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We study additive categories that are locally finitely presented. This means that
every object is the filtered colimit of finitely presented objects. The categor-
ical notion of being finitely presented means for an object 𝑋 that the functor
Hom(𝑋,−) preserves filtered colimits. Of particular interest is the case of an
abelian category. Every locally finitely presented abelian category is a Grothen-

341

https://doi.org/10.1017/9781108979108.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.019


342 Locally Finitely Presented Categories

dieck category; so it is a category with injective envelopes and we can study its
injective objects.

The theory of locally finitely presented categories applies in particular to
locally noetherian Grothendieck categories, that is, Grothendieck categories
having a generating set of noetherian objects. Then finitely presented and
noetherian objects coincide. Also, in that case every injective object decom-
poses into a direct sum of indecomposable objects. We include a discussion of
Gröbner categories and provide criteria for when a functor category is locally
noetherian; this can be thought of as a generalisation of Hilbert’s basis theorem.

11.1 Locally Finitely Presented Categories

We introduce the concept of a locally finitely presented additive category.
Any locally finitely presented category A is completely determined by its
subcategory fpA of finitely presented objects, because A identifies with the
category of left exact functors (fpA)op → Ab.

Filtered Colimits
A category I is called filtered if

(Fil1) the category is non-empty,
(Fil2) given objects 𝑖, 𝑖′ there is an object 𝑗 with morphisms 𝑖 → 𝑗 ← 𝑖′, and
(Fil3) given morphisms 𝛼, 𝛼′ : 𝑖 → 𝑗 there is a morphism 𝛽 : 𝑗 → 𝑘 such that

𝛽𝛼 = 𝛽𝛼′.

For a functor 𝐹 : I → C, we denote by colim 𝐹 or colim𝑖∈I 𝐹 (𝑖) its colimit,
provided it exists in C. The term filtered colimit is used for the colimit of a
functor 𝐹 : I→ C such that the category I is filtered.

Example 11.1.1. (1) A partially ordered set (𝐼, ≤) can be viewed as a category.
The objects are the elements of 𝐼 and there is a unique morphism 𝑖 → 𝑗

whenever 𝑖 ≤ 𝑗 . This category is filtered if and only if (𝐼, ≤) is non-empty and
directed. A colimit colim𝑖∈I 𝐹 (𝑖) is called a directed colimit if I is given by a
directed set.

(2) The coproduct of a family of objects (𝑋𝑖)𝑖∈𝐼 can be written as∐
𝑖∈𝐼

𝑋𝑖 = colim
𝐽 ∈I

( ∐
𝑖∈𝐽

𝑋𝑖

)
where I denotes the filtered category of finite subsets 𝐽 ⊆ 𝐼.

(3) Let A be an additive category and C ⊆ A a full additive subcategory that
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11.1 Locally Finitely Presented Categories 343

is essentially small. For any 𝑋 ∈ A let C/𝑋 denote the slice category consisting
of pairs (𝐶, 𝜙) given by a morphism 𝜙 : 𝐶 → 𝑋 with 𝐶 ∈ C. A morphism
(𝐶, 𝜙) → (𝐶 ′, 𝜙′) is given by a morphism 𝛼 : 𝐶 → 𝐶 ′ in C such that 𝜙′𝛼 = 𝜙.
Then C/𝑋 is filtered, provided that each morphism in C admits a cokernel in A

that lies in C. In fact, having weak cokernels is sufficient.

Locally Finitely Presented Categories
Let A be an additive category and suppose that A is cocomplete. Thus each
functor 𝐹 : I→ A from an essentially small category I admits a colimit. Let us
recall the construction of the colimit because it is very explicit. For a morphism
𝛼 : 𝑖 → 𝑗 in I we set 𝑠(𝛼) = 𝑖 and 𝑡 (𝛼) = 𝑗 . For 𝑗 ∈ I we write 𝜄 𝑗 : 𝐹 ( 𝑗) →∐

𝑖∈I 𝐹 (𝑖) for the canonical inclusion and set 𝜙𝛼 = 𝜄𝑠 (𝛼) − 𝜄𝑡 (𝛼) ◦ 𝐹 (𝛼). Then
colim 𝐹 is computed as the cokernel of 𝜙 = (𝜙𝛼)𝛼∈I and fits into an exact
sequence ∐

𝛼∈I

𝐹 (𝑠(𝛼))
𝜙
−−→

∐
𝑖∈I

𝐹 (𝑖) −→ colim 𝐹 −→ 0.

Often we write 𝐹𝑖 = 𝐹 (𝑖) for 𝑖 ∈ I and then colim𝑖 𝐹𝑖 = colim 𝐹. A consequence
of this construction is the fact that an additive category is cocomplete if and
only if it has coproducts and every morphism admits a cokernel.

An object 𝑋 ∈ A is finitely presented if the functor HomA(𝑋,−) preserves
filtered colimits. This means that for every filtered colimit colim𝑖 𝑌𝑖 in A the
canonical map

colim
𝑖

HomA(𝑋,𝑌𝑖) −→ HomA(𝑋, colim
𝑖
𝑌𝑖)

is bijective. Let fpA denote the full subcategory of finitely presented objects.
We record the following elementary facts.

Lemma 11.1.2. The subcategory fpA is closed under finite coproducts, direct
summands, and cokernels. If 𝑋 ∈ fpA is written as a filtered colimit 𝑋 =
colim 𝑋𝑖 , then for some index 𝑖0 the canonical morphism 𝑋𝑖0 → 𝑋 is a split
epimorphism. �

The category A is called locally finitely presented if fpA is essentially small
and every object in A is a filtered colimit of finitely presented objects. In that
case any object 𝑋 ∈ A can be written canonically as a filtered colimit

𝑋 = colim
(𝐶,𝜙) ∈fpA/𝑋

𝐶

of the forgetful functor fpA/𝑋 → A that takes (𝐶, 𝜙) to 𝐶, as we will see in
Corollary 11.1.16.
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344 Locally Finitely Presented Categories

From now on the term ‘locally finitely presented’ for a category A includes
the properties that A is additive and cocomplete.
Remark 11.1.3. Let A2 denote the category of morphisms in A. If A is locally
finitely presented, then A2 is locally finitely presented and (fpA)2 ∼−→ fp(A2).
This means that each morphism in A can be written canonically as a filtered
colimit of morphisms in fpA.

Example 11.1.4. (1) Let Λ be any ring. Then the category of Λ-modules
is locally finitely presented. The finitely presented objects are precisely the
modules 𝑀 that admit a presentation Λ𝑟 → Λ𝑠 → 𝑀 → 0 for some integers
𝑟, 𝑠 ≥ 0.

(2) Let X be a scheme and suppose it is quasi-compact and quasi-separated.
Then the category QcohX of quasi-coherent OX-modules is locally finitely
presented. The finitely presented objects are precisely the finitely presented
OX-modules [97, I.6.9.12]. When X is noetherian, then the category of finitely
presented objects identifies with the category cohX of coherent sheaves.

Cofinal Subcategories
For the computation of filtered colimits it is often useful to vary the index
category. We consider an essentially small filtered category I and a fully faithful
functor 𝜙 : J→ I. Then 𝜙 is called cofinal if it satisfies the equivalent conditions
of the following lemma. When 𝜙 is an inclusion we call J a cofinal subcategory
of I.

Lemma 11.1.5. Let I be an essentially small filtered category. For a fully
faithful functor 𝜙 : J→ I the following are equivalent.

(1) For every object 𝑖 ∈ I there exists 𝑗 ∈ J and a morphism 𝑖 → 𝜙( 𝑗).
(2) Every functor 𝐹 : Iop → Set induces an isomorphism lim 𝐹 ∼−→ lim(𝐹 ◦ 𝜙).
(3) For every categoryCwhich admits filtered colimits, every functor𝐹 : I→ C

induces an isomorphism colim(𝐹 ◦ 𝜙) ∼−→ colim 𝐹.

Moreover, in this case the category J is filtered.

Proof (1) ⇒ (2): Limits in the category of sets can be calculated explicitly.
Thus the condition (1) implies that lim 𝐹 → lim(𝐹 ◦ 𝜙) is injective. Combined
with the fact that I is filtered, the map is also bijective.

(2) ⇒ (3): We have for each 𝑋 ∈ C a canonical bijection

Hom(colim
𝑖

𝐹 (𝑖), 𝑋) ∼−→ lim
𝑖

Hom(𝐹 (𝑖), 𝑋).

Thus we can use the functor 𝐹𝑋 : Iop → Set given by 𝑖 ↦→ Hom(𝐹 (𝑖), 𝑋). Then
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11.1 Locally Finitely Presented Categories 345

the isomorphism lim 𝐹𝑋
∼−→ lim(𝐹𝑋 ◦ 𝜙) for all 𝑋 implies that colim(𝐹 ◦ 𝜙) ∼−→

colim 𝐹.
(3) ⇒ (1): Consider the Yoneda functor 𝐹 : I → Fun(Iop, Set). Colimits in

Fun(Iop, Set) are computed pointwise. Thus we have for each 𝑥 ∈ I a bijection

colim
𝑗∈J

Hom(𝑥, 𝜙( 𝑗)) ∼−→ colim
𝑖∈I

Hom(𝑥, 𝑖).

Choosing 𝑥 = 𝑖, we find 𝑗 ∈ J and a morphism 𝑖 → 𝜙( 𝑗).
Using condition (1), the fact that I is filtered implies that J is filtered. �

Let A be a locally finitely presented category. For a full additive subcategory
C ⊆ fpA let *C denote the full subcategory of A consisting of the filtered
colimits of objects in C.

Lemma 11.1.6. An object 𝑋 ∈ A belongs to *C if and only if every morphism
𝐶 → 𝑋 with 𝐶 ∈ fpA factors through an object in C.

Proof Let 𝑋 = colim 𝑋𝑖 be written as a filtered colimit of objects in C. Then
every morphism 𝐶 → 𝑋 with 𝐶 ∈ fpA factors through 𝑋𝑖 → 𝑋 for some
𝑖. Conversely, let 𝑋 = colim(𝐶,𝜙) ∈fpA/𝑋 𝐶 and suppose that each 𝜙 : 𝐶 → 𝑋

factors through an object in C. This means that the inclusion C/𝑋 → (fpA)/𝑋
is cofinal, so colim(𝐶,𝜙) ∈C/𝑋 𝐶

∼−→ 𝑋 by Lemma 11.1.5. Thus 𝑋 ∈ *C. �

Example 11.1.7. LetΛ be a ring and setC = projΛ. Then *C equals the category
of flat Λ-modules.

