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A Marangoni surfer is an object embedded in a gas–liquid interface, propelled by gradients
in surface tension. We derive an analytical theorem for the lower bound on the viscous
dissipation by a Marangoni surfer in the limit of small Reynolds and capillary numbers.
The minimum dissipation can be expressed with the reciprocal difference between drag
coefficients of two passive bodies of the same shape as the Marangoni surfer, one in
a force-free interface and the other in an interface with surface incompressibility. The
distribution of surface tension that gives the optimal propulsion is given by the surface
tension of the solution for the incompressible surface and the flow is a superposition of
both solutions. For a surfer taking the form of a thin circular disk, the minimum dissipation
is 16μaV2, giving a Lighthill efficiency of 1/3. This places the Marangoni surfers among
the hydrodynamically most efficient microswimmers.

Key words: Marangoni convection, microscale transport

1. Introduction

The Marangoni effect describes the motion of liquids due to surface tension gradients,
caused, for example, by an uneven distribution of surfactants, and can be harnessed to drive
the motion of a microswimmer. The Marangoni propulsion can thereby take place on the
swimmer’s surface, like in the case of chemically active emulsion droplets (Thutupalli,
Seemann & Herminghaus 2011; Herminghaus et al. 2014; Izri et al. 2014; Maass et al.
2016; Schmitt & Stark 2016; Testa et al. 2021; Hokmabad et al. 2022; Michelin 2023). The
more common design, however, involves particles embedded in a flat gas–liquid interface
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that emit surfactants and thereby ‘manipulate’ the surface tension in the interface around
them. A classical example are camphor boats, already studied by Tomlinson (1862) and
Rayleigh (1890). These surfers create a surface tension gradient by asymmetric emission of
a surfactant, but it is also possible for a symmetric swimmer to achieve directed propulsion
through spontaneous symmetry breaking (Boniface et al. 2021). Marangoni swimmers
have also been fabricated using accessible pen-drawn patterns and powered by fuel in the
form of ink, enabling controlled movement and navigation (Song et al. 2023). Finally,
some animals like the Microvelia water striders use the Marangoni effect to slide along
the surface of water (Bush & Hu 2006).

For certain distributions of surface tension, the propulsion of a thin disk-shaped
Marangoni surfer has been exactly solved (Lauga & Davis 2012; Elfring, Leal & Squires
2016; Crowdy 2021). Using the Lorentz reciprocal theorem (Masoud & Stone 2014), the
propulsion velocity of a surfer with any shape can in principle be determined provided the
solution of the passive particle pulled by an external force is known. Solutions including
inertia at finite Reynolds numbers have also been determined (Ender & Kierfeld 2021).
Moreover, two-dimensional squirmer models share certain similarities with the Marangoni
effect (Matas-Navarro et al. 2014).

The energetic efficiency of a microswimmer has been defined by Lighthill (1952) as
the power needed to pull the swimmer through a fluid by an external force, divided
by the actual power dissipated when the swimmer actively moves at the same velocity.
Although Lighthill’s efficiency can theoretically exceed 1 (Leshansky et al. 2007),
swimming microorganisms typically achieve values of around 1 % (Osterman & Vilfan
2011). The theoretical efficiency limit of the three-sphere model swimmer is also of
a similar order of magnitude (Nasouri, Vilfan & Golestanian 2019). The efficiency of
autophoretic colloidal microswimmers is many orders of magnitude lower than that and
is limited by the thickness of the boundary layer (Sabass & Seifert 2010). We have
recently derived a minimum dissipation theorem that provides a lower bound on the
dissipation by a microswimmer moving through bulk fluid, first for external dissipation
alone (Nasouri, Vilfan & Golestanian 2021) and later for the combination of internal
and external dissipation (Daddi-Moussa-Ider, Golestanian & Vilfan 2023a). The theorems
share the common structure that expresses the dissipation with the reciprocal difference
between the drag coefficients of two passive bodies. For example, for the swimmer without
internal dissipation, these would be two bodies of the same shape as that of the swimmer,
one with the no-slip and one with the perfect-slip boundary (Nasouri et al. 2021). These
solutions lead to the question as to whether a similar theorem can be derived for the
hydrodynamic efficiency of Marangoni surfers. They differ from the previously solved
dissipation problems in two main aspects: first, the propulsive force acts on an infinite
plane outside the surfer; and second, the force cannot be optimised freely, but needs to
have the form of a surface tension gradient. In this paper, we derive such a theorem – first
in a general form and then for a thin surfer with the shape of a circular disk.

2. Minimum dissipation theorem for Marangoni surfers

2.1. Problem formulation
In this section we derive a lower bound for the energy dissipation by a Marangoni surfer of
arbitrary shape moving along the surface of a fluid at zero Reynolds number (figure 1a).
The surfer comprises a body partially immersed in a gas–liquid interface and suspended
by surface tension. The surfer can modify the surface tension in its surroundings, for
example by emitting surfactants. For the purpose of this study, we disregard the dynamics
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(a) (b) (c)

VA VSI VFS
FSI FFS

Figure 1. (a) The optimal Marangoni surfer. The surface colour indicates increased (red) or reduced (green)
surface tension leading to the Marangoni effect. (b) A passive object, pulled along the incompressible surface
of a fluid with velocity V SI . The colours denote the surface tension that builds up in order to maintain the
incompressibility condition. (c) A passive object, pulled with velocity V FS in a fluid with a free surface (with
a uniform surface tension).

of surfactants and treat the surface tension as a given. We assume that the interface
remains planar, i.e. it is distorted neither by the induced flows (this corresponds to the
low-capillary-number limit) nor by the contact angle at the surfer boundary. The surfer is
force-free, driven solely by the surface tension at the contact line and by the flows induced
by the Marangoni effect. The submerged part of the surfer forms a no-slip boundary
with the fluid. The interface extends across the x–y plane, with the z direction oriented
perpendicular to this plane.

The fluid motion in bulk (z < 0) is governed by the Stokes equation along with the
incompressibility condition:

−∇p + μ∇2v = 0, (2.1a)

∇ · v = 0, (2.1b)

where v and p denote the velocity and pressure fields in the fluid medium and μ the shear
viscosity.

