzoÞ ¼ �i
I
2π

1

zo � z
: (5.21)

Integrate H* over observation points around any closed contour that encloses the
point z. þ

H	dzo ¼ �i
I
2π

þ
1

zo � z
dzo:

According to Cauchy’s integral formula,3

3 See Appendix E.
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þ
1

zo � z
dzo ¼ 2πi:

Thus we find that the complex form of the Ampère law isþ
H	dzo ¼ I; (5.22)

where I is the total current enclosed by the contour.
Now consider a line current in the vicinity of a plane surface of infinite perme-

ability iron. As we saw in Chapter 2, the effect of the iron on the field of a conductor
filament is equivalent to the presence of an image filament on the other side of the
iron surface. The direction of the image current is the same as the conductor
current. In the case of a circular boundary of radius R, the positions of the conductor
and image filaments are

z ¼ ρeiϕ

zI ¼ R2

ρ
eiϕ ¼ R2

z	
:

(5.23)

5.4 Field from a current sheet

We can consider a current sheet as a collection of parallel line currents. The sheet is
assumed to have a finite width, but to have infinitesimal thickness. Then using
Equation 5.17, the potential for the current sheet is

WðzoÞ ¼ � μ0
2π

ð
KðsÞln½zo � zðsÞ�ds; (5.24)

where s is the arc length along the sheet and K ¼ dI=ds is the sheet current density.

Example 5.1: potential for a straight sheet with constant K
Consider the straight sheet with width b shown in Figure 5.2. The current density is
K ¼ I

b and the filaments making up the sheet are located at

zðsÞ ¼ z1 þ seiθ:

It follows that dz ¼ eiθds and

z2 ¼ z1 þ beiθ: (5.25)

From Equation 5.24, the potential is

WðzoÞ ¼ � μ0I
2πb

ð
ln½zo � z�e�iθdz:
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We can write

lnðzo � zÞ ¼ lnðz� zoÞ þ lnð�1Þ
¼ lnðz� zoÞ þ iπ:

The second term is independent of zo and gets absorbed into the constant term for the
potential. Defining u ¼ z� zo, we get

WðzoÞ ¼ � μ0I
2πb

e�iθ
ðu2
u1

lnu du:

Substituting for e�iθ from Equation 5.25 and evaluating the integral4 gives

WðzoÞ ¼ � μ0I
2πðz2 � z1Þ ½u2lnu2 � u1lnu1 � u2 þ u1�:

The last two terms in the square bracket give

�u2 þ u1 ¼ �ðz2 � zoÞ þ ðz1 � zoÞ
¼ z1 � z2:

This term is also independent of zo and gets absorbed into the constant term for the
potential. Thus the potential for the straight sheet is given by [5]

WðzoÞ ¼ � μ0I
2πðz2 � z1Þ ½u2lnu2 � u1lnu1�: (5.26)

Summing up the contributions to the magnetic field from the field of individual
line currents given in Equation 5.21, we find the field of a current sheet is given by

Figure 5.2 A straight current sheet.

4 CRC 377.
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H	ðzoÞ ¼ i
2π

ð
KðsÞ

zðsÞ � zo
ds; (5.27)

where s is the distance along the sheet. If the position along the sheet is specified by
the polar angle ϕ, this can be written as

H	ðzoÞ ¼ i
2π

ð
dI=dϕ

zðϕÞ � zo
dϕ: (5.28)

It is possible to determine a unique current distribution dI=dϕ for circular or elliptic
current sheets that can produce any desired two-dimensional field compatible with
Maxwell’s equations in the magnet aperture.[6]

Example 5.2: field due to a circular arc sheet with constant current density
Let us consider a current sheet in the form of a circular arc, as shown in Figure 5.3.
The magnetic field from the sheet is given by Equation 5.28.

H	ðzoÞ ¼ � i
2π

dI
dϕ

ðϕ2
ϕ1

dϕ
zo � zðϕÞ:

Since z ¼ aeiϕ, we can write this as

H	ðzoÞ ¼ � 1

2π
dI
dϕ

I;

where5

I ¼
ðz2
z1

dz
z ðzo � zÞ

¼ 2i
zo

tan�1 i
zo � 2z

zo

� �� �
:

(5.29)

Figure 5.3 Circular arc current sheet.

5 GR 2.172.
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Therefore the field is

H	ðzoÞ ¼ � i
πzo

dI
dϕ

tan�1 i
zo � 2z

zo

� �� �� �z2

z1

:

Using the relation6

tan�1z ¼ 1

2i
ln

1þ iz
1� iz

� �
;

we can write the field of the circular arc as

H	ðzoÞ ¼ � i
2πzo

dI
dϕ

ln
z2

zo � z2

� �
� ln

z1
zo � z1

� �� �
: (5.30)

From Equation 5.28, the field of the arc conductor at the origin is

H	ð0Þ ¼ i
2π

dI
dϕ

ðϕ2
ϕ1

dϕ
a eiϕ

¼ � 1

2πa
dI
dϕ

½e�iϕ2 � e�iϕ1 �:

If the angular arc completes a full circle, we have a current shell and the integral in
Equation 5.29 becomes

I ¼ �
þ

dz
zðz� zoÞ :

A point where the denominator of the integrand becomes zero is called a pole. If zo is
inside the circle, then the contour integral has simple poles at z = 0 and z ¼ zo.
The residue7 for the pole at z ¼ 0 is

lim
z→0

z
1

zðz� zoÞ ¼ � 1

zo

and the residue for the pole at z ¼ zo is

lim
z→zo

ðz� zoÞ 1

zðz� zoÞ ¼
1

zo
:

Therefore, by the residue theorem, the value of the integral is zero and the field inside
the shell vanishes. When zo is outside the shell, the integral only has the pole at z = 0
and the residue theorem gives

6 GR 1.622.3. 7 See Appendix E.
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I ¼ �2πi � 1

zo

� �
¼ 2πi

zo
:

Therefore, the field outside the shell is

H	ðzoÞ ¼ � i
zo

dI
dϕ

:

Since the total current is

I ¼ 2π
dI
dϕ

;

the field can be written as

H	ðzoÞ ¼ �i
I

2πzo
:

This is the same as Equation 5.21 for the field of a line current located at the center of
the shell.

