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LINEAR MAPS ON VON NEUMANN ALGEBRAS
PRESERVING ZERO PRODUCTS OR TR-RANK

CUI JlANLIAN AND HOU JlNCHUAN

In this paper, we give some characterisations of homomorphisms on von Neumann
algebras by linear preservers. We prove that a bounded linear surjective map from
a von Neumann algebra onto another is zero-product preserving if and only if it
is a homomorphism multiplied by an invertible element in the centre of the image
algebra. By introducing the notion of tr-rank of the elements in finite von Neumann
algebras, we show that a unital linear map from a linear subspace M of a finite
von Neumann algebra 72. into 72. can be extended to an algebraic homomorphism
from the subalgebra generated by M into 72.; and a unital self-adjoint linear map
from a finite von Neumann algebra onto itself is completely tr-rank preserving if
and only if it is a spatial *-automorphism.

1. INTRODUCTION

By a linear preserver we mean a linear map from an algebra into another which,
roughly speaking, preserves certain properties of some elements in the algebra. Linear
preserver problems concern the characterisation of such maps. Over the past decades
a lot of work has been done on linear preserver problems on matrix algebras (see,
for example, the survey paper [11]). Recently, interest in similar questions on oper-
ator algebras over infinite dimensional spaces has also been growing (for example, [1,
3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16] and the references therein). In this paper, we
consider the question how to describe a linear map from a von Neumann algebra into
another which preserves zero products or tr-rank, and then get some characterisations
of homomorphisms on von Neumann algebras.

Let A and B be two algebras. We say that a linear map $ : A —> B preserves zero
products if AB = 0 implies that 3>(A)®(B) = 0 for any A, B e A; $ preserves zero
products in both directions if AB = 0 if and only if $(A)$(B) = 0 for any A, B € A-
Semrl [15] proved that a unital linear map from B(X) onto itself is an automorphism
if and only if it preserves zero products in both directions, where B(X) is the Banach
algebra of all bounded linear operators on Banach space X. In [9], Hou and Gao gave
a characterisation of the additive maps preserving zero products on B(H), where H is
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a Hilbert space. In a recent paper [5], we described all linear or additive maps on nest
algebras which preserve zero products. All these results mentioned above are obtained
by showing that the maps involved are rank-one preserving, but this method is not valid
for those acting on general von Neumann algebras. In the present paper, one of our
purposes is to generalise the result of Semrl [15] to general von Neumann algebras and
also omit the assumptions "in both directions" and "unitality", under the assumption
of boundedness. In Section 2, we prove that a bounded surjective linear map from a
von Neumann algebra onto a factor Banach algebra preserves zero products if and only
if it is a homomorphism multiplied by a nonzero scalar (Theorem 2.1). We also show
that a bounded surjective linear map from a von Neumann algebra A onto another B

preserves zero products if and only if it is a homomorphism multiplied by an invertible
element in the centre of B (Theorem 2.3).

One of the most important linear preserver problems concerns the rank. This is
because many preserver problems may be reduced to the problem of rank preservers.
Therefore it is not surprising that there are many papers on linear maps preserving rank
(see, for example, [1, 3, 4, 7, 8, 11 , 12, 13, 14, 15, 16] and the references therein).
However, the notion of finite-rank is meaningless in general von Neumann algebras. In
Section 3, we introduce the notion of tr-rank of the matrices over a finite von Neumann
algebra (see Definition 3.1) and give some properties of tr-rank (Proposition 3.2). It is
seen that tr-rank is a suitable generalisation of the rank of matrices. We prove that a
unital linear map which is completely tr-rank nonincreasing from a linear subspace M
of a finite von Neumann algebra 1Z into H can be extended to a completely tr-rank
nonincreasing algebraic homomorphism from the subalgebra generated by Ai into 1Z
(Theorem 3.3); if a unital linear map from 1Z into itself is completely tr-rank nonin-
creasing, then it is a homomorphism (Corollary 3.4); and a unital self-adjoint linear
map from 1Z onto itself is completely tr-rank preserving if and only if it is a spatial
*-automorphism (Theorem 3.6).