Categories of Additive Functors
Let C be an essentially small additive category and let Add(Cop,Ab) denote
the category of additive functors Cop → Ab. This functor category inherits
(co)kernels and (co)products from Ab, because these are computed ‘pointwise’.
In particular, Add(Cop,Ab) is an abelian category. Also, filtered colimits of
exact sequences are exact.

For an additive functor 𝐹 : Cop → Ab let C/𝐹 denote the category consisting
of pairs (𝐶, 𝑓 ) with 𝐶 ∈ C and 𝑓 ∈ 𝐹 (𝐶). A morphism (𝐶, 𝑓 ) → (𝐶 ′, 𝑓 ′) is
given by a morphism 𝛼 : 𝐶 → 𝐶 ′ in C such that 𝐹 (𝛼) ( 𝑓 ′) = 𝑓 .

Lemma 11.1.8. An additive functor 𝐹 : Cop → Ab equals the colimit of the
functor

ΦC : C/𝐹 −→ Add(Cop,Ab), (𝐶, 𝑓 ) ↦→ HomC (−, 𝐶).

https://doi.org/10.1017/9781108979108.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.019


346 Locally Finitely Presented Categories

Proof Each pair (𝐶, 𝑓 ) in C/𝐹 yields a morphism HomC(−, 𝐶) → 𝐹 and
these induce a morphism

colim
(𝐶, 𝑓 ) ∈C/𝐹

HomC (−, 𝐶) −→ 𝐹.

We obtain an inverse by giving for each 𝑋 ∈ C a morphism

𝐹 (𝑋) −→ colim
(𝐶, 𝑓 ) ∈C/𝐹

HomC (𝑋,𝐶)

as follows. An element 𝑥 ∈ 𝐹 (𝑋) is sent to the image of id𝑋 under the canonical
map

HomC(𝑋, 𝑋) −→ colim
(𝐶, 𝑓 ) ∈C/𝐹

HomC (𝑋,𝐶)

corresponding to (𝑋, 𝑥) in C/𝐹. �

We write Fp(Cop,Ab) for the category of functors 𝐹 : Cop → Ab that admit
a presentation

HomC (−, 𝐶) −→ HomC(−, 𝐷) −→ 𝐹 −→ 0.

It follows from Yoneda’s lemma that each representable functor is a finitely
presented object in Add(Cop,Ab). Thus a cokernel of a morphism between
representable functors is a finitely presented object.

We obtain another presentation of an additive functor 𝐹 : Cop → Ab using
the slice category Fp(Cop,Ab)/𝐹 which is filtered; see Example 11.1.1.

Proposition 11.1.9. An additive functor 𝐹 : Cop → Ab equals the filtered
colimit of the forgetful functor

Ψ : Fp(Cop,Ab)/𝐹 −→ Add(Cop,Ab).

Therefore the additive category Add(Cop,Ab) is locally finitely presented and

fp Add(Cop,Ab) = Fp(Cop,Ab).

Proof We consider the Yoneda functor ℎ : C → D := Fp(Cop,Ab) and set
𝐹̄ = Hom(−, 𝐹) |D. Then 𝐹̄ = colimΦD by Lemma 11.1.8. We have Ψ =
ℎ∗ ◦ΦD and therefore

colimΨ = ℎ∗(colimΦD) = ℎ
∗(𝐹̄) = 𝐹.

The second assertion is an immediate consequence of the first. �

Let us add another useful presentation of an additive functor as a colimit
which uses a directed set.
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11.1 Locally Finitely Presented Categories 347

Proposition 11.1.10. Every additive functor Cop → Ab is a directed colimit of
functors in Fp(Cop,Ab).

Proof An additive functor 𝐹 : Cop → Ab admits a presentation∐
𝑖∈𝐼

HomC (−, 𝐶𝑖) −→
∐
𝑗∈𝐽

HomC (−, 𝐷 𝑗 ) −→ 𝐹 −→ 0

because C is essentially small. Let 𝑈 denote the set of pairs 𝑢 = (𝐼 ′, 𝐽 ′)

consisting of finite subsets 𝐼 ′ ⊆ 𝐼 and 𝐽 ′ ⊆ 𝐽 making the following square
commutative ∐

𝑖∈𝐼′ HomC(−, 𝐶𝑖)
∐

𝑗∈𝐽′ HomC (−, 𝐷 𝑗 )

∐
𝑖∈𝐼 HomC (−, 𝐶𝑖)

∐
𝑗∈𝐽 HomC(−, 𝐷 𝑗 )

and denote by 𝐹𝑢 → 𝐹 the induced morphism between the cokernels of the
horizontal morphisms. The set𝑈 is partially ordered by inclusion, and we have
sup(𝑢1, 𝑢2) ∈ 𝑈 for 𝑢1, 𝑢2 ∈ 𝑈. Thus𝑈 is directed and it is easily checked that
colim𝑢∈𝑈 𝐹𝑢

∼−→ 𝐹. �

Linear Representations
A category C is preadditive if each morphism set HomC (𝑋,𝑌 ) is an abelian
group, and the composition maps

HomC (𝑌, 𝑍) × HomC(𝑋,𝑌 ) −→ HomC (𝑋, 𝑍)

are biadditive. An additive category carries an intrinsic structure of a preadditive
category, but in general this is an additional structure. It is often convenient to
consider functor categories Add(Cop,Ab) when C is preadditive, and the above
results generalise with same proofs.

The centre 𝑍 (C) of a preadditive category C is the ring of all natural trans-
formations idC → idC of the identity functor on C. For a commutative ring
𝑘 the structure of a 𝑘-linear category on C is given by a ring homomorphism
𝑘 → 𝑍 (C).

Let C be a 𝑘-linear category C. Then for any additive functor 𝐹 : C →

Ab there is a canonical 𝑘-module structure on 𝐹𝑋 for each 𝑋 ∈ C via the
homomorphism 𝑘 → EndC (𝑋) → EndZ (𝐹𝑋). Thus we may view 𝐹 as a
𝑘-linear functor C→ Mod 𝑘 .

Example 11.1.11. A ringΛmay be viewed as a preadditive category with a sin-
gle object, and then 𝑍 (Λ) identifies with the usual centre given by all elements
𝑥 ∈ Λ satisfying 𝑥𝑦 = 𝑦𝑥 for all 𝑦 ∈ Λ. Moreover, 𝑍 (Λ) ∼−→ 𝑍 (ModΛ).
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348 Locally Finitely Presented Categories

LetC be an essentially small category and 𝑘 a commutative ring. The forgetful
functor Mod 𝑘 → Set admits a left adjoint which sends a set 𝑆 to a free 𝑘-
module 𝑘 [𝑆] with basis 𝑆. Thus there is a natural bijection

Hom𝑘 (𝑘 [𝑆], 𝑋)
∼−→ HomSet (𝑆, 𝑋)

for any 𝑘-module 𝑋 . The 𝑘-linearisation 𝑘C of C is the 𝑘-linear category
obtained by setting Ob 𝑘C = ObC and

Hom𝑘C (𝑋,𝑌 ) = 𝑘 [HomC (𝑋,𝑌 )]

for each pair of objects 𝑋,𝑌 .
Consider the category Fun(C,Mod 𝑘) of all functors C → Mod 𝑘 . We think

of a functor C→ Mod 𝑘 as a 𝑘-linear representation of C.

Lemma 11.1.12. Restriction via the inclusion 𝑖 : C→ 𝑘C gives an equivalence

Add(𝑘C,Ab) ∼−−→ Fun(C,Mod 𝑘).

Proof The quasi-inverse functor Fun(C,Mod 𝑘) → Add(𝑘C,Ab) is obtained
by applying the left adjoint of the forgetful functor Mod 𝑘 → Set. Thus any
functor𝐹 : C→ Mod 𝑘 extends uniquely to a 𝑘-linear functor𝐹 ′ : 𝑘C→ Mod 𝑘
such that 𝐹 ′ ◦ 𝑖 = 𝐹. �

Example 11.1.13. (1) Let Λ be a ring. Then evaluation at Λ yields an equiva-
lence

Add((projΛ)op,Ab) ∼−−→ ModΛ.

Taking a Λ-module 𝑋 to Hom(−, 𝑋) |projΛ gives a quasi-inverse.
(2) Let 𝑄 be a quiver, 𝑘 a commutative ring, and Rep(𝑄, 𝑘) the category of

𝑘-linear representations of 𝑄. The path category is the 𝑘-linearisation 𝑘𝑄 of
the category of paths in 𝑄. Then restriction to 𝑄 yields an equivalence

Add(𝑘𝑄,Ab) ∼−−→ Rep(𝑄, 𝑘).

(3) Let 𝐺 be a group, 𝑘 a commutative ring, and Rep(𝐺, 𝑘) the category of
𝑘-linear representations of 𝐺. We view the group as a category with a single
object, and then its 𝑘-linearisation identifies with the group algebra 𝑘𝐺. This
yields an equivalence

Mod(𝑘𝐺op) ∼−−→ Rep(𝐺, 𝑘).
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11.1 Locally Finitely Presented Categories 349

Categories of Left Exact Functors
LetC be an essentially small additive category and suppose thatC has cokernels.
We consider the functor category Add(Cop,Ab) and denote by Lex(Cop,Ab)
the full subcategory of additive functors 𝐹 : Cop → Ab that are left exact,
so taking an exact sequence 𝑋 → 𝑌 → 𝑍 → 0 in C to an exact sequence
0 → 𝐹𝑍 → 𝐹𝑌 → 𝐹𝑋 .1 This category has filtered colimits, kernels, and
products, because left exact functors are closed under these operations. Note
that every representable functor is a finitely presented object in Lex(Cop,Ab).

Lemma 11.1.14. Let 𝐹 : Cop → Ab be an additive functor. Then the category
C/𝐹 is filtered if and only if 𝐹 is left exact.