Let us apply the Ampère law, Equation 5.22, for an infinitesimal rectangular
contour across a current sheet, as shown in Figure 5.4. Then we have,

H	
1ðzoÞdz� H	

2ðzoÞdz ¼ dI;

where dI is the current enclosed in the contour. In the limit where the distance
perpendicular to the sheet approaches 0, the path of the observation
points approach the path along the sheet and this results in the “current sheet
theorem.”[7]

H	
1ðzÞ � H	

2ðzÞ ¼
dI
dz

: (5.31)

In addition to determining fields, this result has been used for calculations of
magnetic stored energy and Lorentz forces.[8]

Figure 5.4 The sheet theorem.
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5.5 cos ϕ current sheets

We consider here two examples of using complex methods to study the properties
of current sheets that have a cos ϕ azimuthal current distribution.

Example 5.3: field from cos ϕ current distribution using contour integration
Consider a closed circular sheet of radius a. We have

dI
dϕ

¼ I0cos ϕ

z ¼ aeiϕ

cos ϕ ¼ eiϕ þ e�iϕ

2
¼ zþ z	

2a
:

Substituting into Equation 5.28, we get

H	ðzoÞ ¼ i I0
4πa

þ
zþ z	

z� zo

dz
i z

¼ I0
4πa

þ
1

z� zo
þ z	

zðz� zoÞ
� �

dz

¼ I0
4πa

½I1 þ I2�:

(5.32)

It follows from Cauchy’s theorem that the first integral

I1 ¼
þ

dz
z� zo

¼ 2πi if zo < a
0 if zo > a

:

�
Using the method of partial fractions,[9] the denominator of the second integral can
be written

1

zðz� zoÞ ¼
A
z
þ B
z� zo

1 ¼ ðz� zoÞAþ zB:

Equating powers of z, we find that

A ¼ � 1

zo

B ¼ 1

zo
:

Then we can write

I2 ¼ �I3 þ I4;
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where

I3 ¼ 1

zo

þ
z	

z
dz

¼ ia
zo

ð2π
0
e�iϕ dϕ ¼ 0

and

I4 ¼ 1

zo

þ
z	

z� zo
dz: (5.33)

Using z	 ¼ a2=z ; we can write this as

I4 ¼ a2

zo

þ
dz

zðz� zoÞ

¼ a2

zo
� 1

zo

þ
dz
z
þ 1

zo

þ
dz

z� zo

� �
:

For zo inside the contour, the factor in square brackets vanishes because of the
residue theorem and I4 ¼ 0: Then from Equation 5.32,

H	ðzoÞ ¼ Hx � iHy

¼ I0
4πa

½2πiþ 0� ¼ i
I0
2a

:

From this, we see that the field inside the current sheet is

Hx ¼ 0

Hy ¼ � I0
2a

:
(5.34)

The field is only in the vertical direction and has constant magnitude everywhere
inside the sheet in agreement with Equation 4.36.
For zo outside the contour, we have

8

I4 ¼
þ

z	

zoðz� zoÞ dz

¼ ia2

zo

ð2π
0

1

a eiϕ � zo
dϕ

¼ � a2

z2o
2πi:

8 GR 2.313.1.
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Substituting these results back into Equation 5.32, the field outside the contour is

H	ðzoÞ ¼ I0
4πa

0� a2

z2o
2πi

� �
¼ �i

I0a
2z2o

:

If we write zo ¼ xþ iy and multiply the numerator and denominator by ðz	oÞ2, we find
that

H	ðzoÞ ¼ � I0a
r4

xy� i
I0a
2r4

ðx2 � y2Þ:

Equating real and imaginary parts, we find the Cartesian field components outside the
sheet are

Hx ¼ � I0a
r4

xy ¼ � I0a
2r2

sin 2ϕ

Hy ¼ I0a
2r4

ðx2 � y2Þ ¼ I0a
2r2

cos 2ϕ:
(5.35)

On the midplane (y = 0),H is positive, along the y direction, and falls off with distance
like 1=x2.

Example 5.4: field from cos ϕ current distribution using the sheet theorem
Assume again that we have a circular sheet with radius a. The current elements are
located at

z ¼ aeiϕ

dz ¼ izdϕ;

so we have

dI
dz

¼ dI
dϕ

dϕ
dz

¼ �i
I0
z
cos ϕ

¼ �i
I0
z

eiϕ þ e�iϕ

2

� �
¼ �i

I0
z

z
a
þ a

z

� �
:

Using the current sheet theorem, Equation 5.31,

H	
1ðzÞ � H	

2ðzÞ ¼ �i
I0
2a

þ I0a

2z2

� �
:

The field inside the sheet Hin must be finite at z ¼ 0 and for current in the positive
z direction in the first quadrant of the circle, the field must go in the negative
y direction. Therefore we identify H2 with Hin and get
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�H	
inðzÞ ¼ �Hin;x þ iHin;y ¼ �i

I0
2a

:

Equating real and imaginary parts, we find that

Hin;x ¼ 0

Hin;y ¼ � I0
2a

(5.36)

in agreement with Equation 5.34. We identify the field exterior to the current sheet
Hext with H1 in the sheet theorem.