At the submerged part of the swimmer surface S , not necessarily at z = 0 if the swimmer
has a non-flat shape, the fluid is subject to the no-slip boundary v = V A, where V A is the
translational velocity of the swimmer (V A ⊥ êz). The boundary condition at the gas–liquid
interface located at z = 0 implies êz · v = 0.

The horizontal force balance on the swimmer states (I − êzêz) · ∫
S dS σ · n̂ +∫

�
ds n̂γ = 0. The first term represents the tractions exerted on the swimmer by the fluid

and the second term the effect of the surface tension. Here n̂ denotes the surface normal
pointing into the fluid and � the contact line between the swimmer and the gas–liquid
interface (figure 2). In the integral over �, n̂ denotes the in-plane normal to the contact
line. The stress tensor is determined as σ = −pI + 2μE , with the strain-rate tensor
E = (∇v + (∇v)�)/2. The surface tension, reduced by its value in the surface that is
not affected by the presence of the surfer, is denoted by γ . At the gas–liquid interface, the
force balance states (I − êzêz) · σ · êz + ∇sγ = 0. Here, ∇s = êx∂x + êy∂y represents the
gradient within the horizontal plane.

The total energy dissipation can be written as either the volume integral of the local
dissipation rate or the rate of work exerted by the surface tension, integrated over its surface
(Happel & Brenner 1983):

P =
∫
V

dV 2μE : E =
∫
I

dS v · σ · êz +
∫
S

dS v · σ · (−n̂). (2.2)
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I �

S
n̂

n̂

êz

V

Figure 2. Side view of the surfer. The fluid volume V is shown in blue, the gas–liquid interface I as a solid
blue line, the submerged surface of the swimmer S in grey and the contact line � in yellow.

By taking into account the no-slip boundary at S and the force balance on the swimmer
and at the interface, the dissipation can be expressed as

P =
∫
I

dS v · ∇sγ +
∫

�

ds γ n̂ · V A. (2.3)

Finally, we apply the two-dimensional divergence theorem
∫
I dS∇s · (γ v) = − ∫

�
ds n̂ ·

(γ v) to express the dissipation as

P = −
∫
I

dS γ∇s · v, (2.4)

which represents the rate of change of the total surface energy.

2.2. Derivation of the theorem
In the following we derive a theorem for a lower bound on the dissipation by a Marangoni
surfer moving with velocity V A. We follow the approach that led to a minimum dissipation
theorem for surface-propelled swimmers with external dissipation (Nasouri et al. 2021)
and later with combined external and internal dissipation (Daddi-Moussa-Ider et al.
2023a). Using this theorem, the flow field of an optimal nearly spherical swimmer
with external dissipation has been obtained using a perturbative analytical method
(Daddi-Moussa-Ider et al. 2021a).

The solution consists of two major steps. The first is to find a passive minimum
dissipation theorem for flows that satisfy the velocity boundary condition on an object.
This passive theorem can be seen as a generalisation of the Helmholtz minimum
dissipation theorem that states that among all incompressible flows that satisfy the same
fixed-velocity boundary condition, the Stokes flow has the smallest dissipation (Guazzelli
& Morris 2009). For example, for surface-driven swimmers with external dissipation,
the passive problem consists of a perfect-slip body. In the second step, another passive
problem is needed that also satisfies the boundary condition, but is orthogonal to the
active problem in the sense that their superposition flow has a dissipation that is the sum
of the dissipations of the two flows, each on its own. The minimum dissipation theorem is
obtained by applying the inequality from the first condition to this superposition flow.

As a passive minimum dissipation theorem, we use a variant of the Helmholtz minimum
dissipation theorem that is derived in Appendix A. The theorem states that among
flows that satisfy the no-slip boundary condition on the swimmer moving with a given
velocity and zero normal velocity at the fluid–gas interface, the flow without tangential
tractions at the interface has the smallest dissipation (figure 1c). Because of the stress-free
interface (free surface), we label this solution vFS. If the passive body with the shape
of the Marangoni surfer is moved with a velocity V FS, the drag force acting on it is
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Hydrodynamic efficiency limit on a Marangoni surfer

F FS = −RFS · V FS with the free-surface drag coefficient RFS. The total dissipation of
any flow, possibly with additional surface forces, then satisfies the inequality

P ≥ V FS · RFS · V FS. (2.5)

The equality is satisfied exactly when there are no additional horizontal forces beyond
those pulling the passive body. In the following, we assume that the symmetries of the
surfer are such that translational and rotational drag are decoupled. Then a force on the
body leads to purely translational motion and a torque to purely rotational motion. The
translational drag is then described by a symmetric 2 × 2 matrix RFS.

The second step towards the active minimum dissipation theorem requires finding a
problem that is orthogonal to the active problem (Marangoni surfer) in the sense that the
dissipation in the superposition of both flows is additive. We will show that this condition
is fulfilled for a flow that satisfies the no-slip boundary at the swimmer body and is
surrounded by a gas–liquid interface with an incompressible surface, ∇s · vSI = 0 at z = 0
(figure 1b). The incompressibility is achieved by a build-up of a passive surface tension
γSI , which we also define relative to the unperturbed surface. The incompressible surface
occurs in the case of insoluble surfactants in the limit of an infinite Marangoni modulus
(Elfring et al. 2016; Manikantan & Squires 2020). The same model also represents a
limiting case of the Boussinesq–Scriven model (Scriven 1960; Manikantan & Squires
2017) with an incompressible ‘membrane’, however without additional surface viscosity,
i.e. in the limit of vanishing Boussinesq number (Stone & Masoud 2015).

The superposition of the Marangoni surfer moving with velocity V A and the passive
object with incompressible surface moving with V SI has a dissipation rate that can
be expressed in analogy to (2.3). It corresponds to the sum of the work done by the
superposition of external forces (which is just −F SI , because F A = 0), the superposition
of both surface tensions at the contact line and the superposition of surface tension
gradients on the fluid:

PA+SI =
∫
I

dS (vA + vSI) · ∇s(γA + γSI) +
∫

�

ds (γA + γSI)n̂ · (V A + V SI)

− F SI · (V A + V SI). (2.6)

Two terms immediately cancel out because of the divergence theorem:∫
I

dS vSI · ∇sγSI +
∫

�

ds γSI n̂ · V SI = −
∫
I

dS γSI∇s · vSI = 0. (2.7)

We now apply the Lorentz reciprocal theorem (Masoud & Stone 2019) to the two problems:∫
I

dS vSI · σA · êz +
∫
S

dS vSI · σA(−n̂) =
∫
I

dS vA · σ SI · êz +
∫
S

dS vA · σ SI(−n̂).