Proof When C/𝐹 is filtered then 𝐹 is a filtered colimit of left exact functors
since each representable functor is left exact; see Lemma 11.1.8. Thus 𝐹 is left
exact.

Now suppose that 𝐹 is left exact. We need to show that C/𝐹 is filtered. Given
pairs (𝐶, 𝑓 ) and (𝐶 ′, 𝑓 ′), we have canonical morphisms

(𝐶, 𝑓 ) → (𝐶 ⊕ 𝐶 ′, 𝑓 + 𝑓 ′) ← (𝐶 ′, 𝑓 ′)

since 𝐹 is additive. Given morphisms 𝛼1, 𝛼2 : (𝐶, 𝑓 ) → (𝐶 ′, 𝑓 ′), we obtain a
morphism 𝛽 : (𝐶 ′, 𝑓 ′) → (𝐶 ′′, 𝑓 ′′) by taking 𝐶 ′′ = Coker(𝛼1 − 𝛼2). Because
𝐹 is left exact, there is 𝑓 ′′ ∈ 𝐹 (𝐶 ′′) which is sent to 𝑓 ′ ∈ 𝐹 (𝐶 ′) since
𝐹 (𝛼1 − 𝛼2) ( 𝑓

′) = 0. Thus 𝛽𝛼1 = 𝛽𝛼2. �

The following correspondence provides a useful description of locally finitely
presented categories.

Theorem 11.1.15. We have a correspondence between locally finitely presented
categories and essentially small additive categories with cokernels.

(1) Let C be an essentially small additive category that admits cokernels and
set A = Lex(Cop,Ab). Then A is locally finitely presented with C ∼−→ fpA.

(2) Let A be a locally finitely presented category and set C = fpA. Then

A −→ Lex(Cop,Ab), 𝑋 ↦−→ ℎ𝑋 := HomA(−, 𝑋) |C

is an equivalence.

Proof (1) We consider the category A = Lex(Cop,Ab). Clearly, each repre-
sentable functor is a finitely presented object in A, by Yoneda’s lemma. Then
it follows from Lemma 11.1.8 and Lemma 11.1.14 that every object in A is
1 When C is an exact category with cokernels, there are two notions of a left exact functor
Cop → Ab. In general, these are different.
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350 Locally Finitely Presented Categories

a filtered colimit of finitely presented objects. Any finitely presented object is
isomorphic to a representable functor by Lemma 11.1.2. Thus C ∼−→ fpA. A
simple calculation shows that the Yoneda embedding C→ A is right exact, so
it takes cokernels to cokernels.

Any morphism 𝜙 : 𝑋 → 𝑌 in A can be written as a filtered colimit 𝜙 =
colim 𝜙𝑖 of morphisms in fpA. Then Coker 𝜙 = colim Coker 𝜙𝑖 . Thus A has
cokernels and is therefore cocomplete, since A has coproducts.

(2) We show that the assignment 𝑋 ↦→ ℎ𝑋 is fully faithful and essentially
surjective. Let 𝑋,𝑌 be objects in A and 𝑋 = colim 𝑋𝑖 written as a filtered
colimit of objects in fpA. Then

Hom(colim
𝑖

𝑋𝑖 , 𝑌 ) � lim
𝑖

Hom(𝑋𝑖 , 𝑌 )

� lim
𝑖

Hom(ℎ𝑋𝑖 , ℎ𝑌 )

� Hom(colim
𝑖

ℎ𝑋𝑖 , ℎ𝑌 )

� Hom(ℎ𝑋, ℎ𝑌 ),

where we use Yoneda’s lemma and the fact that 𝑋 ↦→ ℎ𝑋 preserves filtered
colimits. Any object 𝐹 ∈ Lex(Cop,Ab) can be written as a filtered colimit

𝐹 = colim
(𝐶, 𝑓 ) ∈C/𝐹

ℎ𝐶

by Lemma 11.1.8. Thus for 𝑋 = colim(𝐶, 𝑓 ) ∈C/𝐹 𝐶 in A we have ℎ𝑋 � 𝐹.
We conclude that a quasi-inverse Lex(Cop,Ab) → A sends 𝐹 to colim 𝐹̃

where 𝐹̃ : C/𝐹 → A is the functor that sends (𝐶, 𝑓 ) to 𝐶. �

Let us collect some consequences.

Corollary 11.1.16. An object 𝑋 in a locally finitely presented category can be
written canonically as a filtered colimit

𝑋 = colim
(𝐶,𝜙) ∈fpA/𝑋

𝐶 (11.1.17)

of the forgetful functor fpA/𝑋 → A that takes (𝐶, 𝜙) to 𝐶. �

Corollary 11.1.18. A locally finitely presented category is complete.

Proof A limit of left exact functors is again left exact. �

Corollary 11.1.19. Let A be a locally finitely presented category.

(1) If A is abelian, then filtered colimits in A are exact, and therefore A is a
Grothendieck category. In particular, A has injective envelopes.

(2) If fpA is abelian, then A is abelian and the inclusion fpA→ A is exact.
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Proof Set C = fpA. We can identify A with Lex(Cop,Ab) and can compute
filtered colimits in Add(Cop,Ab), where they are exact, keeping in mind that
filtered colimits of left exact functors are left exact.

Now suppose that C is abelian. Given a morphism 𝜙 = colim 𝜙𝑖 , written as
a filtered colimit of morphisms in fpA, we have Ker 𝜙 = colim Ker 𝜙𝑖 , since
kernels are computed in Add(Cop,Ab) and filtered colimits in Add(Cop,Ab)
are exact. Thus A has kernels. The Yoneda embedding C → A is left exact
since the embedding C → Add(Cop,Ab) is left exact. On the other hand, C is
closed under cokernels. Thus the inclusion C→ A is exact. �

Remark 11.1.20. Let A be locally finitely presented and fpA abelian. Then
every exact sequence 𝜂 : 0 → 𝑋

𝛼
−→ 𝑌

𝛽
−→ 𝑍 → 0 in A can be written as a

filtered colimit of exact sequences in fpA. To see this, write 𝛼 = colim𝛼𝑖 with
𝛼𝑖 : 𝑋𝑖 → 𝑌𝑖 in fpA for all 𝑖. Let 𝛽𝑖 : 𝑌𝑖 → 𝑍𝑖 denote the cokernel of each 𝛼𝑖 ,
and let 𝛼′𝑖 : 𝑋 ′𝑖 → 𝑌𝑖 denote the kernel of 𝛽𝑖 . Then 𝜂 is the filtered colimit of

the exact sequences 0 → 𝑋 ′𝑖
𝛼′𝑖
−−→ 𝑌𝑖

𝛽𝑖
−→ 𝑍𝑖 → 0.

Lemma 11.1.21. The inclusion Lex(Cop,Ab) ↩→ Add(Cop,Ab) admits a left
adjoint.

Proof The adjoint maps a finitely presented functor Coker HomC(−, 𝜙) (given
by a morphism 𝜙 in C) to HomC (−,Coker 𝜙); see Example 1.1.4. This extends
to

colim
𝑖∈I

Coker HomC (−, 𝜙𝑖) ↦−→ colim
𝑖∈I

HomC(−,Coker 𝜙𝑖).

Alternatively, take 𝐹 ∈ Add(Cop,Ab) to

colim
(𝐶, 𝑓 ) ∈C/𝐹

HomC(−, 𝐶)

in Lex(Cop,Ab); see Lemma 11.1.8. �

Corollary 11.1.22. In a locally finitely presented category every object can be
written as a directed colimit of finitely presented objects.

Proof Any locally finitely presented category is equivalent to one of the form
Lex(Cop,Ab). Write 𝐹 ∈ Lex(Cop,Ab) as a directed colimit 𝐹 = colim 𝐹𝑖 of
objects 𝐹𝑖 ∈ Fp(Cop,Ab); see Proposition 11.1.10. Let 𝑄 : Add(Cop,Ab) →
Lex(Cop,Ab) denote the left adjoint of the inclusion; see Lemma 11.1.21. Then
𝐹 = 𝑄(𝐹) = colim𝑄(𝐹𝑖) is a directed colimit of finitely presented objects. �

Example 11.1.23. Let A be a locally finitely presented category and C ⊆ fpA
a full additive subcategory. Suppose the category C admits cokernels (not
necessarily the same as inA). Then *C is locally finitely presented withC ∼−→ fp *C.
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Proof Clearly, *C is a category with filtered colimits and C ⊆ fp *C. On the
other hand, when 𝑋 ∈ fp *C is written as a filtered colimit 𝑋 = colim 𝑋𝑖 of
objects in C, then id𝑋 factors through some 𝑋𝑖 , so 𝑋 is a direct summand of
an object in C. Thus C ∼−→ fp *C, and 𝑋 ↦→ Hom(−, 𝑋) |C yields an equivalence
*C ∼−→ Lex(Cop,Ab). �

Recall that a full subcategory C ⊆ D of some category D is covariantly
finite if for every object 𝑋 ∈ D there is a morphism 𝑋 → 𝐶𝑋 (called a left
C-approximation) such that 𝐶𝑋 ∈ C and every morphism 𝑋 → 𝐶 with 𝐶 ∈ C

factors through 𝑋 → 𝐶𝑋. For example, C is covariantly finite if the inclusion
C → D admits a left adjoint. Then a left approximation 𝑋 → 𝐶𝑋 is given by
the unit of the adjunction..

Example 11.1.24. Let A be a locally finitely presented category and C ⊆ fpA
a full additive subcategory. Then *C is closed under products in A if and only if
C is covariantly finite in fpA.

Proof We apply the criterion of Lemma 11.1.6. Suppose first that C is co-
variantly finite in fpA. If 𝑋 :=

∏
𝑖∈𝐼 𝑋𝑖 is a product of objects in *C, then

every morphism 𝐹 → 𝑋 with 𝐹 ∈ fpA factors through a product
∏

𝑖∈𝐼 𝐶𝑖

of objects in C, and this factors through 𝐹 → 𝐶𝐹 . Thus 𝑋 ∈ *C. Conversely,
suppose that *C is closed under products. Fix 𝑋 ∈ fpA and consider the prod-
uct 𝑋C :=

∏
𝑋→𝐶 𝐶 where 𝑋 → 𝐶 runs through all morphisms with 𝐶 ∈ C.