Hext;x � i Hext;y ¼ �i
I0a
2z2

5.6 Green’s theorems in the complex plane

So far we have examined the fields due to current filaments and current sheets.
We next want to proceed to the case of conductors with finite cross-sectional areas.
However, before doing that, we need to review some important theorems that
allows us to replace two-dimensional integrations over the conductor surface
with contour integrals around the boundary of the surface. Besides the practical
importance of reducing computation times in numerical calculations, this allows us
to make use of some powerful results from the theory of complex contour
integration.
Recall from Equation 3.79 that Green’s theorem in the plane isðð

∂Q
∂x

� ∂P
∂y

� �
dx dy ¼

þ
ðP dxþ Q dyÞ;

where Pðx; yÞ and Qðx; yÞ are continuous functions with continuous partial
derivatives in a region R that is bounded by a curve C. Define the complex
function

Fðz; z	Þ ¼ Pðx; yÞ þ iQðx; yÞ:
Using Equation 5.9, the derivative of F can be written as

2
∂F
∂z	

¼ ∂P
∂x

� ∂Q
∂y

� �
þ i

∂P
∂y

þ ∂Q
∂x

� �
: (5.37)

The closed integral of F around C isþ
F dz ¼

þ
ðP dx� Q dyÞ þ i

þ
ðQ dxþ P dyÞ:
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Applying Green’s theorem in the plane, we haveþ
F dz ¼ i

ðð
∂P
∂x

� ∂Q
∂y

� �
þ i

∂P
∂y

þ ∂Q
∂x

� �� �
dx dy:

Replacing the integrand on the right-hand side using Equation 5.37, we find the first
complex Green’s theorem.[1] ð

∂F
∂z	

dS ¼ 1

2i

þ
F dz (5.38)

Following similar arguments, we have

2
∂F
∂z

¼ ∂P
∂x

þ ∂Q
∂y

� �
þ i � ∂P

∂y
þ ∂Q

∂x

� �
and þ

F dz	 ¼ �i
ðð

∂P
∂x

þ ∂Q
∂y

� �
þ i � ∂P

∂y
þ ∂Q

∂x

� �� �
dx dy:

After substitution, we obtain the second complex Green’s theorem.[1]ð
∂F
∂z

dS ¼ � 1

2i

þ
F dz	: (5.39)

5.7 Field from a block conductor

We next want to consider the case of a block conductor, which we define as one
with finite cross-sectional area. If we consider the conductor block as made up from
an array of current filaments, we can use Equation 5.21 and express the field as

H	 ¼ � i
2π

ð
σ

zo � z
dS; (5.40)

where σ is the current density in the block. If we assume the current density is
constant, we can rewrite this as

H	 ¼ iσ
2π

ð
dS

z� zo
: (5.41)

Powerful methods have been developed that allow the fields from block conductors
to be evaluated using contour integration.[1] Consider the Green’s theorem,
Equation 5.38. For our application, the integrand of the surface integral is asso-
ciated with the expression for the magnetic field in Equation 5.41. The integral has
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a singularity for the case when zo is insideC, as shown in Figure 5.5. We can isolate
the singularity by constructing a small circular contour C1 around it. Then we can
use Green’s theorem in the region between the two contours to transform the
surface integral into a contour integration. However, this requires evaluation on
both contours C and C1. Halbach proposed adding a constant term to the function
F in Green’s theorem that is (a) analytic in R and (b) makes the contour integration
around C1 vanish.[1] He assumed that F could be written as the product of two
functions F1 and F2 with the property

∂F
∂z	

¼ F1ðzÞ ∂F2ðz	Þ
∂z	

; (5.42)

where F1 contains the singularity. Then F must have the form

Fðz; z	Þ ¼ F1ðzÞ½F2ðz	Þ � F2ðz	oÞ�: (5.43)

Following this procedure, we define

F1ðzÞ ¼ iσ
2π

1

z� zo
F2ðz	Þ ¼ z	:

Then for use in Green’s theorem, we have

F ¼ iσ
2π

1

z� zo
ðz	 � z	oÞ

and

∂F
∂z	

¼ iσ
2π

1

z� zo
;

Figure 5.5 Contour for the Green’s theorem calculation.
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which is the integrand from Equation 5.41. Applying Green’s theorem, we find that

H	 ¼ 1

2i

þ
iσ
2π

1

z� zo
ðz	 � z	oÞdz;

which simplifies to [1, 10]

H	 ¼ σ
4π

þ
z	 � z	o
z� zo

dz: (5.44)

Let us confirm that Equation 5.44 does indeed vanish for the circular contour C1.
Let

z� zo ¼ reiθ:

Then for the contour C1,þ
z	 � z	o
z� zo

dz ¼ ir
ð2π
0
e�iθ dθ ¼ 0:

Thus we can ignore the contours around isolated singularities inside the conductor
region and only evaluate Equation 5.44 on the outer boundary of the conductor.
Other quantities of interest can also be conveniently expressed in terms of

contour integrals. For example, the area A of a current block is given by [10, 11]

A ¼ 1

2i

þ
z	dz: (5.45)

Expressions have also been derived for the stored energy.[1, 12]

5.8 Block conductor examples

We consider three examples of using Equation 5.44 to find the field of a block
conductor. The first example, the cylindrical conductor, was treated already in
Chapter 1 using the Ampère law. Even though the calculation presented here is
considerably more complicated, we carry it out to demonstrate some of the techni-
ques involved and to comparewith a result where we know the answer. The other two
examples cannot be computed straightforwardly using the Ampère law.