(2.8)

By taking into account the force balance at the surface and at both bodies, we obtain∫
I

dS vSI · ∇sγA +
∫

�

ds γAn̂ · V SI =
∫
I

dS vA · ∇sγSI +
∫

�

ds γSI n̂ · V A − F SI · V A.

(2.9)
At the same time, the divergence theorem applied to γAvSI leads to∫

I
dS (vSI · ∇sγA + γA∇s · vSI) +

∫
�

ds γAn̂ · V SI = 0. (2.10)

Because we have chosen ∇s · vSI = 0, (2.10) implies that both sides of (2.9) are zero. The
total contribution of all mixed terms in (2.6) therefore vanishes and the dissipation of the

986 A32-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.363


A. Daddi-Moussa-Ider, R. Golestanian and A. Vilfan

superposition flow

PA+SI =
∫
I

dS vA · ∇sγA +
∫

�

ds γAn̂ · V A − F SI · V SI = PA + PSI (2.11)

can be written as the sum of the dissipations in each of the problems. This additivity is the
second condition for deriving a minimum dissipation theorem for the active swimmer.

The derivation of the minimum dissipation theorem follows in the same way as for
surface-driven swimmers (Nasouri et al. 2021; Daddi-Moussa-Ider et al. 2023a). We apply
the inequality (2.5) to the superposition:

PA+SI ≥ (V A + V SI) · RFS · (V A + V SI). (2.12)

This inequality holds for any values of the velocities, but we know that the equality is
fulfilled if and only if the superposition represents exactly the flow around the passive body
with free surface (FS problem). This condition gives the following set of equations for the
superposition: V A + V SI = V FS and F SI = F FS. In the absence of translational–rotational
coupling, the torque balance is satisfied automatically. At the same time, the drag forces in
the FS and SI problem are related to their velocities through through the drag coefficients
RFS and RSI as F FS = −RFS · V FS and F SI = −RSI · V SI , which closes the equation
system. Its solution is

V FS = (I − R−1
SI · RFS)

−1 · V A, (2.13a)

V SI = (R−1
FS · RSI − I)−1 · V A. (2.13b)

By inserting these velocities into the inequality (2.12) we obtain the minimum dissipation
theorem:

PA ≥ V A · (R−1
FS − R−1

SI )−1 · V A, (2.14)

which allows us to express a lower bound on the hydrodynamic dissipation by a Marangoni
surfer with two drag coefficients for the horizontal motion of a body with the same shape
in a fluid without surface tension gradients RFS and with surface incompressibility RSI .
Although we wrote the expressions for translational motion alone, it is straightforward
to expand it to rotational motion, too. In this case, the generalised velocities become
three-component vectors with two translational and one rotational component and RFS
and RSI become the corresponding grand resistance matrices.

From the superposition, we also obtain the flow field of the optimal Marangoni surfer as
vA = vFS − vSI and its relative surface tension γA = −γSI . Here both passive solutions are
evaluated for bodies moving with the velocities as determined by (2.13). Along with the
bound on dissipation, the minimum dissipation theorem also provides us with the solution
for the surface tension of the active Marangoni surfer that will minimise the hydrodynamic
dissipation.

2.3. Minimum dissipation for a circular disk-shaped Marangoni surfer
In the following, we employ the minimum dissipation theorem (2.14) to a thin Marangoni
surfer with the shape of a circular disk. For this geometry, both drag coefficients are known
from the literature. For an incompressible surface, it can be found as a limiting case in the
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solutions of Hughes, Pailthorpe & White (1981) and Stone & Ajdari (1998):

RSI = 8μa. (2.15)

The solution with a free planar surface is mathematically equivalent to the edgewise
motion of a thin disk in bulk fluid (Happel & Brenner 1983), with half the drag coefficient:

RFS = 16
3 μa. (2.16)

With these drag coefficients, the minimum dissipation theorem gives us a lower bound
on the hydrodynamic dissipation by a disk-shaped Marangoni surfer as

PA ≥ 16μaV2
A. (2.17)

The Lighthill efficiency (Lighthill 1952), defined as the ratio between the dissipation by
a passive swimmer steadily towed by an external force and the active swimmer, has the
upper limit

ηL = RFSV2
A

PA
≤ 1

3
. (2.18)

Unlike in surface-slip-driven microswimmers (Leshansky et al. 2007), the Lighthill
efficiency is always bounded by 1. A hydrodynamic efficiency of 1/3 places the Marangoni
surfers to the top of realistic swimmer designs. Although an ideal spherical surface-driven
swimmer has an efficiency limit of ηL ≤ 1/2 (Michelin & Lauga 2010; Guo et al. 2021),
which is even higher for elongated swimmers (Nasouri et al. 2021), such high efficiency
requires a frictionless mechanism of slip generation, which is difficult to realise.

The full solution of the optimal disk-shaped surfer that includes surface tension, fluid
velocity and forces can be obtained as a superposition of these fields in the two passive
problems. For this purpose, we derive both solutions using a uniform notation in §§ 3
and 4.

2.4. Approximate solution for a surfer of finite depth
If the surfer has a finite depth, it is possible to derive a lower bound on the dissipation in a
perturbative way. Specifically, we treat a surfer with the shape of an oblate spheroid with
major semi-axis a and minor semi-axis εa. The spheroid is half-submerged, such that its
surface S is given by the equation z = −ε

√
a2 − ρ2 in cylindrical coordinates.