2. LINEAR MAPS PRESERVING ZERO-PRODUCT

In this section, we discuss the linear maps preserving zero products on von Neu-
mann algebras. In fact, the results of this section are also true if the domain space A

is a C* -algebra of real rank zero. Recall that a C* -algebra A is of real rank zero if the
set of all real linear combinations of orthogonal self-adjoint idempotents is dense in the
set of all self-adjoint elements of A ([2]). It is clear that every von Neumann algebra is
a C* -algebra of real rank zero. In particular, B(H), the algebra of all bounded linear
operators on a complex Hilbert space, has real rank zero. In this section, we assume
that A is a von Neumann algebra acting on a complex Hilbert space H.

For a unital Banach algebra B, Z(B) denotes the centre of B, that is, Z(B) =
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{b e B \ bx = xb for every x e B}. B is called a factor if Z(B) = CI, where / is the
unit of B and C is the complex plane as usual. Two elements are orthogonal if they
are commutative and their product is zero.

THEOREM 2 . 1 . Let A be a von Neumann algebra and B be a factor Banach

algebra containing unit. Suppose that $ : A —> B is a bounded surjective linear map.

Then the following are equivalent.

(1) $ preserves zero products.
(2) $ is a homomorphism multiplied by a nonzero scalar.

PROOF: It is clear that we need only to prove (1) implies (2). Assume that $ :
A —> B is a bounded surjective linear map preserving zero products. First we shall
show that $(/) = XI for some nonzero A € C.

Let Q £ A be an arbitrary idempotent, then by our assumptions, Q(I — Q) = 0
implies that $(Q)$(7 - Q) = 0, so

(2.1) HQW) = $(I)*(Q) = *(Q)2.

It is well known that the subspace of all real linear combinations of projections (that
is, self-adjoint idempotents) is dense under the norm topology in the subset of all self-
adjoint elements of a von Neumann algebra. Since $ is continuous, we get $(S)<I>(/) —

for all S e A. Thus $(/) 6 Z(B) by the surjectivity of $ . Therefore

= XI for some A € C as B is a factor.

Next we prove that A ^ O . Otherwise, $(/) = 0, so, by equation (2.1), $(Q)2 = 0
n

for every idempotent Q in A. If A = YlaiPi i where Pi (i = 1, . . . , n) are orthogonal
t=l n

projections and a, are real numbers, then $(A)2 = ^ a?$(Pj)2 = 0. It follows from
i=i

the boundedness of $ that, for every self-adjoint element A in A, we always have
${A)2 = 0. Now for arbitrary two self-adjoint elements A and B in A, we have
0 = ${A + B)2 = $(>!)$(£) + $(B)$(yl). Let T = 7\ + iT2 be an arbitrary element
in A, where 7\, T2 are the real and imaginary parts of T, respectively. Now it follows
from the self-adjointness of Tj and T2 that <J>(T)2 = 0. Thus the range of $ consists
of square zero elements, which contradicts the surjectivity of $ because the Banach
algebra B contains elements other than square zero elements, for example, the unit I.

Hence A ̂  0. Without loss of generality, in the sequel, we may assume that A = 1, so

Our next step shall show that $ preserves idempotent elements. Indeed, Q is an

idempotent if and only if Q(I — Q) = 0. According to our assumptions, this implies that

$(<?)$(/ - Q) = 0, so $(<?) = $(<2)2 as $ ( / ) = / . That is, $(Q) is an idempotent.

Now let us prove that $ is a Jordan homomorphism. Because $ preserves idem-

potent elements, it maps a set of orthogonal idempotents of A into a set of orthogonal
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idempotents of B. If A — A* is a self-adjoint element in the von Neumann algebra A,

then A is a limit of a sequence of real linear combinations of orthogonal projections
and consequently, by the continuity of $ , $(A) is a limit of the sequence of real lin-
ear combinations of orthogonal idempotents. It follows that <J?(/12) = &{A) holds for
every self-adjoint element A. Replacing A by C + D in this relation, where C and
D are self-adjoint, we get $ ( C D + DC) = $(C)$(£>) + $(£>)$(C). For any T 6 A,

write T = T\ + iTi, where 7 \ , T2 are real and imaginary parts of T, respectively. Then
the self-adjointness of T\ and T2 yields that