Example 5.5: field of a solid cylindrical conductor
Assume we have a solid cylindrical conductor with radius a, as shown in Figure 5.6.
Let

z ¼ aeiϕ

zo ¼ reiθ:
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Then Equation 5.44 gives

H	 ¼ σ
4π

ð2π
0

ae�iϕ � re�iθ

aeiϕ � reiθ
i aeiϕ dϕ

¼ i
σa
4π

½a I1 � re�iθ I2�;
(5.46)

where

I1 ¼
ð2π
0

dϕ
aeiϕ � reiθ

I2 ¼
ð2π
0

eiϕ

aeiϕ � reiθ
dϕ:

(5.47)

Case 1: zo inside the conductor

When zo is inside the conductor, we can use theorems from complex analysis
to evaluate the integrals. Define u ¼ eiϕ and β ¼ zo=a. Then

I1 ¼ 1

ia

þ
du

ðu� βÞu : (5.48)

We would like to convert the denominator into a simple pole so that we can use
the residue theorem to evaluate the integral. To do this, expand the denominator
using the method of partial fractions. Then we can write Equation 5.48 as

I1 ¼ 1

ia
� 1

β

þ
du

u� 0
þ 1

β

þ
du

u� β

� �
:

Figure 5.6 Solid cylindrical conductor.
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Applying the residue theorem, we obtain

I1 ¼ 1

ia
2πi � 1

β
þ 1

β

� �
¼ 0:

Turning next to I2,

I2 ¼ 1

ia

þ
du

ðu� βÞ

we apply the residue theorem and find

I2 ¼ 1

ia
2πi ð1Þ ¼ 2π

a
:

Returning now to Equation 5.46,

H	 ¼ i
σa
4π

ð�r e�iθÞ 2π
a

¼ �i
σr
2
½cos θ� i sin θ�:

Thus the field inside the conductor is

Hx ¼ � σr
2
sin θ

Hy ¼ σr
2
cos θ:

(5.49)

Case 2: zo outside the conductor

In this case, there are no singularities inside the contour, so we can treat I1 and
I2 as ordinary integrals. Performing the first integration gives9

I1 ¼ 1

�ireiθ
iϕ� lnð�reiθ þ aeiϕÞ �2π

0 :

The logarithm term cancels because it has the same value at 0 and 2π. Thus we
find that

I1 ¼ � 2π
reiθ

:

9 GR 2.313.1.
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For the integral I2, let β ¼ r=a and u ¼ eiϕ. Then

I2 ¼ 1

ia

þ
du

u� βeiθ

¼ 1

ia
ln eiϕ � βeiθ
 �2π

0 :

The second term in the logarithm is constant and the first term has the same
value at the two limits. Therefore, I2 ¼ 0, and Equation 5.46 gives

H	 ¼ �i
σa2

2reiθ

¼ �i
σa2

2r
½cos θ� isin θ�:

Equating real and imaginary parts, we find the field outside the conductor is

Hx ¼ � σa2

2r
sin θ

Hy ¼ σa2

2r
cos θ:

(5.50)

The field of an elliptical block conductor has also been found using similar
methods.[12, 13]

Example 5.6: field outside a rectangular conductor
Assume we have a rectangular conductor oriented at an angle θ with respect to the
x axis, as shown in Figure 5.7. We look for the field at the observation point zo.
In terms of the variables (z, z*), a straight line from the vertex n to vertex nþ 1 has the
equation [1, 10]

z	 ¼ z	n þ Δz	
z� zn
Δz

� �
; (5.51)

where

Δz ¼ znþ1 � zn: (5.52)

Since the rectangle has four sides and has to close, we identify z5 ¼ z1. For the side
beginning with vertex 1, we define

β1 ¼
Δz	

Δz
¼ ae�iθ

aeiθ
¼ e�2iθ;
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where a is the length of side 1. The second equation comes from considering z1 as the
origin of a line to z2 in polar coordinates. Note that β is a constant because it is defined
in terms of fixed z locations. In a rectangle, the angles of the other sides with respect
to the x axis increase by 90° at each of the vertices. Thus for the side from vertex 2 to
vertex 3,

β2 ¼ e�2iðθþπ=2Þ ¼ e�iπe�2iθ ¼ �β1:

Similarly we find,

β3 ¼ β1
β4 ¼ �β1:

Then Equation 5.44 gives

H	 ¼ σ
4π

ðz2
z1

½z	1 þ β1ðz� z1Þ � z	o�
z� zo

dzþ � � �

with similar expressions for the remaining three sides. Defining the constant

αn ¼ z	n � βn zn � z	o;

we can write

H	 ¼ σ
4π

½α1I1 þ β1I2� þ � � � : (5.53)

For points zo outside the contour,

I1 ¼
ðz2
z1

dz
z� zo

¼ lnðz� zoÞ½ �z2z1

Figure 5.7 Rectangular conductor.
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and10

I2 ¼
ðz2
z1

z
z� zo

dz

¼ ½zþ zolnðz� zoÞ�z2z1 :
Substituting into Equation 5.53,

H	 ¼ σ
4π

α1ln
z2 � zo
z1 � zo

� �
þ β1½z2 þ zolnðz2 � zoÞ � z1 � zolnðz1 � zoÞ�

� �
þ � � �

¼ σ
4π

α1ln
z2 � zo
z1 � zo

� �
þ β1zoln

z2 � zo
z1 � zo

� �
þ β1ðz2 � z1Þ

� �
þ � � �

¼ σ
4π

½α1 þ β1zo�ln
z2 � zo
z1 � zo

� �
þ β1ðz2 � z1Þ

� �
þ � � � :

Writing out the third term for all four sides gives

β1½ðz2 � z1Þ � ðz3 � z2Þ þ ðz4 � z3Þ � ðz1 � z4Þ� ¼ 2β1½�z1 þ z2 � z3 þ z4�:

For a rectangle, the directed line segments

z4 � z3 ¼ �ðz2 � z1Þ;
so this term cancels. Thus we find the field at zo due to the rectangular conductor
block is [5, 10]

H	 ¼ σ
4π

X4
n¼1

hn

hn ¼ ½ðzn � zoÞ	 � βnðzn � zoÞ� ln znþ1 � zo
zn � zo

� �
:

(5.54)

Example 5.7: on-axis field for annular sector conductor

For our last example, consider a conductor with the shape of an annular sector, as
shown in Figure 4.11. We look for the field at the center of the circular arcs. Thus we
have

z ¼ reiϕ

zo ¼ 0

and the contour in Equation 5.44 can be broken into the four parts.