Perturbative solutions for both drag coefficients, RFS and RSI , were obtained by Stone
& Masoud (2015). In the case of a force-free surface, the drag coefficient of the
half-submerged spheroid is 1/2 the coefficient for edgewise translation in bulk fluid, which
is known exactly (Happel & Brenner 1983). For thin spheroids, its expansion reads

RFS = 16
3

μa
(

1 + 8
3π

ε

)
+ O(ε2). (2.19)

The solution in the presence of an incompressible interface was formulated using the
Lorentz reciprocal theorem, with the solution for a thin disk serving as the auxiliary
problem (Stone & Masoud 2015). An analytical expression can be obtained by integrating
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(3.6) from Stone & Masoud (2015) in the limit Bq = 0:

RSI = 8μa
(

1 + 4(1 − ln 2)

π
ε

)
+ O(ε2). (2.20)

The minimum dissipation follows from (2.14) as

PA ≥ (R−1
FS − R−1

SI )−1 = 16μaV2
A

(
1 + 8 ln 2

π
ε

)
+ O(ε2) (2.21)

and the upper bound on Lighthill efficiency is

ηL ≤ 1 − RFS

RSI
= 1

3
− 8

9π
(3 ln 2 − 1)ε + O(ε2). (2.22)

The finite depth of the swimmer not only increases the dissipation, but also reduces its
Lighthill efficiency. Similar asymptotic solutions are also possible for other swimmer
shapes, for example for a partially submerged sphere, with the submerged surface S taking
the shape of a spherical cap (Stone & Masoud 2015).

3. Thin circular disk translating in a fluid with surface incompressibility

In this section, we derive the hydrodynamic field resulting from the translational
movement of a passive circular disk positioned at an interface with surface
incompressibility. Theoretical studies of the flow past a disk embedded in an
incompressible viscous surface, representing a model of a lipid bilayer, date back to
Saffman & Delbrück (1975). Saffman (1976) examined the limit Bq � 1 where the
Boussinesq number is defined as Bq = μs/(aμ) and μs represents the surface viscosity.
In this limit, the membrane viscosity dominates over the viscosity of the surrounding
fluid. Hughes et al. (1981) solved the model for arbitrary viscosities, providing analytical
expressions for the viscous flow field and resistance coefficients through the use of dual
integral equations. The problem with a finite subphase depth was subsequently solved by
Stone & Ajdari (1998), partly through a numerical approach. For an infinite depth and
vanishing surface viscosity (Bq → 0), both solutions give a translational drag coefficient
8μa, which is 50 % larger than the drag coefficient (16/3)μa in a fluid with free surface.
More recently, Yariv et al. (2023) revisited the translational motion of a disk embedded in
a nearly inviscid Langmuir film, i.e. in the limit Bq 	 1.

Because the solutions in Hughes et al. (1981) and Stone & Ajdari (1998) are derived
for arbitrary Bq and have a more complex form, we rederive the solution without surface
viscosity in the following in order to obtain expressions for the velocity and force fields
that are more suitable for practical usage. In the following we drop the ‘SI’ subscript as all
quantities involved belong to the problem with surface incompressibility.

3.1. Green’s functions in Fourier space
We begin by solving the flow equations (2.1) for a given distribution of surface forces.
The impermeability condition requires zero normal velocity at the interface, i.e. vz = 0 at

986 A32-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.363


Hydrodynamic efficiency limit on a Marangoni surfer

z = 0. The force balance at the interface in the in-plane direction states

μ∂zv‖|z=0 =
{

f ‖ for ρ < a
∇sγ for ρ > a,

(3.1)

wherein f ‖ is an unknown in-plane surface force density acting on the fluid from the
surface of the disk. Finally, we require the in-plane divergence at the interface to be zero:

∇s · v‖|z=0 = 0. (3.2)

Together with the incompressibility equation (2.1b), it follows that

∂zvz|z=0 = 0. (3.3)

In order to have a more uniform boundary condition at the surface, we arbitrarily extend
the surface tension difference γ to the region underneath the disk (ρ < a) while requiring
continuity at ρ = a. At the same time, we introduce a transformed force density:

F ‖ =
{

f ‖ − ∇sγ for ρ < a
0 for ρ > a.

(3.4)

With this redefinition, (3.1) obtains the unified form

μ∂zv‖|z=0 = F ‖ + ∇sγ. (3.5)

Equation (3.2) is also trivially satisfied under the disk and therefore in the whole plane.
To determine the solution for the flow velocity and pressure fields, we use a

two-dimensional Fourier transform along the x and y directions. We define the forward
Fourier transform of a given function f (ρ, z) as

f̃ (k, z) = F { f (ρ, z)} =
∫

R2
d2ρ f (ρ, z) exp(−ik · ρ), (3.6)

where k represents the wavevector. The z dependence is left unchanged by the
transformation.

Similarly, we define the inverse Fourier transform as

f (ρ, z) = F −1{ f̃ (k, z)} = 1
(2π)2

∫
R2

d2k f̃ (k, z) exp(ik · ρ). (3.7)

In these equations, ρ = (x, y) denotes the position vector along the interface. We also
introduce the wavenumber k = |k|, which represents the magnitude of the wavevector,
and define the unit vector k̂ = k/k.

3.1.1. Normal velocity
By forming the divergence of (2.1a) and applying the incompressibility condition, it
follows that the pressure field is harmonic, ∇2p = 0 (Happel & Brenner 1983). Thus, the
velocity field adheres to the biharmonic equation ∇4v = 0, which can be represented in
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Fourier space as
(∂2

z − k2)2ṽ = 0. (3.8)

This equation represents a homogeneous fourth-order linear differential equation for ṽ and
is solved by

ṽ = (α1 + zα2) ekz, (3.9)

with the unknown wavenumber-dependent vector functions α1 and α2 that will be
determined from the boundary conditions. We have retained only the solution with the
decaying exponential to meet the regularity condition of finite velocity as z → −∞.

Given that both the normal velocity at the interface, ṽz, and its derivative with respect
to z, ∂zṽz, are zero at the interface, cf. (3.3), we can conclude that ṽz = 0 throughout.
Therefore, the velocity field only has an in-plane component, denoted henceforth as ṽ‖.