= *(l \2 - Tl + i{TxT2

Hence <& is a Jordan homomorphism.
Finally, we prove that $ is a homomorphism. Let A, B 6 A be such that AB = 0,

then ®(A)$(B) - 0 and

For any idempotent P € 4̂ and arbitrary T e A, since TP(I - P) = 0, we have
$(TP) = ®{TP)$(P). It follows that

- $(PTP) = $(PT(I - P)) = ${P)Q(T(I - P))

hence we have $(PT) = $(P)$(T). Now it is clear that $(ST) = $(5)$(r) for any
5 and T in ^4, so $ is a homomorphism. D

COROLLARY 2 . 2 . Let -4 be a von Neumann algebra and B be a factor Banach
algebra. Suppose that $ : A —» 6 is a bounded iinear map. Then the following are
equivalent.

(1) $ is a surjection preserving zero products in both directions.
(2) $ is a bijection preserving zero products.
(3) $ is an isomorphism multiplied by a nonzero scalar.

PROOF: (3) implies (1) is clear. As to (1) implies (2), we need only to prove that
$ is injective. Assume that $(T) = 0. For any S 6 A, we have $(T)$(5) = 0 and
hence TS = 0 as $ preserves the zero products in both directions. So T — 0. That is,
$ is injective.
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That (2) implies (3) follows from Theorem 2.1. D

In Theorem 2.1, when the range of $ is a von Neumann algebra, we have more
general result. Let B be a von Neumann algebra acting on complex Hilbert space K

and let E. F G B be two projections. We say that E and F are equivalent, written as
E ~ F, if there exists a partial isometry V G B such that E = V*V and F = VV*.

The relation E =4 F means that E is equivalent to a subprojection of F. Assume that
{PA | A G A} in Z(B) is an orthogonal projection family satisfying ^ P\ — I. If for

AeA
any orthogonal family {Qa \ a G A} of projections in Z(B) with ^2 Qa — I and if

for any a G A, there exists A G A such that P\ =4 Qa, then we say that {P\ | A e A}
is a maximal orthogonal projection family in Z(B). In the following results we assume
that B has a maximal orthogonal projection family in Z(B).

THEOREM 2 . 3 . Let A and B be von Neumann algebras acting on complex
Hilbert spaces H and K, respectively. Suppose that $ : A —• B is a bounded surjective
linear map, then the following are equivalent.

(1) $ preserves zero products.
(2) There exists an invertible element D 6 Z(B) and a homomorphism 9 :

A^B such that $(T) = DV(T) for all T G A.

PROOF: AS (2) implies (1) is obvious, we need only to prove (1) implies (2). Assume
(1). From the proof of Theorem 2.1, we have <&(/) = D e Z(B). Take a maximal
orthogonal projection family {PA | A € A} in Z(B) so that £) P\ = I • Let K\ = P\K,

©

then K = £ Kx. For any 5 € B, let Sx = S\Kx, we have S = £ 5A. Put
AgA A6A

#A = {5A I S e B} c B(K\), then it is clear that B\ is a factor von Neumann algebra
©

on Kx and B = ^2 Bx. Otherwise, assume that there exist Ao € A such that B\Q is
ASA

not a factor von Neumann algebra on KXo • Then there exist nonzero subprojections
Pai and Pa2 € Z(B) of PXQ such that Pai +PQ2 = PAo. So {Pai,Pa2,P\ | A € A and
A yt Ao} is an orthogonal projection family and Pai + PQ2 + J2 P\ = I> which

A
©

contradicts the maximality of {Px | A € A}. Hence D = J2 a{X)Ix, where, for each

A G A, Ix is the identity operator on Hilbert space Kx and a(A) is a scalar.
Now, for every A G A, define $X{T) - $(T)\Kx for every T G A. Then $A : A ->

©
Bx is linear and is zero product preserving. It is clear that $(•) = ^2 $ A ( ) - Since $ is

AeA
surjective, <J>A is also surjective. By Theorem 2.1, we have that $A(-0 = a(\)Ix ^ 0 and

©
there exists a homomorphism \I>A : A -> Bx such that <3>A = a(A)\I>A • Let * = ^ *A ,
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then * : A -» B is a homomorphism and $(•) = £)*(•). We claim that the normal
element D is invertible, since, otherwise, no element in the range of $ can be invertible,
which contradicts the surjectivity of $ . This completes the proof. D

COROLLARY 2 . 4 . Let A and B be two von Neumann algebras acting on a
complex Hilbert spaces H and K, respectively. Suppose that $ : A —> B is a bounded

linear map. Then the following are equivalent.