This product belongs to *C, and therefore the canonical morphism 𝑋 → 𝑋C
factors through an object in C via a morphism 𝑋 → 𝐶𝑋. Clearly, this is a left
C-approximation. �

Example 11.1.25. Let A be a locally finitely presented category and suppose
that A is abelian. If (T,F) is a torsion pair for fpA, then ( *T, *F) is a torsion pair
for A.

Proof Each object 𝑋 ∈ fpA fits into an exact sequence 0 → 𝑋 ′ → 𝑋 →

𝑋 ′′ → 0 with 𝑋 ′ ∈ T and 𝑋 ′′ ∈ F. If 𝑋 = colim 𝑋𝑖 is written as a filtered colimit
of finitely presented objects, then 0 → colim 𝑋 ′𝑖 → 𝑋 → colim 𝑋 ′′𝑖 → 0 is
the desired exact sequence in A, using that filtered colimits in A are exact. The
formula

Hom(colim
𝑖

𝑋𝑖 , colim
𝑗
𝑌 𝑗 ) � lim

𝑖
colim

𝑗
Hom(𝑋𝑖 , 𝑌 𝑗 )

then shows that Hom(𝑋,𝑌 ) = 0 for 𝑋 ∈ *T and 𝑌 ∈ *F. �
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Categories of Exact Functors
Let C be an essentially small additive category and consider Add(Cop,Ab).
Suppose that C is abelian. Then we denote by Ex(Cop,Ab) the full subcategory
of additive functors 𝐹 : Cop → Ab that are exact. This category has filtered
colimits and products, because exact functors are closed under these operations.

The following lemma identifies the exact functors in the category of left exact
functors Cop → Ab.

Lemma 11.1.26. Let C be an essentially small abelian category and consider
A = Lex(Cop,Ab). Then 𝑋 ∈ A is exact if and only if Ext1

A
(𝐶, 𝑋) = 0 for all

𝐶 ∈ fpA.

Proof Using the identification C ∼−→ fpA, the functor 𝑋 is exact if and only
if for every exact sequence 𝜂 : 0 → 𝐴 → 𝐵 → 𝐶 → 0 in fpA the induced
sequence

HomA(𝜂, 𝑋) : 0 → HomA(𝐶, 𝑋) → HomA(𝐵, 𝑋) → HomA(𝐴, 𝑋) → 0

is exact.
Now suppose Ext1

A
(𝐶, 𝑋) = 0. This implies the exactness of HomA(𝜂, 𝑋)

for any exact 𝜂 : 0 → 𝐴→ 𝐵→ 𝐶 → 0 in fpA. Conversely, let 𝜇 : 0 → 𝑋 →

𝑌 → 𝐶 → 0 be exact in A and write𝑌 = colim𝑌𝑖 as a filtered colimit of finitely
presented objects. This yields an exact sequence 𝜇 𝑗 : 0 → 𝑋 𝑗 → 𝑌 𝑗 → 𝐶 → 0
in fpA for some 𝑗 . Now exactness of HomA(𝜇 𝑗 , 𝑋) implies that 𝜇 splits. �

The next proposition provides an explicit construction that turns every left
exact functor into an exact functor.

Proposition 11.1.27. Let C be an essentially small abelian category. Then
Ex(Cop,Ab) is a covariantly finite subcategory of Lex(Cop,Ab).

Proof Let 𝐹 : Cop → Ab be a left exact functor and choose a representative
set of monomorphisms 𝛼 : 𝐴→ 𝐵 in C. We construct inductively a sequence

𝐹 = 𝐹0 −→ 𝐹1 −→ 𝐹2 −→ · · ·

such that colim 𝐹𝑛 is exact and 𝐹 → colim 𝐹𝑛 is the left approximation of 𝐹.
Set

Γ𝑛 =
⊔

𝛼 : 𝐴→𝐵

𝐹𝑛𝐴 \ Im 𝐹𝑛𝛼.

Then Yoneda’s lemma yields a morphism
∐

𝑖∈Γ𝑛
Hom(−, 𝐴𝑖) → 𝐹𝑛 and we
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can form the pushout∐
𝑖∈Γ𝑛

Hom(−, 𝐴𝑖)
∐

𝑖∈Γ𝑛
Hom(−, 𝐵𝑖)

𝐹𝑛 𝐹𝑛+1

∐
𝑖 (−,𝛼𝑖)

in Lex(Cop,Ab). It is clear from the construction that 𝐹 ′ = colim 𝐹𝑛 is exact,
because for any monomorphism 𝛼 : 𝐴→ 𝐵 each element in 𝐹 ′𝐴 = colim 𝐹𝑛𝐴

lies in the image of 𝐹𝑛𝐴→ 𝐹 ′𝐴 for some 𝑛, and therefore also in the image of
𝐹𝑛+1𝐵 → 𝐹 ′𝐵 → 𝐹 ′𝐴. Now let 𝐹 → 𝐺 be a morphism such that 𝐺 is exact.
Then in each step 𝐹𝑛 → 𝐺 factors through 𝐹𝑛 → 𝐹𝑛+1. Thus 𝐹 → 𝐺 factors
through 𝐹 → 𝐹 ′. �

Corollary 11.1.28. Let C be an essentially small abelian category. Then
Ex(Cop,Ab) is a covariantly finite subcategory of Add(Cop,Ab).

Proof Observe that Lex(Cop,Ab) ⊆ Add(Cop,Ab) is covariantly finite, since
the inclusion admits a left adjoint by Lemma 11.1.21. Then for each 𝐹 in
Add(Cop,Ab) the unit 𝐹 → 𝐹Lex yields a left approximation. This approxima-
tion one composes with a left approximation 𝐹Lex → 𝐹Ex from the preceding
proposition. �

Change of Categories
Let 𝑓 : C → D be an additive functor between essentially small additive cate-
gories. Then

𝑓 ∗ : Add(Dop,Ab) −→ Add(Cop,Ab), 𝑋 ↦→ 𝑋 ◦ 𝑓

admits a left adjoint 𝑓! that is defined by

𝑓! (𝑋) = colim
(𝐶,𝑥) ∈C/𝑋

HomD (−, 𝑓 (𝐶))

for 𝑋 ∈ Add(Cop,Ab). In particular, for 𝐶 ∈ C one has

𝑓! (HomC (−, 𝐶)) = HomD (−, 𝑓 (𝐶)).

When C and D admit cokernels and 𝑓 : C → D is right exact, this yields an
adjoint pair

Lex(Cop,Ab) Lex(Dop,Ab).
𝑓!

𝑓 ∗

We collect some basic properties of 𝑓 ∗ and 𝑓!.

https://doi.org/10.1017/9781108979108.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.019


11.1 Locally Finitely Presented Categories 355

Lemma 11.1.29. Let 𝑓 : C→ D be an additive functor that inverts universally
a class of morphisms in C. Then 𝑓 ∗ is fully faithful.

Proof The assertion follows from the definition of the quotient functor C →
C[𝑆−1] with respect to a class of morphisms 𝑆 in C; see also Lemma 1.1.1. �

We can be more specific when 𝑓 : C→ D is exact.

Lemma 11.1.30. Let 𝑓 : C → D be an exact functor between abelian cate-
gories. Then 𝑓! : Lex(Cop,Ab) → Lex(Dop,Ab) is exact. Moreover, 𝑓 ∗ is fully
faithful if and only if 𝑓 induces an equivalence C/(Ker 𝑓 ) ∼−→ D.

Proof We embed C into A = Lex(Cop,Ab) via the Yoneda functor. Any exact
sequence in A can be written as a filtered colimit of exact sequences in C; see
Remark 11.1.20. Now use that 𝑓! preserves filtered colimits and that filtered
colimits in Lex(Dop,Ab) are exact.

We have already seen in Lemma 11.1.29 that 𝑓 ∗ is fully faithful when 𝑓

induces an equivalence C/(Ker 𝑓 ) ∼−→ D. For the converse we apply Propo-
sition 2.2.11. Thus 𝑓! induces an equivalence A/(Ker 𝑓!) ∼−→ Lex(Dop,Ab).
One checks that the subcategory C ⊆ A is right cofinal with respect to the
morphisms that are inverted by 𝑓!, using that each object in A is a filtered
colimit of objects in C. Then it follows from Lemma 1.2.5 that 𝑓! restricts to an
equivalence C/(Ker 𝑓 ) ∼−→ D. �

Proposition 11.1.31. Let C be an essentially small abelian category and D =
C/B the quotient with respect to a Serre subcategory B ⊆ C. Then the diagram

B C D
𝑖 𝑝

induces a localisation sequence of abelian categories

Lex(Bop,Ab) Lex(Cop,Ab) Lex(Dop,Ab).
𝑖!

𝑖∗

𝑝!

𝑝∗

In particular, the functors 𝑖! and 𝑝! are exact and induce equivalences

Lex(Bop,Ab) ∼−−→ Ker 𝑝!

and

(Lex(Cop,Ab))/(Ker 𝑝!)
∼−−→ Lex(Dop,Ab).

Proof We use the fact that every functor in Lex(Cop,Ab) is a filtered colimit of
representable functors, by Lemma 11.1.8 and Lemma 11.1.14. This is combined
with the fact that all functors 𝑖!, 𝑖∗, 𝑝!, 𝑝∗ preserve colimits.

The functors 𝑖! and 𝑝! are exact by Lemma 11.1.30. The functor 𝑝∗ is fully
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faithful by Lemma 11.1.29. On the other hand, id � 𝑖∗𝑖! since 𝑖∗𝑖! equals the
identity on all representable functors. Thus 𝑖! is fully faithful (Proposition 1.1.3).

It remains to show that Im 𝑖! = Ker 𝑝!. Then the rest follows from the
localisation theory of abelian categories (Proposition 2.2.11).