3.1.2. In-plane velocity
In the following we determine the solution for the in-plane component ṽ‖ of the velocity.
In Fourier space, the flow equations (2.1) are projected as

−ikp̃ + μ(∂2
z − k2)ṽ‖ = 0, (3.10a)

k · ṽ‖ = 0 (3.10b)

and the force balance at the interface (3.5) as

μ∂zṽ‖|z=0 = F̃ ‖ + ikγ̃ . (3.11)

By multiplying both sides of (3.10a) with k̂ and using (3.10b), we see that the pressure
vanishes, p̃ = 0. Consequently, (3.10a) simplifies to

(∂2
z − k2)ṽ‖ = 0, (3.12)

which is a homogeneous second-order linear differential equation. Its solution that does
not diverge for z → −∞ is given by

ṽ‖ = α3 ekz, (3.13)

where α3 is a wavenumber-dependent function that can be determined from the boundary
condition (3.11) as

α3 = 1
μk

(F̃ ‖ + ikγ̃ ). (3.14)

The condition of vanishing in-plane divergence at the interface (3.2) reads k · α3 = 0 in
Fourier space. It allows us to express the surface tension with the force density as

γ̃ = ik · F̃ ‖
k2 . (3.15)

Finally, by substituting (3.15) into (3.14) and (3.13), the solution for the velocity is

ṽ‖ = ekz

μk
(I − k̂k̂) · F̃ ‖. (3.16)

The velocity therefore only has a component that is parallel to the surface and transverse
to the wavevector. A more general solution allowing for a finite thickness of the fluid layer
and surface viscosity can be found, for instance, in Martínez-Prat et al. (2021).
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Hydrodynamic efficiency limit on a Marangoni surfer

3.2. Solution for the circular disk
To solve the flow around a circular disk, we use a cylindrical coordinate system and express
the unit wavevector k̂ as k̂x = cos φ and k̂y = sin φ. In addition, we define the unit vector t̂
along the direction perpendicular to the wavevector such that t̂x = sin φ and t̂y = − cos φ.
Accordingly, the Fourier transform of the surface force density can be expressed in the unit
vector basis composed of k̂ and t̂ as

F̃ ‖ = F̃lk̂ + F̃t t̂, (3.17)

wherein F̃l and F̃t stand for the longitudinal and transverse components of the surface force
density, respectively (Bickel 2007). Consequently, we can express the in-plane component
of the flow velocity in Fourier space by referring to (3.16) as

ṽ‖ = ekz

μk
F̃t t̂. (3.18)

Without loss of generality we assume that the disk moves along the positive x direction.
We anticipate the angular structure of the Fourier-transformed surface force density to take
the following form:

F̃l(k, φ) = M̃(k) cos φ, (3.19a)

F̃t(k, φ) = Ñ(k) sin φ, (3.19b)

where M̃(k) and Ñ(k) are unknown wavenumber-dependent functions to be determined
from the underlying boundary conditions. We made this specific selection because the
inverse Fourier transform will result in an angular structure akin to that required for
matching in the boundary conditions imposed at the surface of the disk. Inverse Fourier
transform of (3.19) yields the radial and tangential components of the surface force density
as

Fρ = cos θ

4π

∫ ∞

0
k dk[(M̃(k) + Ñ(k))J0(ρk) − (M̃(k) − Ñ(k))J2(ρk)], (3.20a)

Fθ = −sin θ

4π

∫ ∞

0
k dk[(M̃(k) + Ñ(k))J0(ρk) + (M̃(k) − Ñ(k))J2(ρk)]. (3.20b)

Likewise, the velocities induced by this force distribution transform to real space as

vρ = cos θ

4πμ

∫ ∞

0
dk Ñ(k)(J0(ρk) + J2(ρk)) ekz, (3.21a)

vθ = −sin θ

4πμ

∫ ∞

0
dk Ñ(k)(J0(ρk) − J2(ρk)) ekz. (3.21b)

The surface tension, given by (3.15), can be expressed in terms of the longitudinal
component of the surface force density as

γ̃ (k, φ) = i
k

F̃l(k, φ) = i
k

M̃(k) cos φ, (3.22)

which can be transformed back to real space through an inverse transformation as

γ = −cos θ

2π

∫ ∞

0
dk M̃(k)J1(ρk). (3.23)
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3.2.1. Force density
After representing the flow velocity as integrals involving wavenumber-dependent
functions, the next step involves the formulation of dual integral equations. The integral
equations for the inner domain are obtained from the no-slip boundary conditions at the
surface of the disk, vρ = V cos θ and vθ = −V sin θ for z = 0 and ρ ∈ [0, a]:∫ ∞

0
dk Ñ(k)J0(ρk) = 4πμV,

∫ ∞

0
dk Ñ(k)J2(ρk) = 0. (3.24a,b)

The integral equations for the outer problem are obtained by imposing a vanishing surface
force density (3.20) at the surface outside the disk for z = 0 and ρ > a:∫ ∞

0
k dk(M̃(k) + Ñ(k))J0(ρk) = 0,

∫ ∞

0
k dk(M̃(k) − Ñ(k))J2(ρk) = 0. (3.25a,b)

Equations (3.24a,b) and (3.25a,b) form a system of dual integral equations on the
inner and outer domain boundaries. The solution can be obtained using established
techniques as outlined in the works of Sneddon (1960, 1966) and Copson (1947, 1961).
The basic idea involves seeking a set of solutions that satisfy the equations for the
outer problems (3.25a,b). Typically, the solution for the unknown wavenumber-dependent
functions is explored through definite integrals, often resulting in vanishing values in the
outer domain when ρ > a. For detailed solution approaches, one can refer to Chapter IV
of Sneddon (1966) for dual integral equations and Chapter VIII for their applications in
electrostatics. When incorporating these solution forms into the equations for the inner
problem (3.24a,b), one encounters a system of Fredholm integral equations, the solution
of which is not always straightforward to obtain. In our case, we employ the power series
method to derive the solution, whereby the unknown function is expanded in terms of
unspecified coefficients. Subsequently, we evaluate the resulting integrals analytically.
Upon determining the coefficients through comparison with the known right-hand side,
the unknown function is then discerned from its series expansion. For further details, the
reader is referred to the appendix of Daddi-Moussa-Ider et al. (2020a) where a similar
approach was employed. However, in similar scenarios, it is anticipated that the solution
may involve combinations of trigonometric and Bessel functions. Therefore, employing
a guessed solution can often be advantageous in the given context. For instance, this
approach has been applied to the flow generated by different types of force or source
singularities near circular interfaces (Daddi-Moussa-Ider et al. 2021b; Daddi-Moussa-Ider,
Vilfan & Golestanian 2022; Daddi-Moussa-Ider et al. 2023b). In our case, the dual integral
equations are solved by