10 GR 2.112.1.
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H	ð0Þ ¼ σ
4π

ðr2
r1

re�iϕ1

reiϕ1
eiϕ1drþ

ðϕ2
ϕ1

r2e�iϕ

r2eiϕ
r2i e

iϕdϕ

(

þ
ðr1
r2

re�iϕ2

reiϕ2
eiϕ2drþ

ðϕ1
ϕ2

r1e�iϕ

r1eiϕ
r1i e

iϕdϕ

)
:

Simplifying and performing the integrals, we get

H	ð0Þ ¼ σ
4π

ðr2
r1

e�iϕ1drþ i
ðϕ2
ϕ1

r2e
�iϕdϕþ

ðr1
r2

e�iϕ2drþ i
ðϕ1
ϕ2

r1e
�iϕdϕ

( )

¼ � σ
2π

ðr2 � r1Þðe�iϕ2 � e�iϕ1Þ:

Expanding the exponentials, we find that the field of the annular sector conductor is

H	ð0Þ ¼ � σ
2π

ðr2 � r1Þ½ðcos ϕ2 � cos ϕ1Þ � iðsin ϕ2 � sin ϕ1Þ�; (5.55)

which agrees with Equation 4.50. Note that the field strength is proportional to the
radial thickness.

5.9 Field from image currents

We now consider the magnetic field produced by a current distribution in the
presence of infinite permeability iron. The case of a filament near a planar iron
surface is shown in Figure 5.8. The current in the filament induces image currents
on the surface of the iron, which can be represented by an equivalent image
filament inside the iron. We have seen in Chapter 2 that the image current is in the
same direction as the conductor filament and is located the same distance from
the iron surface as the conductor filament. The field of the image filament is
given by

Figure 5.8 Line current near an iron slab.
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H	
I ðzoÞ ¼ i

I
2π

1

zI � zo
: (5.56)

The location of the image filament is

zI ¼ d þ ðd � xÞ þ i y
¼ 2d � z	:

For a uniform distribution of current, we have

H	
I ðzoÞ ¼ i

σ
2π

ð
dS

2d � z	 � zo
:

To convert this surface integral to a contour integral, we use the complex Green’s
theorem, Equation 5.39. Choosing

F ¼ iσ
2π

z
2d � z	 � zo

;

we find that the contribution to the field from the image current in a planar iron
surface is

H	
I ðzoÞ ¼ � σ

4π

þ
z

2d � z	 � zo
dz	: (5.57)

We are also interested in the image currents near a circular iron surface at radius
R, as shown in Figure 5.9. From Chapter 2, we know the image current is in the
same direction as the conductor current. If ρ is the distance of the conductor
filament from the center of the circle, then the image filament is a distance R2=ρ
from the center. Thus we have

z ¼ ρeiϕ

zI ¼ R2

ρ
eiϕ ¼ R2

z	
:

Figure 5.9 Line current near a circular iron cavity.
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For a sheet conductor, the contribution of the images in a circular iron cavity to the
field is a sum over the corresponding image currents. Using Equation 5.27, we
obtain

H	
I ðzoÞ ¼

i
2π

ð
KðzÞ
zI � zo

dz

¼ i
2π

ð
Kz	

R2 � zoz	
dz;

(5.58)

where KðzÞ ¼ dI=dz.

Example 5.8: image field for cos ϕ current sheet in an iron cavity
Let us examine the image field at the origin for a closed circular sheet with radius
a and a cos ϕ angular current distribution. When zo = 0, the integrand does not have
a singularity. Applying Equation 5.58,

H	
I ð0Þ ¼

i
2π

ð2π
0

I0cos ϕ
iz

ae�iϕ

R2
izdϕ

¼ iI0a
2πR2

ð2π
0

cos ϕ
eiϕ

dϕ

¼ iI0a
4πR2

ð2π
0

eiϕ þ e�iϕ

eiϕ
dϕ:

After the integration, we find the contribution of the image field at the origin is

H	
I ð0Þ ¼ i

I0a
2R2

¼ HIx � iHIy;

which gives the field components

HIx ¼ 0

HIy ¼ � I0a
2R2

:
(5.59)

The contribution of the image field is in the same direction that we saw in
Equation 5.34 for the field of the conductor. The enhancement of the field due to
the presence of the iron is

Eð0Þ ¼ H	ð0Þ þ H	
I ð0Þ

H	ð0Þ
¼ 1þ a2

R2
:

(5.60)

This shows that the iron cavity can contribute up to a factor of 2 to the field at the
origin.
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For a block conductor with constant current density, the image current in circular
iron is

H	
I ðzoÞ ¼

iσ
2π

ð
z	

R2 � zoz	
dS:

Using Equation 5.39 for Green’s theorem and choosing

F ¼ iσ
2π

zz	

R2 � zoz	
;

we find that the field due to the image current in the circular iron is [1]

H	
I ðzoÞ ¼ � σ

4π

þ
zz	

R2 � zoz	
dz	: (5.61)

Example 5.9: on-axis image field in circular iron for annular sector conductor
Consider an annular sector conductor extending from radius r1 to r2 inside an iron
cavity of radius R. The image field at the origin is given by Equation 5.61 with zo ¼ 0.

H	
I ð0Þ ¼ � σ

4πR2

þ
zz	dz	

¼ � σ
4πR2

e�iϕ1

ðr2
r1

r2dr� ir32

ðϕ2
ϕ1

e�iϕdϕþ e�iϕ2

ðr1
r2

r2dr� ir31

ðϕ1
ϕ2

e�iϕdϕ

( )
:

Evaluating the integrals and simplifying gives the field contribution due to the iron.