We have Im 𝑖! ⊆ Ker 𝑝! since 𝑝𝑖 = 0. For the other inclusion fix an object 𝑋
in Lex(Cop,Ab) and consider the exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑝∗𝑝! (𝑋).
We claim that 𝑋 ′ ∈ Im 𝑖!. Then 𝑝!𝑋 = 0 implies 𝑋 ∈ Im 𝑖!. It suffices to show
this when 𝑋 = ℎ𝐶 is representable, given by𝐶 ∈ C. For this we show that every
morphism ℎ𝐶0 → 𝑋 ′ with 𝐶0 ∈ C factors through ℎ𝐵 for some 𝐵 ∈ B; then
Lemma 11.1.6 implies that 𝑋 ′ is a filtered colimit of representable functors in
the image of 𝑖!. Now observe that a morphism ℎ𝐶0 → ℎ𝐶 given by 𝜙 : 𝐶0 → 𝐶

in C factors through 𝑋 ′ if and only if 𝑝𝜙 = 0, by the adjointness of 𝑝! and 𝑝∗.
This happens if and only if Im 𝜙 ∈ B. Thus ℎ𝐶0 → 𝑋 ′ factors through ℎ𝐵 for
some 𝐵 ∈ B. �

Remark 11.1.32. The injective objects in Lex(Dop,Ab) identify via 𝑝∗ with
the injective objects in Lex(Cop,Ab) that vanish on B when viewed as functors
on C (Corollary 2.2.15).

Corollary 11.1.33. LetA be a locally finitely presented Grothendieck category
such that fpA is abelian. If S ⊆ fpA is a Serre subcategory, then *S is a
localising subcategory of A satisfying *S ∩ fpA = C. Moreover, the canonical
functor A� A/*S restricts to an equivalence S⊥ ∼−→ A/*S.

Proof This follows from Proposition 11.1.31, using the equivalence A ∼−→

Lex((fpA)op,Ab) which identifies the subcategory *S with Lex(Sop,Ab). �

11.2 Grothendieck Categories

In this section we study a hierarchy of finiteness conditions for Grothendieck
categories. This involves the notion of a generating set of objects.

Given an additive category A, a set of objects C is generating if for any
non-zero morphism 𝜙 : 𝑋 → 𝑌 in A there is 𝛼 : 𝐶 → 𝑋 with 𝐶 ∈ C such that
𝜙𝛼 ≠ 0. If A has coproducts, then C is generating if and only if for every object
𝑋 ∈ A there is an epimorphism

∐
𝑖∈𝐼 𝐶𝑖 → 𝑋 such that 𝐶𝑖 ∈ C for all 𝑖.

Now fix a Grothendieck category A. We have the following hierarchy of
finiteness conditions for an object 𝑋 ∈ A:

𝑋 of finite length =⇒ 𝑋 noetherian
=⇒ 𝑋 finitely generated ⇐= 𝑋 finitely presented.
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The Grothendieck category A is called

– locally finitely generated, if A has a generating set of finitely generated
objects,

– locally finitely presented, if A has a generating set of finitely presented
objects,2

– locally noetherian, if A has a generating set of noetherian objects,
– locally finite, if A has a generating set of finite length objects.

Suppose that A has a set C of generating objects such that for every pair of
objects 𝐶,𝐶 ′ ∈ C and every subobject 𝐷 ⊆ 𝐶 the direct sum 𝐶 ⊕ 𝐶 ′ and the
quotient 𝐶/𝐷 are isomorphic to objects in C. Then every object 𝑋 ∈ A can be
written as the directed union 𝑋 =

∑
𝑖 𝑋𝑖 of subobjects 𝑋𝑖 ⊆ 𝑋 such that 𝑋𝑖 ∈ C

for all 𝑖.

Finitely Generated and Finitely Presented Objects
Let A be an abelian category, and suppose that filtered colimits in A are exact.
An object 𝑋 is finitely generated whenever 𝑋 =

∑
𝑖∈𝐼 𝑋𝑖 for a directed family

of subobjects 𝑋𝑖 ⊆ 𝑋 implies 𝑋 = 𝑋𝑖0 for some 𝑖0 ∈ 𝐼. We record the following
elementary fact.

Lemma 11.2.1. For an exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 we have

𝑋 ′, 𝑋 ′′ finitely generated =⇒ 𝑋 finiteley generated
=⇒ 𝑋 ′′ finitely generated. �

We wish to compare finitely generated and finitely presented objects. Observe
that ‘finitely generated’ is a local property, depending only on the lattice of
subobjects. The property of an object to be finitely presented is different; it
depends on the ambient category.

We have the following characterisation. In particular, we see that every
finitely presented object is finitely generated.

Lemma 11.2.2. For an object 𝑋 the following are equivalent.

(1) 𝑋 is finitely generated.
(2) The canonical map colim𝑖 Hom(𝑋,𝑌𝑖) → Hom(𝑋, colim𝑖 𝑌𝑖) is injective

for every filtered colimit colim𝑖 𝑌𝑖 .

2 This terminology is consistent: a Grothendieck category A has a generating set of finitely
presented objects if and only if fpA is essentially small and every object in A is a filtered
colimit of finitely presented objects.

https://doi.org/10.1017/9781108979108.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781108979108.019


358 Locally Finitely Presented Categories

(3) The canonical map
∑

𝑖 Hom(𝑋,𝑌𝑖) → Hom(𝑋,
∑

𝑖 𝑌𝑖) is bijective for every
directed family of subobjects 𝑌𝑖 ⊆ 𝑌 .

Proof (1)⇒ (2): A morphism 𝜙 ∈ colim𝑖 Hom(𝑋,𝑌𝑖) is given by a morphism
𝑋 → 𝑌 𝑗 for some index 𝑗 . For all 𝑗 → 𝑖 consider the composite with 𝑌 𝑗 → 𝑌𝑖
which yields an exact sequence 0 → 𝑋𝑖 → 𝑋 → 𝑌𝑖 . The colimit 0 →

colim𝑖 𝑋𝑖 → 𝑋 → colim𝑖 𝑌𝑖 is exact, and if 𝑋 → colim𝑖 𝑌𝑖 is zero, then
𝑋 =

∑
𝑖 𝑋𝑖 . Thus 𝑋 = 𝑋𝑖0 for some index 𝑖0, and therefore 𝜙 = 0.

(2) ⇒ (3): Consider the following commutative diagram with exact rows.

0 colim𝑖 Hom(𝑋,𝑌𝑖) Hom(𝑋,𝑌 ) colim𝑖 Hom(𝑋,𝑌/𝑌𝑖)

0 Hom(𝑋, colim𝑖 𝑌𝑖) Hom(𝑋,𝑌 ) Hom(𝑋, colim𝑖 𝑌/𝑌𝑖)

𝛼 id 𝛾

Then 𝛼 and 𝛾 are injective, and therefore 𝛼 is bijective.
(3) ⇒ (1): Let 𝑋 =

∑
𝑖 𝑋𝑖 . Then the identity 𝑋 →

∑
𝑖 𝑋𝑖 factors through

𝑋𝑖0 →
∑

𝑖 𝑋𝑖 for some index 𝑖0. Thus 𝑋 = 𝑋𝑖0 . �

Let A be a Grothendieck category with a generating set of finitely generated
objects. This means that each object is a directed union of its finitely generated
subobjects. Also, if 𝜙 : 𝑋 → 𝑌 is an epimorphism such that 𝑌 is finitely
generated, then there exists a finitely generated subobject 𝑋 ′ ⊆ 𝑋 such that
𝜙|𝑋′ : 𝑋 ′ → 𝑌 is an epimorphism.

Lemma 11.2.3. Let A be a Grothendieck category with a generating set of
finitely generated objects. For an object 𝑋 ∈ A the following are equivalent.

(1) 𝑋 is finitely presented.
(2) 𝑋 is finitely generated and every epimorphism 𝑋 ′ → 𝑋 from a finitely

generated object 𝑋 ′ has a finitely generated kernel.

Proof (1) ⇒ (2): We have already seen that 𝑋 is finitely generated. Now fix
an epimorphism 𝜙 : 𝑋 ′ → 𝑋 and write Ker 𝜙 =

∑
𝑖 𝑋𝑖 as a directed union

of finitely generated subobjects 𝑋𝑖 ⊆ 𝑋 ′. Then colim𝑖 𝑋
′/𝑋𝑖 � 𝑋 , so the

identity id𝑋 factors through 𝑋 ′/𝑋𝑖0 → 𝑋 for some index 𝑖0. Thus the sequence
0 → Ker 𝜙/𝑋𝑖0 → 𝑋 ′/𝑋𝑖0 → 𝑋 → 0 is split exact. It follows that Ker 𝜙/𝑋𝑖0 is
finitely generated, if 𝑋 ′ is finitely generated. Thus Ker 𝜙 is finitely generated.

(2)⇒ (1): In view of Lemma 11.2.2, it suffices to show that the canonical map
colim𝑖 Hom(𝑋,𝑌𝑖) → Hom(𝑋, colim𝑖 𝑌𝑖) is surjective for every filtered colimit
colim𝑖 𝑌𝑖 . Given a morphism 𝜙 : 𝑋 → colim𝑖 𝑌𝑖 , we consider the following
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11.2 Grothendieck Categories 359

pullback.

𝑃 𝑋

∐
𝑖 𝑌𝑖 colim𝑖 𝑌𝑖

𝜙

can

We find a finitely generated subobject 𝑃′ ⊆ 𝑃 and an index 𝑖0 such that the
pullback restricts to a commutative square

𝑃′ 𝑋

𝑌𝑖0 colim𝑖 𝑌𝑖

𝜋

𝜙

and 𝜋 is an epimorphism. Since Ker 𝜋 is finitely generated, there is an index 𝑖1
such that the composite Ker 𝜋 → 𝑃′ → 𝑌𝑖0 → 𝑌𝑖1 is zero, by Lemma 11.2.2.
It follows that 𝜙 factors through 𝑌𝑖1 → colim𝑖 𝑌𝑖 , and this yields an element in
colim𝑖 Hom(𝑋,𝑌𝑖) which is mapped to 𝜙. �

Locally Noetherian Categories
Let A be an abelian category. An object in A is noetherian if it satisfies the
ascending chain condition on subobjects. We record the following elementary
facts.

Lemma 11.2.4. For an exact sequence 0 → 𝑋 ′ → 𝑋 → 𝑋 ′′ → 0 we have

𝑋 ′, 𝑋 ′′ noetherian ⇐⇒ 𝑋 noetherian.

If filtered colimits are exact, then an object is noetherian if and only if every
subobject is finitely generated. �

A Grothendieck category is called locally noetherian if there exists a gener-
ating set of noetherian objects. Locally noetherian categories form an important
class of locally finitely presented categories.