M̃(k) = 16μV
k

J1(ka), (3.26a)

Ñ(k) = 8μV
k

sin(ka). (3.26b)

The solutions we derived can now be inserted into the integrals that stem from the
inverse Fourier transforms, (3.20), (3.21) and (3.23). The relative surface tension follows
from (3.23):

γ = −4μV
π

cos θ ×

⎧⎪⎨
⎪⎩

ρ

a
if ρ < a,

a
ρ

if ρ > a.
(3.27)
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Hydrodynamic efficiency limit on a Marangoni surfer

The gradient of the surface tension around the disk is therefore proportional to the inverse
square of the distance. The expression for the interior, of course, only represents the
surface tension arbitrarily extended across the disk with no physical meaning. By inserting
it into (3.4), it gives the physical force density exerted on the fluid by the disk:

f ‖ = F ‖ − 4
π

μV
a

êx. (3.28)

After carrying out the integrals given in (3.20), we can express the resulting force
density at the surface of the disk in Cartesian coordinates as

f ‖ = 4μV
πa

{[A(ρ) + B(ρ) cos(2θ)]êx + B(ρ) sin(2θ)êy}, (3.29)

where we have defined the dimensionless radial functions

A(ρ) = a

2
√

a2 − ρ2
, (3.30a)

B(ρ) = −
(

a
ρ

)2 (
2a2 − ρ2

2a
√

a2 − ρ2
− 1

)
. (3.30b)

It can be seen that A is a monotonically increasing function of ρ that starts with the value
of 1/2 at the origin, while B is a monotonically decreasing function of ρ, starting from
zero at the origin. It is evident that both A and −B exhibit asymptotic divergence, scaling
to leading order as 1/

√
a − ρ as ρ approaches a. The maximum magnitude of the surface

force density is attained at A − B when θ ∈ {π/2, 3π/2}, while the minimum magnitude
occurs at A + B when θ ∈ {0, π}.

The drag force on the disk can be calculated as the sum of the shear forces at the bottom
surface and the surface tension on the perimeter:

F SI = −
∫
S

dS f ‖ −
∫

�

ds γ n̂. (3.31)

The contribution of surface tension (3.27) amounts to −4μaV . The integral of the
surface force density (3.29), to which only the term A(ρ) contributes, equally gives
−4μaV . Together, the drag coefficient of a thin circular disk in a fluid with surface
incompressibility (2.15) is obtained as

RSI = 8μa (3.32)

and consists of equal contributions by the shear stress and by the surface tension. The drag
coefficient agrees with the limiting cases from the expressions by Hughes et al. (1981) and
Stone & Ajdari (1998).

3.3. Flow field
To derive a closed analytical expression for the flow field, determined by (3.21), we define
the sequence of infinite integrals:

Cn =
∫ ∞

0
dk

sin(ka)

k
Jn(ρk) ekz, (3.33)

for z ≤ 0 to ensure convergence. It can be shown that C0 = arg{Q} and C2 = Im{sQ},
where we have defined the abbreviation Q = s + S with s = (z + ia)/ρ and S = √

1 + s2.
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Figure 3. The flow field of a circular disk embedded in an incompressible interface (SI problem), shown in
the co-moving frame. (a) The top view at the surface and (b) the side view at y = 0.

Here, ‘arg’ represents the argument of a complex number, while ‘Im’ signifies its
imaginary part. To obtain these results, it is sufficient to represent the sine function
using Euler’s notation and apply the Laplace transform to the Bessel function (Watson
1922). For a detailed treatment of integrals with similar forms, see the appendix in
Daddi-Moussa-Ider et al. (2020b). The radial and azimuthal components of the flow field
can then be cast in a compact form as

vρ

V
= 2

π
(C0 + C2) cos θ, (3.34a)

vθ

V
= − 2

π
(C0 − C2) sin θ. (3.34b)

At the boundary, where z = 0, a closed-form expression for Cn can be derived for any
arbitrary n ≥ 0 as

Cn(z = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n

(
ρ

a +
√

a2 − ρ2

)n

sin
(nπ

2

)
if ρ < a,

1
n

sin
[

n arcsin
(

a
ρ

)]
if ρ > a.

(3.35)

In particular, for ρ < a, it can be noticed that C2n(z = 0) = 0 for n ≥ 1. For n = 0, it
follows that C0(z = 0) = π/2 if ρ < a and C0(z = 0) = arcsin(a/ρ) if ρ > a.

The flow field, transformed into the co-moving frame ((v − êxV)/V), is shown in
figure 3.

4. Thin circular disk translating in a fluid with force-free surface

In the following, we recapitulate the solution for the flow and the drag force on a thin
circular disk, moving horizontally at a gas–liquid interface. Because the interface is
assumed to be planar and is not affected by the flow, the solution is mathematically
equivalent to the edgewise motion of a thin disk in bulk fluid, with half the drag coefficient.
The latter has been solved by Ray (1936) using Bessel functions. The flow around a thin
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Hydrodynamic efficiency limit on a Marangoni surfer

disk can also be obtained from the solution for an ellipsoidal particle in the limit of zero
thickness (Lamb 1945). A general approach for analysing the arbitrary motion of a circular
disk in a Stokes flow has later been formulated using dual integral equation approach
(Tanzosh 1994; Tanzosh & Stone 1996). The problem of a disk moving sideways between
parallel walls has further been investigated by Davis (1991), who determined the additional
drag encountered by the disk by solving a pair of integral equations (Davis 1991). In order
to ensure uniform notation needed for the superposition of both solutions, we give a brief
summary of the of the derivation by Tanzosh & Stone (1996) using our notation in the
following. We will omit the ‘FS’ subscript as all quantities in this section are related to a
disk in motion at a free interface.