H	
I ð0Þ ¼ � σ

6πR2
ðr32 � r31Þ½ðcos ϕ2 � cos ϕ1Þ � iðsin ϕ2 � sin ϕ1Þ�: (5.62)

Note that this expression has the same sign and angular dependence as the field from
the conductor given in Equation 5.55. The presence of the iron gives the enhancement
factor at the origin [14]

Eð0Þ ¼ 1þ r22 þ r1 r2 þ r21
3R2

: (5.63)

5.10 Multipole expansion

Since the magnetic potential, Equation 5.3, is an analytic function, it can be
expanded in a power series

WðzoÞ ¼
X∞
n¼0

wn z
n
o:
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The magnetic field can then be expressed as

H	ðzoÞ ¼ i
μ0

dW
dzo

¼
X∞
n¼1

i n
μ0

wnz
n�1
o :

Redefining the coefficients, we write the field as the power series

H	ðzoÞ ¼
X∞
n¼1

cnz
n�1
o : (5.64)

The field can also be expressed in terms of the integral in Equation 5.41.

H	ðzoÞ ¼ i
2π

ð
σ

z� zo
dS

¼ i
2π

ð
σ

z 1� zo
z

� � dS:

Expand the factor in the denominator in a geometric series.

H	ðzoÞ ¼ i
2π

ð
σ
z

1þ zo
z
þ zo

z

� �2
þ � � �

� �
dS

This series converges for observation points inside the magnet aperture up to the
closest conductor. Equating this expression with Equation 5.64 givesX∞

n¼1

cnz
n�1
o ¼ i

2π

ð
σ
z

X∞
n¼1

zo
z

� �n�1
dS

¼ i
2π

X∞
n¼1

ð
σ
z

zo
z

� �n�1
dS:

The zo factor cancels from both sides of the equation. Then matching term by term,
we find

cn ¼ iσ
2π

ð
z�ndS: (5.65)

We can convert this surface integral into a contour integral by using the Green’s
theorem, Equation 5.39, with

F ¼ iσ
2π

z1�n

1� n
:
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Thus Equation 5.65 becomes [1]

cn ¼ � 1

2i

þ
iσ
2π

z1�n

1� n
dz	

¼ σ
4πðn� 1Þ

þ
z1�ndz	

(5.66)

for n > 1. For the case n = 1, we return to Equation 5.65 and find

c1 ¼ iσ
2π

ð
1

z
dS:

This time we use the Green’s theorem Equation 5.38 with

F ¼ iσ
2πz

z	

to find that [1]

c1 ¼ σ
4π

þ
z	

z
dz: (5.67)

Example 5.10: multipoles for an annular sector conductor
We consider an annular sector conductor with radius between r1 and r2 that has
constant current density σ. Let z ¼ reiϕ: For multipoles with n > 1, we have using
Equation 5.66

cn ¼ σ
4πðn� 1Þ

ðr2
r1

ðreiϕ1Þ1�ne�iϕ1dr� i
ðϕ2
ϕ1

ðr2eiϕÞ1�nr2e
�iϕdϕ

(

þ
ðr1
r2

ðreiϕ2Þ1�ne�iϕ2dr� i
ðϕ1
ϕ2

ðr1eiϕÞ1�nr1e
�iϕdϕ

)
:

After performing the integrations and simplifying the algebraic results, we find
that

cn ¼ � σ
2πnð2� nÞ ðr

2�n
2 � r2�n

1 Þðe�inϕ2 � e�inϕ1Þ: (5.68)

Because of the factor in the denominator, this relation cannot be used when n = 2. For
that case, we return to Equation 5.66 and find

c2 ¼ σ
4π

þ
z�1dz	:
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For the annular sector, performing the integrals and summing terms, we find the
quadrupole multipole is

c2 ¼ � σ
4π

ln
r2
r1

� �
ðe�2iϕ2 � e�2iϕ1Þ: (5.69)

We can get the n = 1 term from Equation 5.67. The dipole multipole is

c1 ¼ � σ
2π

ðr2 � r1Þðe�iϕ2 � e�iϕ1Þ: (5.70)

Errors in the construction of magnet coils can lead to the introduction of
additional unwanted multipole contributions to the field.[1, 15] These errors can
include left-right and up-down asymmetries in the shape of the coils, displace-
ments, rotations, and errors in the excitation currents.

5.11 Field due to a magnetized body

We next look at the magnetic field produced by a magnetized body. This is the case,
for example, for a permanent magnet with net magnetization in the x-y plane.
Consider a pair of parallel filaments with currents flowing in opposite directions
located a distance d apart, as shown in Figure 5.10. There is a net field component
in the x-y plane, oriented perpendicular to the axis connecting the two filaments.
Such an arrangement is known as a current doublet.[16, 17] The field for the two
filaments is

H	ðzoÞ ¼ iI
2π

1

z2 � zo
� 1

z1 � zo

� �
:

Let

d ¼ z2 � z1 ¼ jdjeiα
zd ¼ ½ðz1 þ z2Þ;

where α is the angle between d and the x axis. Substituting, we find

H	ðzoÞ ¼ � iI
2π

d

ðzd � zoÞ2 � d2

4

2664
3775:

Recall that the magnetic dipole moment is

m ¼ IA ¼ I l d;
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where l is a unit distance along the z direction. Define m0 as the magnetic moment
per unit length. Then in the limit as d → 0,

I d→m0

d2

4
→0

and the field at zo due to the doublet at z is

H	ðzoÞ ¼ � i
2π

m0 eiα

ðz� zoÞ2
:

We now want to express the field in terms of the magnetizationM. The direction
of m0 is rotated by π/2 with respect to the direction of d. Let us define β to be the
direction of M with respect to the x axis.