Proposition 11.2.5. For a Grothendieck category A the following are equiva-
lent.

(1) The category A is locally noetherian.
(2) The category A is locally finitely presented and for each 𝑋 ∈ A we have

𝑋 finitely presented ⇐⇒ 𝑋 finitely generated ⇐⇒ 𝑋 noetherian.

(3) The category A is locally finitely presented and fpA is an abelian category
consisting of noetherian objects.
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360 Locally Finitely Presented Categories

Proof (1)⇒ (2): Suppose thatA is locally noetherian. Then finitely generated
objects and noetherian objects coincide. In particular, finitely generated objects
are closed under subobjects. The characterisation of finitely presented objects in
Lemma 11.2.3 then implies that finitely generated objects and finitely presented
objects coincide. In particular, A is a locally finitely presented category since
every object is a directed union of its finitely generated subobjects, so a filtered
colimit of finitely presented objects.

(2) ⇒ (3): Clear.
(3)⇒ (1): IfA is locally finitely presented, then the finitely presented objects

generate A. If an object 𝑋 ∈ fpA satisfies the ascending chain condition on
subobjects in fpA, then each subobject 𝑈 ⊆ 𝑋 in A is finitely presented since
𝑈 =

⋃
𝑋′ ⊆𝑈 𝑋

′ where 𝑋 ′ runs through all 𝑋 ′ ⊆ 𝑋 in fpA. Thus 𝑋 is noetherian
in A. �

Corollary 11.2.6. The assignments A ↦→ fpA and C ↦→ Lex(Cop,Ab) in-
duce, up to equivalence, a bijective correspondence between locally noetherian
Grothendieck categories and essentially small abelian categories such that
every object is noetherian.

Proof This correspondence is obtained by restricting the correspondence
from Theorem 11.1.15 and Corollary 11.1.19 between locally finitely pre-
sented Grothendieck categories and essentially small additive categories. Then
apply Proposition 11.2.5 to identify the locally noetherian categories. �

Locally Finite Categories
An object 𝑋 of an abelian category has finite length if it has a finite composition
series

0 = 𝑋0 ⊆ 𝑋1 ⊆ · · · ⊆ 𝑋𝑛 = 𝑋,

that is, each subquotient 𝑋𝑖/𝑋𝑖−1 is simple. Note that 𝑋 has finite length if and
only if 𝑋 satisfies both chain conditions on subobjects.

A Grothendieck category A is called locally finite if there exists a generating
set of finite length objects. When A is a locally finite category, then every
noetherian object has finite length, since any object is the directed union of
finite length subobjects. Thus for every object 𝑋 ∈ A we have

𝑋 finitely presented ⇐⇒ 𝑋 noetherian ⇐⇒ 𝑋 of finite length.

Let us discuss some further finiteness properties of locally finite categories.
To this end fix an object 𝑋 of an abelian category. The composition length
of 𝑋 is denoted by ℓ(𝑋). The height ht(𝑋) is the smallest 𝑛 ≥ 0 such that
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11.2 Grothendieck Categories 361

soc𝑛 (𝑋) = 𝑋 . When ℓ(𝑋) < ∞, then ht(𝑋) ≤ ℓ(𝑋), and ht(𝑋) equals the
smallest 𝑛 ≥ 0 such that rad𝑛 (𝑋) = 0.

Lemma 11.2.7. Let 𝑋, 𝐸 be objects of an abelian category and suppose that
𝐸 is injective. The assignment

𝑋 ⊇ 𝑈 ↦−→ 𝐻 (𝑈) := Hom(𝑋/𝑈, 𝐸) ⊆ Hom(𝑋, 𝐸)

gives a lattice anti-homomorphism into the lattice of End(𝐸)-submodules of
Hom(𝑋, 𝐸). Every finitely generated End(𝐸)-submodule is in its image, and
the homomorphism is injective when 𝐸 is a cogenerator.

Proof Given subobjects𝑈,𝑉 of 𝑋 , the Noether isomorphisms imply that

𝐻 (𝑈 ∩𝑉) = 𝐻 (𝑈) + 𝐻 (𝑉) and 𝐻 (𝑈 +𝑉) = 𝐻 (𝑈) ∩ 𝐻 (𝑉).

Clearly, 𝑈 ≠ 𝑉 implies 𝐻 (𝑈) ≠ 𝐻 (𝑉) when 𝐸 is a cogenerator. Now let
𝜙 : 𝑋 → 𝐸 be a morphism and set𝑈 = Ker 𝜙. Then a morphism 𝑋 → 𝐸 factors
through 𝑋 � 𝑋/𝑈 if and only if it factors through 𝜙. Thus End(𝐸)𝜙 = 𝐻 (𝑈). It
follows that every cyclic End(𝐸)-submodule is in the image of 𝐻, and therefore
so is every finitely generated submodule by the first part of the proof. �

Proposition 11.2.8. Let A be a locally finite Grothendieck category and 𝐽
the Jacobson radical of the endomorphism ring of an injective object 𝐸 . Then⋂

𝑛≥0 𝐽
𝑛 = 0. Moreover, for 𝑛 ≥ 0 we have

(1) ht(𝐶) ≤ 𝑛 for all 𝐶 ∈ fpA implies 𝐽𝑛 = 0, and
(2) 𝐽𝑛 = 0 implies ht(𝐶) ≤ 𝑛 for all 𝐶 ∈ fpA when 𝐸 cogenerates A.

Proof Let 𝐶 ∈ fpA. A radical morphism 𝐸 → 𝐸 annihilates all simple
objects in A, and therefore

𝐽𝑛 Hom(𝐶, 𝐸) ⊆ Hom(𝐶/soc𝑛 𝐶, 𝐸)

by induction on 𝑛. This implies
⋂

𝑛≥0 𝐽
𝑛 = 0 and part (1).

To show (2), assume that 𝐸 is a cogenerator. An induction on ℓ(𝐶) gives

ℓEnd(𝐸) (Hom(𝐶, 𝐸)) = ℓ(𝐶).

Thus every submodule of Hom(𝐶, 𝐸) is finitely generated. Then Lemma 11.2.7
implies

rad𝑛 Hom(𝐶, 𝐸) = Hom(𝐶/soc𝑛 𝐶, 𝐸)

for all 𝑛 ≥ 0. Observe that 𝐽𝑀 = rad𝑀 for every End(𝐸)-module 𝑀 , since
End(𝐸)/𝐽 is a product of division rings by Theorem 11.2.12 below. Thus 𝐽𝑛 = 0
implies soc𝑛 𝐶 = 𝐶. �
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Remark 11.2.9. For 𝐶 ∈ fpA we have

ℓEnd(𝐸) (Hom(𝐶, 𝐸)) ≤ ℓ(𝐶) and htEnd(𝐸) (Hom(𝐶, 𝐸)) ≤ ht(𝐶)

with equalities when 𝐸 is a cogenerator.

Injective Objects
In a locally noetherian Grothendieck category we have a very satisfactory
decomposition theory for injective objects.

We need some preparations and begin with a version of Baer’s criterion.

Lemma 11.2.10 (Baer). Let A be a Grothendieck category and let C be a class
of objects that is generating and closed under quotients. If 𝑋 ∈ A satisfies
Ext1 (𝐶, 𝑋) = 0 for all 𝐶 ∈ C, then 𝑋 is injective.

Proof Choose an injective envelope 𝛼 : 𝑋 → 𝐸 (𝑋). If Coker𝛼 ≠ 0, then
there exists a subobject 0 ≠ 𝐶 ⊆ Coker𝛼 with 𝐶 ∈ C. The pullback of
0 → 𝑋 → 𝐸 (𝑋) → Coker𝛼 → 0 along the inclusion 𝐶 → Coker𝛼 is a split
exact sequence. Thus 𝛼 factors through a monomorphism 𝑋 ⊕ 𝐶 → 𝐸 (𝑋),
contradicting the property of an injective envelope. It follows that 𝛼 is an
isomorphism and 𝑋 is injective. �

We continue with a technical lemma which is crucial for the decomposition
of injective objects into indecomposables; it is known as Chase’s lemma.

For a sequence of morphisms 𝛾 = (𝐶𝑛 → 𝐶𝑛+1)𝑛∈N we denote by 𝛾𝑛 : 𝐶0 →

𝐶𝑛 the composite of the first 𝑛 morphisms. Recall that an object 𝑋 is compact
if for any morphism 𝜙 : 𝑋 →

∐
𝑖∈𝐼 𝑌𝑖 there is a finite set 𝐽 ⊆ 𝐼 such that 𝜙

factors through
∐

𝑖∈𝐽 𝑌𝑖 .

Lemma 11.2.11 (Chase). Let (𝑋𝑛)𝑛∈N and (𝑌𝑖)𝑖∈𝐼 be families of objects in an
additive category and let

𝜙 :
∏
𝑛∈N

𝑋𝑛 −→
∐
𝑖∈𝐼

𝑌𝑖

be a morphism. If 𝛾 = (𝐶𝑛 → 𝐶𝑛+1)𝑛∈N is a sequence of morphisms and
𝐶 = 𝐶0 is compact, then there exists 𝑚 ∈ N such that for almost all 𝑗 ∈ 𝐼 each
composite

𝐶
𝛾𝑚
−−−→ 𝐶𝑚

𝜃
−−→

∏
𝑛∈N

𝑋𝑛
𝜙
−−→

∐
𝑖∈𝐼

𝑌𝑖 � 𝑌 𝑗

with 𝜃𝑛 = 0 for 𝑛 < 𝑚 factors through 𝛾𝑛 : 𝐶 → 𝐶𝑛 for all 𝑛 ∈ N.
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It is convenient to introduce further notation. For a morphism 𝛾 : 𝐶 → 𝐷

and an object 𝑋 we denote by 𝑋𝛾 the image of the map

Hom(𝐷, 𝑋)
−◦𝛾
−−−−→ Hom(𝐶, 𝑋).

Then a sequence of morphisms 𝛾 = (𝐶𝑛 → 𝐶𝑛+1)𝑛∈N yields a descending chain

· · · ⊆ 𝑋𝛾2 ⊆ 𝑋𝛾1 ⊆ 𝑋𝛾0 = Hom(𝐶0, 𝑋).