(1) $ is a surjection preserving zero products in both directions.

(2) 3> is a bijection preserving zero products.

(3) There exists an invertible element D e Z(B) and an isomorphism * :
A -> B such that $(T) = D^(T) for every T e A.

P R O O F : This is immediate from Corollary 2.2 and Theorem 2.3. D

3. LINEAR MAPS PRESERVING TR-RANK

In this section, we discuss the linear maps on finite von Neumann algebras
which are completely tr-rank nonincreasing and give a characterisation of spatial *-
automorphisms. Before denning the conception of tr-rank for an element in finite von
Neumann algebras, we first recall some notions. Let 72. be a von Neumann algebra
acting on Hilbert space H. A projection E in a von Neumann algebra 72. is said to be
finite relative to 72 if there is no proper subprojection of E that is equivalent to E.

We say that 72 is finite if the identity / € 72. is a finite projection relative to 72.. For
any positive integer n, let H® Mn(C) = {T = ( I i j ) n x n | T{j s 72}, which is still a
finite von Neumann algebra in B(H^), where H^ is the direct sum of n copies of
H. It is well known that a von Neumann algebra is finite if and only if it has a faithful
normal centre-valued trace (see [10]).

DEFINITION 3.1: Let 72 be a finite von Neumann algebra on a Hilbert space H and
p be its unique centre-valued trace satisfying p(A) — A whenever A is in the centre. For

any T ^(Tij)nXn £ 11 ® Mn(C), define pn(T) - £ p(T«) and tr-rank (A) = Pn(RT),
3 i = l

where RT stands for the projection onto the closure of the range of T as an operator
on #(">.

Note that tr-rank (T) = 0 implies T = 0 since the trace p is faithful.

Let A4 and Af be two finite von Neumann algebras, the linear map $ : M —> J\f

is called completely tr-rank nonincreasing (or, preserving) if <3>n : M ® Mn(C) —>
Af ® Mn(C) defined by $n((Tij)nxn) — {®{Tij))nxn is tr-rank nonincreasing (or,
preserving) for every natural number n .

Before proving the main result of this section, we investigate some properties rela-
tive to tr-rank, which are useful in our study. It is seen from the following proposition
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that tr-rank is a suitable generalisation of the rank of matrices over C to that of the

matrices over finite von Neumann algebras.

For an operator T, we denote its kernel and range by ker (T) and ran (T), respec-

tively.

PROPOSITION 3 . 2 . Let 72. be a finite von Neumann algebra acting on Hilbert
space H. Let A,B,E and F € 1l<B>Mn(C) with E and F being projections. Then
the following statements are true.

(1) E ~ F if and only if tr-rank (E) = tr-rank (F) ;
(2) E ^ F if and only if tr-rank (E) ^ tr-rank (F) ;
(3) if EA = A, then tr-rank (A) ^ tr-rank (E) ;
(4) tr-rank (AB) ^ min{tr-rank (A), tr-rank (B)} ;
(5) if B is invertible, then tr-rank (BA) = tr-rank (AB) = tr-rank (A) ;
(6) if T = (Tij)nxn e f t ® Mn(C) satisfies JV,- = A for all (i,j), then

tr-rank (T) = tr-rank (A).

PROOF: (1) By the Definition 3.1, it is easily checked that pn(AB) = pn(BA)
for any A . B e K ® Mn(C). If E and F are projections such that E ~ F, then there
exists a partial isometry V 6 11 ® Mn(C) such that E = V*V and F = W * . Thus

tr-rank (E) = pn(E) = pn(V*V) = p n (VV) - pn(F) = tr-rank (F).

(2) E =̂  F if and only if there exists a subprojection Fx ^ F such that E ~ Fi .
By the positivity of pn and (1), we see that (2) is true.