β ¼ α� π
2

eiα ¼ eiβ eiπ=2 ¼ ieiβ:

Then summing up all the magnetic moments in the magnetized body, we have [18]

H	ðzoÞ ¼ 1

2π

ð
M

ðz� zoÞ2
dS: (5.71)

If the magnetization is constant in the body, we can convert this to a contour
integral by using the Green’s theorem, Equation 5.39. Defining

F ¼ �M
2π

1

z� zo
;

Figure 5.10 Model for a magnetized body.
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we find that the field due to the magnetized body is [18]

H	ðzoÞ ¼ M
4πi

þ
dz	

z� zo
: (5.72)

Example 5.11: triangular block with constant magnetization
Consider a triangular block of magnetic material with vertices fz1; z2; z3g. Assume
the magnetization has the constant value M. Define

Δzn ¼ znþ1 � zn:

Since the triangle is closed, z4 ¼ z1. The slopes of the sides are

βn ¼
Δz	n
Δzn

;

so we can change the integration variable in Equation 5.72 from z* to z for side
n through the relation

dz	 ¼ βndz:

The field produced by the block is

H	ðzoÞ ¼ M
4π i

ðz2
z1

β1
z� zo

dzþ � � �
� �

¼ M
4π i

½β1 lnðz2 � zoÞ � β1 lnðz1 � zoÞ þ � � ��:

Collecting terms, the field of the triangular magnetized block is

H	ðzoÞ ¼ M
4πi

ðβ3 � β1Þlnðz1 � zoÞ þ ðβ1 � β2Þlnðz2 � zoÞf

þðβ2 � β3Þlnðz3 � zoÞg: (5.73)

5.12 Force

The vector force dF on a current filament is

dF
�! ¼ Idl

!� B
!

:

If the filament is directed along the z direction, B is in the x-y plane, and so is F.
The force can then be written as the complex variable F ¼ Fx þ iFy, where

dFx ¼ �μ0IHydz

dFy ¼ μ0IHxdz:
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Define f to be the force per unit length in the z direction.

f ¼ dF
dz

¼ iμ0 I H

For a distributed current distribution, we can generalize this as

f ¼ iμ0

ð
σ HdS: (5.74)

Using Equation 5.11 for σ, we have

f ¼ 2μ0

ð
H
∂H
∂z

dS:

To express this as a contour integral, use the complex Green’s theorem,
Equation 5.39, with

F ¼ μ0H
2;

which gives [1]

f ¼ iμ0
2

þ
H2dz	: (5.75)

This shows that the transverse force per unit length is proportional to the square of
the magnetic field intensity. Examples of complex force calculations can be found
in references.[1, 19]

5.13 Conformal mapping

Operating on a complex variable z with some function f

w ¼ f ðzÞ
produces another complex variable w. This can be interpreted as a mapping from
the z plane onto another w plane. Suppose that two curves in the z plane intersect at
a point with the angle θ between them. A mapping is called conformal if the two
corresponding curves in the w plane also intersect with the same angle θ between
them. If f ðzÞ is an analytic function with df =dz≠0 inside a region R, then the
mapping is conformal. Conformal mappings have the property that the function in
the w plane is also analytic, so the real and imaginary parts of the mapped function
are solutions of the Laplace equation.
Conformal mapping can frequently be used to transform a problem with com-

plicated boundaries in the z plane, for example, into a simpler problem in the upper
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half-plane or the interior of the unit circle in thew plane. Once the solution is found
for the problem in the w plane, an inverse mapping z ¼ gðwÞ can be used to obtain
the solution to the original problem. The theory of conformal mapping is a major
subject in its own right. We only have space here to briefly introduce the subject
and present a few examples. Fortunately, approximately half the book by Binns and
Lawrenson is devoted to using conformal mapping in the solution of electric and
magnetic field problems.[20] The interested reader can find many useful examples
there.
The bilinear transformation combines the operations of translation, rotation,

stretching, and inversion.[21]

w ¼ αzþ β
γzþ δ

;

where α, β, γ, and δ are complex numbers with the property that

αδ� βγ≠ 0:

This transformation can map circles and lines in the z plane into circles and lines in
the w plane. It can be used, for example, to map a pair of separated circles to
concentric circles. The bilinear transformation has the property that a quantity
known as the cross-ratio is conserved.

ðw� w1Þðw2 � w3Þ
ðw� w3Þðw2 � w1Þ ¼

ðz� z1Þðz2 � z3Þ
ðz� z3Þðz2 � z1Þ (5.76)

This expression can be used to create a transformation that maps three given points
in the z plane to three corresponding points in the w plane. An important bilinear
transformation that maps any point zo in the upper half of the z plane into the
interior of the unit circle in the w plane is given by [22]

w ¼ eiθ0
z� zo
z� z	o

� �
: (5.77)

The points on the x axis are mapped to the boundary of the circle.

Example 5.12: line current in an iron cavity
Suppose we have a line current at the point w1 inside a circular cavity with unit radius
that is made from infinitely permeable iron, as shown in Figure 5.11. We use
Equation 5.77 to map between the physical situation in the w plane and the upper
half of the z plane. To determine the two unknown constants θ0 and zo, we associate
the points

142 Complex analysis of transverse fields

https://doi.org/10.1017/9781009291156.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291156.006


z ¼ i↔w ¼ 0
z ¼ ∞↔w ¼ �1;

which requires that
zo ¼ i
eiθ0 ¼ �1:

This gives the specific mapping function between the planes

w ¼ i� z
iþ z

:

The known line current at w1 maps to a line current at z1 in the z plane and the circular
iron boundary maps to an iron plane along the real axis in the z plane. The mapping
between the two line currents is

w1 ¼ u1 þ iv1 ¼ i� x1 � iy1
iþ x1 þ iy1

:

Normalizing the denominator, we find

u1 þ iv1 ¼ ½1� x21 � y21� þ i ½2x1�
x21 þ ð1þ y1Þ2

:

The real and imaginary parts of this equation can be solved for x1 and y1 as

x1 þ iy1 ¼ ½2v1� þ i ½1� u21 � v21�
u21 þ v21 þ 2u1 þ 1

:

In the z plane, we know there is an image current below the iron plane at the location
z2 ¼ z	1. We can then use the mapping function to find the location w2 of the image
current in the w plane. After some algebraic simplifications, we find that

Figure 5.11 Line current in an iron cavity.
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w2 ¼ u2 þ iv2 ¼ �v1 þ iðu1 þ 1Þ
v1 þ iðu21 þ v21 þ u1Þ

¼ u1 þ iv1
u21 þ v21

:

Representing w1 and w2 in polar coordinates, we find that

r2 ¼ 1

r1
θ2 ¼ θ1;

which agrees with the result from the method of images.