We can now rephrase the statement of the lemma as follows. Set 𝑋 =
∏

𝑛∈N 𝑋𝑛,
𝑌 =

∐
𝑖∈𝐼 𝑌𝑖 , and write

𝜙𝑖 : Hom(𝐶, 𝑋)
𝜙◦−
−−−−→ Hom(𝐶,𝑌 ) −→ Hom(𝐶,𝑌𝑖) (𝑖 ∈ 𝐼).

There exists 𝑚 ∈ N such that for almost all 𝑖 ∈ 𝐼 we have

𝜙𝑖

(( ∏
𝑛≥𝑚

𝑋𝑛

)
𝛾𝑚

)
⊆

⋂
𝑛≥0

(𝑌𝑖)𝛾𝑛 .

Proof Assume the conclusion to be false. We construct inductively sequences
of elements 𝑛 𝑗 ∈ N, 𝑖 𝑗 ∈ 𝐼, and 𝜃 𝑗 ∈ Hom(𝐶, 𝑋) with 𝑗 ∈ N and satisfying

(1) 𝑛 𝑗+1 > 𝑛 𝑗 ,
(2) 𝜃 𝑗 ∈ (

∏
𝑛≥𝑛 𝑗

𝑋𝑛)𝛾𝑛𝑗
,

(3) 𝜙𝑖 𝑗 (𝜃 𝑗 ) ∉ (𝑌𝑖 𝑗 )𝛾𝑛𝑗+1
,

(4) 𝜙𝑖 𝑗 (𝜃𝑘) = 0 for 𝑘 < 𝑗 .

We proceed as follows. Set 𝑛0 = 0. Then there exists 𝑖0 ∈ 𝐼 such that

𝜙𝑖0 (𝑋𝛾0) �
⋂
𝑛≥0

(𝑌𝑖0 )𝛾𝑛 ,

and hence we may select 𝜃0 ∈ 𝑋𝛾0 and 𝑛1 > 0 such that 𝜙𝑖0 (𝜃0) ∉ (𝑌𝑖0 )𝛾𝑛1
.

Thus conditions (1)–(4) are satisfied for 𝑗 = 0.
Proceeding by induction on 𝑗 , assume that elements 𝑛𝑘+1 ∈ N, 𝑖𝑘 ∈ 𝐼 and

𝜃𝑘 ∈ Hom(𝐶, 𝑋) have been constructed for 𝑘 < 𝑗 such that conditions (1)–(4)
are satisfied. Using that 𝐶 is compact, there exists a finite subset 𝐼 ′ ⊆ 𝐼 such
that for 𝑖 ∈ 𝐼 \ 𝐼 ′ we have 𝜙𝑖 (𝜃𝑘) = 0 for 𝑘 < 𝑗 . We may then select 𝑖 𝑗 ∈ 𝐼 \ 𝐼 ′
such that

𝜙𝑖 𝑗

(( ∏
𝑛≥𝑛 𝑗

𝑋𝑛

)
𝛾𝑛𝑗

)
�

⋂
𝑛≥0

(𝑌𝑖 𝑗 )𝛾𝑛 ,

because otherwise the lemma would be true. Thus there exists an element
𝜃 𝑗 ∈ (

∏
𝑛≥𝑛 𝑗

𝑋𝑛)𝛾𝑛𝑗
and 𝑛 𝑗+1 > 𝑛 𝑗 such that 𝜙𝑖 𝑗 (𝜃 𝑗 ) ∉ (𝑌𝑖 𝑗 )𝛾𝑛𝑗+1

. It is then
clear that the elements 𝑛𝑘+1 ∈ N, 𝑖𝑘 ∈ 𝐼, and 𝜃𝑘 ∈ Hom(𝐶, 𝑋) for 𝑘 ≤ 𝑗 satisfy
the conditions (1)–(4).

Now let 𝜃 =
∑

𝑗∈N 𝜃 𝑗 ∈ Hom(𝐶, 𝑋), which is well defined since the sum
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for each component 𝐶 → 𝑋𝑛 is finite. For each 𝑗 ∈ N we have 𝜙𝑖 𝑗 (𝜃) =
𝜙𝑖 𝑗 (𝜃 𝑗 ) + 𝜙𝑖 𝑗 (

∑
𝑘> 𝑗 𝜃𝑘) ≠ 0, since the second summand lies in (𝑌𝑖 𝑗 )𝛾𝑛𝑗+1

,
whereas the first does not. On the other hand, the morphism 𝜙𝜃 factors through
a finite sum

∐
𝑖∈𝐽 𝑌𝑖 for some 𝐽 ⊆ 𝐼, since 𝐶 is compact. This contradiction

finishes the proof. �

We have the following characterisation of local noetherianness.

Theorem 11.2.12. For a locally finitely generated Grothendieck category A

the following are equivalent.

(1) The category A is locally noetherian.
(2) The subcategory of injective objects in A is closed under filtered colimits.
(3) The subcategory of injective objects in A is closed under coproducts.
(4) Every injective object decomposes into a coproduct of indecomposable

objects with local endomorphism rings.
(5) There is an object 𝐸 such that every object inA is a subobject of a coproduct

of copies of 𝐸 .

Proof (1)⇒ (2): IfA is locally noetherian, then fpA is closed under quotients.
Thus the equivalence A ∼−→ Lex((fpA)op,Ab) identifies the injective objects
with the exact functors (fpA)op → Ab, by Lemma 11.1.26 and Lemma 11.2.10.
It remains to note that a filtered colimit of exact functors is exact.

(2) ⇒ (3): Clear.
(3) ⇒ (1): Fix an injective cogenerator 𝐸 and let 𝐶1 ⊆ 𝐶2 ⊆ 𝐶3 ⊆ · · ·

be an ascending chain of subobjects of a finitely generated object 𝐶. Choose
morphisms 𝐶/𝐶𝑖 → 𝐸 for all 𝑖 such that the restriction to 𝐶𝑖+1/𝐶𝑖 is non-zero
provided that 𝐶𝑖+1/𝐶𝑖 ≠ 0, and consider for 𝑗 ≤ 𝑛 the composite 𝜙𝑛 𝑗 : 𝐶𝑛 →

𝐶 → 𝐶/𝐶 𝑗 → 𝐸 . For each 𝑛 these yield a morphism 𝜙𝑛 : 𝐶𝑛 →
∐𝑛

𝑖=1 𝐸 and we
obtain a morphism 𝜙 :

∑
𝑛≥1 𝐶𝑛 →

∐
𝑖≥1 𝐸 , since the 𝜙𝑛 are compatible. The

morphism 𝜙 extends to a morphism 𝐶 →
∐

𝑖≥1 𝐸 , since we assume
∐

𝑖≥1 𝐸 to
be injective, and this factors through a finite sum

∐𝑚
𝑖=1 𝐸 for some 𝑚, since 𝐶

is finitely generated. Thus 𝐶𝑛 = 𝐶𝑚 for 𝑛 ≥ 𝑚, so 𝐶 is noetherian.
(2) ⇒ (4): Let 𝑋 ≠ 0 be injective and fix a finitely generated subobject 0 ≠

𝐶 ⊆ 𝑋 . Using Zorn’s lemma and the fact that injectives are closed under filtered
colimits, there exists a maximal injective subobject 𝑋 ′ ⊆ 𝑋 not containing 𝐶.
Then 𝑋 = 𝑋 ′⊕𝑋 ′′, and we claim that 𝑋 ′′ is indecomposable. For, if 𝑋 ′′ = 𝑈⊕𝑉 ,
then (𝑋 ′ +𝑈) ∩ (𝑋 ′ +𝑉) = 𝑋 ′ implies that one of the objects 𝑋 ′ +𝑈 and 𝑋 ′ +𝑉
does not contain 𝐶. Thus𝑈 = 0 or 𝑉 = 0 by the maximality of 𝑋 ′.

Using again Zorn’s lemma, there exists a maximal family of indecomposable
injective subobjects (𝑋𝑖)𝑖∈𝐼 of 𝑋 such that the sum 𝑋 ′ =

∑
𝑖∈𝐼 𝑋𝑖 is direct. This

yields a decomposition 𝑋 = 𝑋 ′ ⊕ 𝑋 ′′, and 𝑋 ′′ = 0 by the previous observation.
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11.2 Grothendieck Categories 365

It remains to note that every indecomposable injective object has a local
endomorphism ring (Lemma 2.5.7).

(4)⇒ (5): Let 𝐸 be the coproduct of indecomposable injective objects, taking
one representative from each isomorphism class. Note that there is only a set
of such representatives, since each indecomposable injective is the injective
envelope of a quotient 𝐺/𝑈 when 𝐺 is a generator of A. Then every object in
A is a subobject of a coproduct of copies of 𝐸 , since every object embeds into
an injective object (Corollary 2.5.4).

(5) ⇒ (1): Let 𝐶 ∈ A be a finitely generated object. We wish to show that 𝐶
is noetherian. To this end fix a chain of finitely generated subobjects 0 = 𝐵0 ⊆

𝐵1 ⊆ 𝐵2 ⊆ · · · and set 𝐶𝑛 = 𝐶/𝐵𝑛. This yields a sequence of epimorphisms
𝛾 = (𝐶𝑛 � 𝐶𝑛+1)𝑛∈N. For 𝑋 ∈ A we set 𝑋𝛾̄𝑛 = Hom(𝐵𝑛+1/𝐵𝑛, 𝑋) and obtain
an exact sequence

0 −→ 𝑋𝛾𝑛+1 −→ 𝑋𝛾𝑛 −→ 𝑋𝛾̄𝑛 −→ 0

provided that 𝑋 is injective or a coproduct of injective objects.
Now consider a cogenerator 𝐸 such that each object of A embeds into a

coproduct of copies of 𝐸 . We may assume that 𝐸 is injective by replacing 𝐸
with its injective envelope. Let 𝜅 = max(ℵ0, card Hom(𝐶, 𝐸)) and choose a
monomorphism

𝜙 :
∏
𝑛∈N

𝐸 𝜅 −→
∐
𝑖∈𝐼

𝐸.