(3) Let A = V|A| be the polar decomposition of A. Since EA = A and
ker A = ker(|A|) = ker V, for any x e ker A, we have (I — E)Vx = 0 and therefore,
( I -E )V | k e r A = 0; for any y 6 ran(|A|), there exists x £ (ker|A|)X = (kerA)-1

such that y = \A\x, hence (I - E)Vy = ( I -E)V |A |a ; = 0 and consequently,
(I - E)V|(kerA)J. = 0 since (ker A)"1 = ran(|A|). So (I - E)V = 0 and (I - E)VV =
0, which implies that RA = VV* ^ E. By property (2), tr-rank (A) ^ tr-rank (E).

(4) Since RAAB = AB, AB = ABRB' and RB ~ RB- , (4) follows from (1)
and (3).

(5) By (4) and tr-rank (B) = nl if B is invertible, we get

tr-rank (AB) ^ min{tr-rank (A), nl} = tr-rank (A)

and

tr-rank (A) = tr-rank (ABB"1) ^ min{tr-rank(AB),n/} = tr-rank (AB).
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So (5) is true.
(6) Let

W =

and
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Then W and V are invertible and
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0

0
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Hence, by (5), we get tr-rank (T) = tr-rank (WTV) = tr-rank {A). D

We are now in a position to prove the main theorem in this section.

THEOREM 3 . 3 . Let TZ be a finite von Neumann algebra and M be a linear
subspace of TZ containing the unit I. Suppose that $ : M —> % is a completely
tr-rank nonincreasing (or, preserving) unital (that is, $(/) = I) linear map. Then
$ can be extended to a completely tr-rank nonincreasing (or, preserving) algebraic
homomorphism from the subalgebra of TZ generated by M into TZ.
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PROOF: For any T{ € M (i = 1 , . . . , k), let

A =

and

/7\ - / 0
0 T2 -I

o o r3

0 0 0

0 0 0

-I

-T3T2

V Tk-T2

/ 0 0 0
7 0 0
0 / 0

0 0 \
0 0
0 0

0 Tfc /

0 0
- / 0

. -T3 -I

-rfc_i---r3 -rfc_!---r4
Tk • • • T3 Tk--T4

0

0

0

0 0\
0 0
0 0

- / 0
Tk I.

0 0 0

0 0 0
0 Tk_2-Tx

1 Tk-i---TiJ

ATB =

Then A , T , and B € M. ® Mk(C) and a straightforward computation shows that

I 0 0 ••• 0 0
0 / 0 ••• 0 0
0 0 / ••• 0 0

0 0 0 ••• / 0
0 0 0 • • • 0 Tk- • -T

It is clear that both A and B are invertible, so tr-rank (T) = tr-rank (ATB) by
property (5) of Proposition 3.2 and

(fc - 1)/ + tr-rank (Tk • • • T2Ti) = tr-rank (T).

Hence we have

(it - 1)/ + tr-rank ($(Tfc) • • -$(T2)*(Ti)) = tr-rank(*fc(T)) ^ tr-rank(T)

= (k - 1)1 + tr-rank (Tk • • • T2T{)
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because $ is unital and completely tr-rank nonincreasing. Now it is clear that

(3.1) tr-rank(*(rfc)---$(T2)$(r1)) *: tr-rank (Tk--T2T1),

namely, the tr-rank of the product of images of a unital completely tr-rank nonincreasing

linear map at some elements is not larger than the tr-rank of the corresponding product

of these elements.

Now assume that T 6 7Z has the form

m

T = ̂ 2 Sri • • • Srkr where SrSr € M for all r = 1,. . . , m and sr = 1, . . . , kT.
r = l

Let W r s r = (W%sr)) £M® Afm(C) with W#S r ) = SrSr, W^Sr) = I if i ? r
\ / m x m

and WyJ = 0 if i ^ j ; r = 1 , . . . ,m and sr = 1,. . . , kr. Let A = (-^ij)mxm with
Aij = I for all (i,j). Then

A W , i • • • W l f c l W 2 1 • ••Wlm_1)k{m_1)Wml • • • W m f c m A = V = {Vti)mxm

m

with Vij = T = 53 5Vi • • • Srkr for every i.j = 1 , . . . , m . It follows from Proposition
r= l

3.2 (6) that

tr-rank I -^J S1,-! • • • Srkr 1 = tr-rank (V).