Suppose that the boundary of some region in the z plane is made up of a series of
straight line segments, as shown in Figure 5.12. The line segments meet at the
vertices z1; z2, . . . It is possible to map this boundary to the real axis in the w plane
by using the Schwarz-Christoffel transformation,[23] which takes the form of the
differential equation

dz
dw

¼ Gðw� u1Þα1=π�1ðw� u2Þα2=π�1 � � � ðw� unÞαn=π�1; (5.78)

where G is a complex constant and the αi are the interior angles. The points
u1; u2, . . . on the real axis of the w plane correspond to the vertices in the
z plane. The interior of the figure in the z plane maps to the upper half of the
w plane.

Example 5.13: potential of a line current near the corner of two perpendicular
planes
Consider a line current near the perpendicular intersection of two infinitely permeable
plane surfaces, as shown in Figure 5.13. We solve the problem by using the Schwarz-
Christoffel transformation, which in this case takes the form

Figure 5.12 Schwarz-Christoffel transformation.
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dz
dw

¼ Gðw� u1Þ�1=2;

since the vertex angle α1 ¼ π=2. Integrating this equation, we find

z ¼ 2G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� u1

p þ H;

where H is another complex constant. Solving for w, we get

w� u1 ¼ z2 � 2H zþ H2

4G2
:

Breaking this equation into real and imaginary parts, leads to

u� u1 þ iv ¼ x2 � y2 � 2H xþ H2 þ 2iðx y� H yÞ
4G2

: (5.79)

We choose three points A, B, C on the boundary in the z plane and demand that they
correspond to three points a, b, c along the real axis in the w plane according to the
following prescription:

A : x ¼ 0; y ¼ 1↔a : u ¼ �1; v ¼ 0
B : x ¼ 0; y ¼ 0↔b : u ¼ 0; v ¼ 0
C : x ¼ 1; y ¼ 0↔c : u ¼ 1; v ¼ 0

Applying these constraints to Equation 5.79, we find that

u1 ¼ 0
H ¼ 0

4G2 ¼ 1

and the resulting transformation equation is

w ¼ z2:

Figure 5.13 Line current near a corner. ABC and abc lie on infinitely permeable
boundary surfaces. The line current is at z1.
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In the w plane, the potential is due to the line current w1 and the image current due to
the plane boundary of the infinitely permeable material, as shown in Figure 5.14.
The potential is given by

WðwoÞ ¼ μ0I
2π

½lnðwo � w1Þ þ lnðwo � w	
1Þ�:

Transforming back to the z plane, we have

WðzoÞ ¼ μ0I
2π

½lnðz2o � z21Þ þ lnðz2o � z	21 Þ�

¼ μ0I
2π

ln½ðzo � z1Þðzo þ z1Þ� þ ln½ðzo � z	1Þðzo þ z	1Þ�
� �

¼ μ0I
2π

lnðzo � z1Þ þ lnðzo þ z1Þ þ lnðzo � z	1Þ þ lnðzo þ z	1Þ
 �

:

This shows that the potential in the z plane is due to the physical line current at z1
together with three image currents,[24] as shown in Figure 5.15. The four currents lie
on a circle centered at the corner of the iron surfaces.

Figure 5.14 Image current in the w plane.

Figure 5.15 Line current and three images in the z plane.
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5.14 Integrated potentials

Suppose that Φ(r, θ, s) is a scalar potential describing some three-dimensional
magnetic configuration. Assume the conductors have a finite extent in the
s direction, so that Φ vanishes as s → ±∞. Define

Eðr; θÞ ¼
ð∞
�∞

Φðr; θ; sÞ ds:

Taking the derivative with respect to r gives

∂E
∂r

¼
ð∞
�∞

∂Φ
∂r

ds ¼ �
ð∞
�∞

Br ds; (5.80)

while the derivative with respect to θ yields

1

r
∂E
∂θ

¼
ð∞
�∞

1

r
∂Φ
∂θ

ds ¼ �
ð∞
�∞

Bθ ds: (5.81)

We can likewise define Aðr; θ; sÞ as the vector potential describing the same three-
dimensional magnetic configuration. Since the conductors have a finite extent in
the s direction, As also vanishes as s→ ±∞. Define

Fðr; θÞ ¼
ð∞
�∞

Asðr; θ; sÞ ds:

Considering the integral of Br, we find thatð∞
�∞

Brds ¼
ð
ðr � A

!Þrds

¼
ð

1

r
∂As

∂θ
� ∂Aθ

∂s

� �
ds

¼ 1

r
∂
∂θ

ð
Asds� Aθ

���∞
�∞

:

Assuming that Aθ has the same value at ±∞, we find thatð∞
�∞

Br ds ¼ 1

r
∂F
∂θ

: (5.82)

Similarly, the integral of Bθð∞
�∞

Bθ ds ¼
ð

∂Ar

∂s
� ∂As

∂r

� �
ds

¼ Ar

���∞
�∞

� ∂
∂r

ð
As ds;
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so that ð∞
�∞

Bθ ds ¼ � ∂F
∂r

: (5.83)

Equating the expressions for the integrated values of Br and Bθ, we find that

1

r
∂F
∂θ

¼ � ∂E
∂r

∂F
∂r

¼ 1

r
∂E
∂θ

:

These two equations have the same form as the Cauchy-Riemann equations in polar
coordinates. Thus F and E represent the real and imaginary parts of the analytic
potential function

WðzÞ ¼ Fðr; θÞ þ iEðr; θÞ:
This potential can be used to describe the influence of a magnet end on the field
quality of a long magnet.[25]
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