We express the forces in Fourier space using (3.19). Since this problem has been
thoroughly examined in the literature, we refrain from presenting the complete solution
steps here. In the case of a free surface, our expectation is that the force density aligns
along the direction of motion. Unlike in the case of an incompressible surface, where ṽ‖ is
found to be dependent solely on F̃t, see (3.18), the absence of surface tension in the in-plane
force balance introduces a different dependence. In this scenario, the in-plane velocity is
determined by both F̃t and F̃l. By anticipating that the force is aligned along the x direction,
one would posit M̃(k) = Ñ(k). It is worth noting that a systematic investigation without
enforcing this condition leads to the same conclusion. By requiring no-slip boundary
conditions at the surface of the disk, the corresponding dual integral integrals for the inner
domain for z = 0 and ρ ∈ [0, a] are∫ ∞

0
dk M̃(k)J0(ρk) = 8

3
πμV,

∫ ∞

0
dk M̃(k)J2(ρk) = 0. (4.1a,b)

Equations (3.25a,b) on the outer domain remain the same as these are connected to the
absence of force beyond the disk. Then, the solution of the resulting dual integral equations
is obtained as

M̃(k) = Ñ(k) = 16
3

μV
k

sin(ka). (4.2)

In contrast to the case of incompressible surface, the expression for the surface force
density assumes a straightforward form and can be derived from (3.20) as

f ‖ = 8μV

3π
√

a2 − ρ2
êx. (4.3)

Integrating this force over the surface of the disk leads to the familiar expression for the
drag coefficient (2.16):

RFS = 16
3 μa. (4.4)

The hydrodynamic flow field is determined by carrying out the inverse Fourier
transform, resulting in the components of the velocity field as follows:

vρ

V
= 2

3π

[
3C0 + C2 + (D0 − D2)

z
ρ

]
cos θ, (4.5a)

vθ

V
= − 2

3π

[
3C0 − C2 + (D0 + D2)

z
ρ

]
sin θ, (4.5b)

vz

V
= 4

3π

z
ρ

D1 cos θ. (4.5c)

The sequence Cn was previously defined in terms of an infinite integral by (3.33).
Here, Dn = ρ∂zCn, also a dimensionless function. It can be shown that D0 = Im{1/S},

986 A32-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.363


A. Daddi-Moussa-Ider, R. Golestanian and A. Vilfan

3
(a) (b)

2

1

0y/a

z/a

x/a

–1

–2

–3

0

–1

–2

–3

–2 –1 0 1 2 3

x/a
–2

0 0.2 0.4 0.6

v/VFS

0.8 1.0

–1 0 1 2 3

Figure 4. The flow field of a circular disk embedded in a force-free interface (FS problem), shown in the
co-moving frame in top view (a) and side view (b).

D1 = Im{s/S} and D2 = Im{Q2/S}. When z = 0, a closed-form expression for Dn can
likewise be derived for any n ≥ 0 as

Dn(z = 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ√
a2 − ρ2

(
ρ

a +
√

a2 − ρ2

)n

cos
(nπ

2

)
if ρ < a,

ρ√
ρ2 − a2

sin
[

n arcsin
(

a
ρ

)]
if ρ > a.

(4.6)

In particular, for z = 0 and ρ < a, all odd terms vanish, D2n+1 = 0.
Figure 4 shows the resulting flow at the surface and in a vertical cross-section. Unlike

with an interface with surface incompressibility, where the pressure is zero, the solution
for a free surface includes a non-zero pressure field, which is related to the normal velocity
as p = 2μvz/z.

5. The optimal propulsion of a disk-shaped Marangoni surfer

With the drag coefficients of the two passive problems, the respective translational
velocities in the passive problems follow from (2.13) as

VFS

VA
= RSI

RSI − RFS
= 3,

VSI

VA
= RFS

RSI − RFS
= 2. (5.1a,b)

The full solution for the optimal active surfer can now be obtained as the superposition of
the solution for the passive body in an incompressible surface (§ 3) with the negative of
the solution for the free surface (§ 4). We thereby replace the body velocity in the former
case with VSI = 2VA and in the latter case with VFS = 3VA. The relative surface tension
of the optimal active surfer (figure 5a) follows from (3.27) as γA = −γSI :

γA = 8μVA

π

a
ρ

cos θ. (5.2)

The total force on the contact line then equals 8μaVA. Interestingly the force is by a factor
of 3/2 larger than the force that would be needed to pull a passive disk with velocity VA,
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Figure 5. (a) The surface tension γA of the optimal circular Marangoni surfer (colour scale) relative to
the unperturbed surface. The arrows indicate the force density on the fluid, ∇sγA outside the disk and f ‖
underneath it. The flow field in the co-moving frame in top view (b) and side view (c).

as already stated by Lauga & Davis (2012). Note that the fact that the ratio 3/2 is the same
as the ratio RSI/RFS is specific to the disk geometry and not generally valid.

The force density with which the bottom surface of the surfer acts on the fluid can
likewise be obtained as f ‖FS − f ‖SI . The surface integral of this force over the disk equals
the force caused by the surface tension, in accordance with the force-free condition on the
active surfer.

Finally, the flow field induced by the optimal Marangoni surfer is obtained as

vρ

VA
= 2

π

(
C− + D−

z
ρ

)
cos θ, (5.3a)

vθ

VA
= − 2

π

(
C+ + D+

z
ρ

)
sin θ, (5.3b)

vz

VA
= 4

π

z
ρ

D1 cos θ, (5.3c)

where we have introduced the abbreviations C± = C0 ± C2 and D± = D0 ± D2.
At the interface where z = 0 and ρ ≥ a, the velocity can be expressed as

v‖
VA

= 2
π

(C− cos θ êρ − C+ sin θ êθ ), (5.4)

with

C± = arcsin
(

a
ρ

)
± a

√
ρ2 − a2

ρ2 . (5.5)

The resulting flow field is shown in figure 5(b,c). The pressure can likewise be written in
a closed form as

p(ρ, z = 0) = 8μVA

πρ

a cos θ√
ρ2 − a2

(5.6)

for ρ ≥ a and is zero underneath the surfer.