Let

B = (Bij) - $ m ( A ) $ m ( W u ) • • • * m (W l f c l )* T O (W 2 1 )

• • • *m (w ( m _ 1 ) f c ( m _ 1 ) )$ T O (W m l ) • • • $ m ( W m f c m ) $

m

then B^ = S = J2 ${Sri) • • • ®(Srkr) for every i, j = 1, . . . , m. Similarly,
r= l

tr-rank (B) = tr-rank

Now, since <2>m : M ® Mm(C) —» 7̂  ® Mm(C) is completely tr-rank nonincreasing,
similar to inequality (3.1) we have

tr-rank (B) ^ tr-rank (V).
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So it follows that

tr-rankf 2 ^ $ ( S r l ) • • • $(Srfc r) ) Sj tr-rank( ^ Srl • • • Srkr 1.
V=i ' \=\ '

Let M be the subalgebra of 1Z generated by M and let $ : M -»11 be a linear
map determined by

) (
=i ' V=i

If £ Sri • • • 5rfcr = 0, then inequality (3.2) forces £ $(Sri) • • • $(Srfcr) = 0. In par-
r=l r = l

ticular, it follows from this fact that, if T, S and TS € M, then $(T5) = $(T)$(S).
Thus $ is well defined as an extension of $ and is an algebraic homomorphism. Now
$ is also completely tr-rank nonincreasing since <$m = $ m .

If $ is completely tr-rank preserving, then the inequalities between "tr-rank" in
the above argument are exact equalities, so $ is completely tr-rank preserving in this
case. In particular, $ is injective. D

Obviously, when M. is a subalgebra of 72., we have the following corollary.

COROLLARY 3 . 4 . Let 72. be a finite von Neumann algebra. Suppose that M
is a subalgebra of 1Z and $ : M —> 72. is a completely tr-rank nonincreasing (or,
preserving) unital linear map, then $ is an algebraic homomorphism (or, injective
homomorphism).

The following lemma can be found in [6, Corollary, p. 305], but for convenience
we state it here.

LEMMA 3 . 5 . Suppose that 1Z is a finite von Neumann algebra and Z is its
centre. Let $ be an *-automorphism of 11 which leaves the elements of Z fixed. Then
$ is spatial.

Recall that a map $ from a von Neumann algebra 72 into itself is self-adjoint if
it preserves the involution operation, that is, it satisfies the condition ^(T*) = ty(T)*

for all T in 72.; 4* is called a *-automorphism of 72. if it is self-adjoint and algebraically
automorphic. A *-automorphism ^ of a von Neumann algebra 72 acting on a Hilbert
space H is said to be spatial if there exists a unitary operator U e B(H) such that
*(T) = UTU* for all T in 72. Also recall that the central carrier CT of an operator T

in 72. is the projection / — P , where P is the union of all central projections Pa in 72
such that PaT = 0. That is, CT is the smallest projection Q in the centre Z = 72n72.'
of 72 for which QT = T.
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THEOREM 3 . 6 . Let U be a finite von Neumann algebra and let $ : H -> H be a

unital self-adjoint and surjective linear map. Then $ is completely tr-rank preserving

if and only if <& is a spatial *-automorphism of1Z that leaves the central elements fixed.

P R O O F : The "if" part is obvious. To check the "only if" part, suppose that $ is
completely tr-rank preserving. By Corollary 3.4, $ is an automorphism of 11. It is
obvious that, for any operator A € Z, we have $(A) € Z and <&\z • Z —» Z is one-
to-one and onto. Apparently, the map <3> is bounded and, for any projection P £ Z,

3>(P) £ Z is a projection since <5 is self-adjoint. Now the tr-rank preservativity of $
implies that $ (P) = P for every projection P £ Z. Because every operator in Z is
a norm limit of linear combinations of the orthogonal projections in Z, it follows that
®(Z) = Z for every Z £ Z. By Lemma 3.5, <J> is spatial. D
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