6. Discussion

We have derived a minimum dissipation theorem that gives a lower bound on
hydrodynamic dissipation by a Marangoni surfer of arbitrary shape in the limit of low
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Reynolds and capillary numbers. In our calculation we assumed a planar gas–liquid
interface, but the expansion to any other interface form, for example, taking into account
the meniscus around the contact line, is straightforward as long as the shape is not
influenced by the flow. Likewise, the problem can be solved with additional confinement
for the liquid phase where an interesting reversal of swimming direction can occur
(Vandadi, Kang & Masoud 2017). Another generalisation would be to include the
rotational motion of the surfer. In all those cases the only difficulty is to calculate the
drag coefficients of the corresponding passive problems.

As a specific example, we calculated the efficiency limit for a surfer taking the form
of a thin circular disk. The obtained value ηL = 1/3 is significantly higher than that for
any other realistic swimmer designs. Interestingly, Lauga & Davis (2012) have already
discussed exactly the same solution that we have now proven to be hydrodynamically
optimal. Their approach is, however, very different from ours as it is based on the solution
of the Laplace equation for the diffusion of surfactants around the surfer in the limit of
low Péclet numbers. They have shown that only the first angular mode, corresponding to
a dipolar source of surfactants, contributes to propulsion. We have now shown that this
mode coincides with the solution of the flow optimisation problem. The two solutions
are not entirely comparable, because at low Péclet numbers surfactant diffusion makes the
dominant contribution to the total dissipation. On the other hand, the finding that surfactant
distributions resulting from diffusion lead to hydrodynamically optimal solutions also
has a broader validity, beyond disk-shaped bodies. From the structure of our Green’s
functions one can see that the optimal distribution of surface tension indeed satisfies a
two-dimensional Laplace equation around any flat surfer. We expect, however, that this is
not the case for general surfers with a finite vertical extension.

While we are now able to determine the solution with the minimal hydrodynamic
dissipation, losses of free energy also take place due to surfactant diffusion. If the surface
tension is related to the surface density of insoluble surfactants c as γ = γ 0 − Kc and the
dynamics of the latter is determined by the advection–diffusion equation (Schwartz & Roy
2001)

∂tc = −∇s · (vc − D∇sc), (6.1)

then the rate of free energy loss due to diffusion can be written as

PD = KD
∫
I

dS
(∇sc)2

c
. (6.2)

The rate of work done on the fluid (2.4), on the other hand, is P = K
∫
I dS c∇s · v. Their

ratio is determined by the Péclet number, defined as

Pe = va
D

, (6.3)

if we assume that the derivatives of c and v are determined by the characteristic length
scale a. Our theorem therefore gives the total dissipation in the limit of high Péclet
numbers. In the general case, it applies to the hydrodynamic dissipation only. At the
same time, diffusivity is also needed if, for example, the surfer only emits surfactants
at its perimeter, but not elsewhere. This limitation does not apply to all surfers – a
counterexample is given by beetles that can secret surfactants from their tail, at a distance
from other contact lines (Lang, Seifert & Dettner 2012). Furthermore, our study cannot
take into account the energetic cost of synthesising or collecting surfactants. This cost
could be significant in the total energy balance of propulsion. Overall, finding optimal
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solutions for the combined problem including hydrodynamics and diffusion of surfactants
remains a challenge for future investigations.
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Appendix A. Derivation of the passive minimum dissipation theorem

The Helmholtz minimum dissipation theorem states that among all incompressible flows
that satisfy a prescribed fixed-velocity boundary condition, the Stokes flow has the smallest
dissipation. It can be generalised to many other boundary conditions. For example, among
all flows with zero normal velocity at the surface of a body, the flow with vanishing
tangential tractions at the interface (perfect-slip boundary condition) has the minimum
dissipation (Nasouri et al. 2021). More generally, at a fluid–fluid interface, dissipation
is minimal for the flow with stress continuity (Daddi-Moussa-Ider et al. 2023a). In the
following, we show that among all flows around a body submerged in a planar gas–liquid
interface and moving with velocity V , the free-surface flow has the smallest dissipation.
The derivation is adapted from the proof of the original Helmholtz minimum dissipation
theorem as formulated in the textbook by Guazzelli & Morris (2009) and follows a similar
line as our previous generalisations (Nasouri et al. 2021; Daddi-Moussa-Ider et al. 2023a).

We consider the unperturbed flow with velocity v and boundary conditions as depicted
in figure 2, i.e. v = V at the swimmer surface S and v · êz = 0 at the interface I. The total
dissipation in the fluid domain is

P = 2μ

∫
V

dV E : E. (A1)

We now perturb the velocity field by v′. The perturbed flow also needs to satisfy the
boundary conditions, therefore v′ = 0 at S and v′ · êz = 0 at I. The perturbation to the
strain rate is E′ = (∇v′ + (∇v′)�)/2. Its effect on the dissipation follows as


P = 2μ

∫
V

dV[(E ′ + E) : (E ′ + E) − E : E] = 2μ

∫
V

dV E ′ : E ′ + 4μ

∫
V

dV E ′ : E .

(A2)

Both tensors E ′ and E are traceless and symmetric. We can therefore write 2μE ′ :
E = ∇v′ : σ , using the stress tensor σ = −pI + 2μE . In the absence of volume forces,
the divergence of the stress tensor vanishes, ∇ · σ = 0 and we can write ∇v′ : σ =
∇ · (v′ · σ ). Finally, by applying the divergence theorem, it follows 4μ

∫
V dV E ′ : E =

−2
∫
S dS v′ · σ · n + 2

∫
I dS v′ · σ · êz. The first integral vanishes because v′ = 0 at the
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swimmer surface S . The second vanishes because there are no tangential tractions at
the interface, σ · êz ‖ êz while v′ · êz = 0. Together, this shows that the second term in
(A2) is always zero. The remaining term,

∫
dV E ′ : E ′, is positive for any non-vanishing

perturbation. It follows that the minimum dissipated power under the required boundary
conditions is achieved exactly when E ′ = 0. We have thus proven that any deviation from
the force-free flow around a moving body embedded in a planar interface leads to increased
dissipation.
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