For each 𝑚 ∈ N we apply Hom(𝐶𝑚,−) and obtain a monomorphism

𝜙𝑚 :
∏
𝑛∈N

(𝐸𝛾𝑚 )
𝜅 −→

∐
𝑖∈𝐼

𝐸𝛾𝑚

since 𝑋 ↦→ 𝑋𝛾𝑚 preserves products and coproducts. Then it follows from
Lemma 11.2.11 that for some 𝑚 ∈ N the map 𝜙𝑚 restricts to an embedding∏

𝑛≥𝑚

(𝐸𝛾𝑚 )
𝜅 −→

( ∐
𝑖∈𝐽

𝐸𝛾∞

)
�

( ∐
finite

𝐸𝛾𝑚

)
for some cofinite subset 𝐽 ⊆ 𝐼, where 𝐸𝛾∞ =

⋂
𝑛≥0 𝐸𝛾𝑛 . Comparing this with

𝜙𝑚+1 and passing to the quotient yields a commutative diagram with exact rows

0
∏
𝑛≥𝑚

(𝐸𝛾𝑚+1 )
𝜅 ∏

𝑛≥𝑚
(𝐸𝛾𝑚 )

𝜅 ∏
𝑛≥𝑚

(𝐸𝛾̄𝑚 )
𝜅 0

0 (
∐
𝑖∈𝐽
𝐸𝛾∞) � (

∐
finite

𝐸𝛾𝑚+1 ) (
∐
𝑖∈𝐽
𝐸𝛾∞) � (

∐
finite

𝐸𝛾𝑚 )
∐

finite
𝐸𝛾̄𝑚 0

where we use the fact that 𝐸 is injective. The vertical map on the right is
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a monomorphism because it is a restriction of Hom(𝐵𝑚+1/𝐵𝑚, 𝜙). From the
choice of 𝜅 it follows that 𝐸𝛾̄𝑚 = 0, cf. Lemma 11.2.13 below. Thus𝐶𝑚 = 𝐶𝑚+1
since 𝐸 cogenerates A. We conclude that 𝐶 is noetherian. �

Lemma 11.2.13. Let 𝐴 be an abelian group with 𝛼 = card 𝐴 and let 𝜅 ≥
max(ℵ0, 𝛼). If there is a monomorphism 𝐴𝜅 → 𝐴𝑛 for some 𝑛 ∈ N, then 𝐴 = 0.

Proof Suppose 𝐴 ≠ 0. Then we have

card(𝐴𝜅 ) = 𝛼𝜅 ≥ 2𝜅 > 𝜅 = 𝜅𝑛 ≥ 𝛼𝑛 = card(𝐴𝑛).

This contradicts the fact that there is an injective map 𝐴𝜅 → 𝐴𝑛. �

Remark 11.2.14. The Krull–Remak–Schmidt–Azumaya theorem implies that
a decomposition into indecomposable objects with local endomorphism rings
is essentially unique (Theorem 2.5.8).

We formulate some consequences of Theorem 11.2.12 and its proof.

Corollary 11.2.15. Let C be an essentially small abelian category. Then all
exact functors in Lex(Cop,Ab) are injective if and only if all objects in C are
noetherian. �

A variation of the above theorem will be needed later.

Proposition 11.2.16. Let A be a locally finitely presented Grothendieck cat-
egory such that fpA is abelian. Suppose that 𝑋 ∈ A is an object satisfying
Ext1 (𝐶, 𝑋) = 0 for all 𝐶 ∈ fpA and that Hom(𝐶, 𝑋) = 0 implies 𝐶 = 0 for all
𝐶 ∈ fpA. Then the following are equivalent.

(1) The category A is locally noetherian
(2) The canonical monomorphism 𝑋 (N) → 𝑋N splits.
(3) There exists a decomposition 𝑋N =

∐
𝑖∈𝐼 𝑋𝑖 such that End(𝑋𝑖) is local for

all 𝑖 ∈ 𝐼.
(4) There exists an object𝑌 such that every product of copies of 𝑋 is a subobject

of a coproduct of copies of 𝑌 .

Moreover, in this case the object 𝑋 is injective.

Proof (1) ⇒ (2) & (3) & (4): If A is locally noetherian, then fpA is closed
under quotients. It follows from Lemma 11.2.10 that 𝑋 is injective. Now apply
Theorem 11.2.12.

(2) ⇒ (1): Choose a splitting 𝜙 : 𝑋N → 𝑋 (N) . Let 𝐶 = 𝐶0 be a finitely
presented object and let 𝛾 = (𝐶𝑖 � 𝐶𝑖+1)𝑖∈N be a chain of epimorphisms. We
wish to show that 𝐶 is noetherian and apply Lemma 11.2.11 to 𝜙 as above.
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Thus 𝑋𝛾𝑚 ⊆
⋂

𝑛≥0 𝑋𝛾𝑛 for some 𝑚 ∈ N, and 𝐶𝑚 = 𝐶𝑚+1 = · · · follows, since
𝑋 cogenerates fpA. We conclude that every object in fpA is noetherian.

(3) ⇒ (1): First observe that any indecomposable direct summand 𝑌 of 𝑋
occurs, up to isomorphism, an infinite number of times in the family (𝑋𝑖)𝑖∈𝐼 ,
by the Krull–Remak–Schmidt–Azumaya theorem (Theorem 2.5.8). Now let
𝛾 = (𝐶𝑖 � 𝐶𝑖+1)𝑖∈N be a chain of epimorphisms in fpA. Then it follows from
Lemma 11.2.11 that there exists 𝑚 ∈ N such that 𝑌𝛾𝑚 ⊆

⋂
𝑛∈N𝑌𝛾𝑛 for all

indecomposable direct summands 𝑌 of 𝑋 . Therefore 𝑋𝛾𝑚 ⊆
⋂

𝑛∈N 𝑋𝛾𝑛 , and
𝐶𝑚 = 𝐶𝑚+1 = · · · follows, since 𝑋 cogenerates fpA. Thus every object in fpA
is noetherian.

(4) ⇒ (1): Adapt the proof of Theorem 11.2.12, keeping in mind that 𝑋
cogenerates fpA. �

11.3 Gröbner Categories

Given an essentially small category C, we study the problem when for any
locally noetherian Grothendieck category A the functor category Fun(C,A) is
again locally noetherian. This problem is motivated by Hilbert’s basis theorem
and leads to the notion of a Gröbner category.

Hilbert’s Basis Theorem
Let 𝐴 be a (not necessarily commutative) ring and denote by 𝐴[𝑡] the polyno-
mial ring in one variable. We can identify modules over 𝐴[𝑡] with pairs (𝑋, 𝜙)
given by an 𝐴-module 𝑋 and a morphism 𝜙 : 𝑋 → 𝑋 that sends 𝑥 ∈ 𝑋 to 𝑥𝑡.

We view the set of non-negative integers as a category N̄with a single object ∗,
morphisms given by Hom(∗, ∗) = N, and composition given by addition. Then
there is an obvious equivalence

Fun(N̄,Mod 𝐴) ∼−−→ Mod 𝐴[𝑡]

which sends a functor 𝐹 : N̄→ Mod 𝐴 to 𝐹 (∗).
Now consider the partially ordered set of non-negative integers as a category

*N with set of objects N and a single morphism 𝑚 → 𝑛 if and only if 𝑚 ≤ 𝑛.
We view 𝐴[𝑡] =

⊕
𝑛≥0 𝐴[𝑡]𝑛 as an N-graded ring where 𝐴[𝑡]𝑛 denotes the

set of homogeneous polynomials of degree 𝑛. If we denote by GrMod 𝐴[𝑡] the
category of N-graded 𝐴[𝑡]-modules (with degree zero morphisms), then there
is an obvious equivalence

Fun( *N,Mod 𝐴) ∼−−→ GrMod 𝐴[𝑡]
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which sends a functor 𝐹 : *N→ Mod 𝐴 to
⊕

𝑛≥0 𝐹 (𝑛).
The following is a reformulation of Hilbert’s basis theorem.

Theorem 11.3.1 (Hilbert). Let 𝐴 be a right noetherian ring. Then the polyno-
mial ring 𝐴[𝑡] is right noetherian; it is also right noetherian as a graded ring.
Therefore Mod 𝐴[𝑡] and GrMod 𝐴[𝑡] are both locally noetherian Grothendieck
categories. �

Noetherian Posets
Let C be a poset. A subset D ⊆ C is an ideal if the conditions 𝑥 ≤ 𝑦 in C and
𝑦 ∈ D imply 𝑥 ∈ D. The ideals in C are partially ordered by inclusion.

A poset C is noetherian if every ascending chain of elements in C stabilises,
and C is strongly noetherian if every ascending chain of ideals in C stabilises.

For a poset C and 𝑥 ∈ C, set C(𝑥) = {𝑡 ∈ C | 𝑡 ≤ 𝑥}. The assignment
𝑥 ↦→ C(𝑥) yields an embedding of C into the poset of ideals in C.

Lemma 11.3.2. For a poset C the following are equivalent.

(1) The poset C is strongly noetherian.
(2) For every infinite sequence (𝑥𝑖)𝑖∈N of elements in C there exists 𝑖 ∈ N such

that 𝑥 𝑗 ≤ 𝑥𝑖 for infinitely many 𝑗 ∈ N.
(3) For every infinite sequence (𝑥𝑖)𝑖∈N of elements in C there is a map 𝛼 : N→
N such that 𝑖 < 𝑗 implies 𝛼(𝑖) < 𝛼( 𝑗) and 𝑥𝛼( 𝑗) ≤ 𝑥𝛼(𝑖) .

(4) For every infinite sequence (𝑥𝑖)𝑖∈N of elements in C there are 𝑖 < 𝑗 in N
such that 𝑥 𝑗 ≤ 𝑥𝑖 .

Proof (1) ⇒ (2): Suppose that C is strongly noetherian and let (𝑥𝑖)𝑖∈N be
elements in C. For 𝑛 ∈ N set C𝑛 =

⋃
𝑖≤𝑛 C(𝑥𝑖). The chain (C𝑛)𝑛∈N stabilises,

say C𝑛 = C𝑁 for all 𝑛 ≥ 𝑁 . Thus there exists 𝑖 ≤ 𝑁 such that 𝑥 𝑗 ≤ 𝑥𝑖 for
infinitely many 𝑗 ∈ N.

(2) ⇒ (3): Define 𝛼 : N → N recursively by taking for 𝛼(0) the smallest
𝑖 ∈ N such that 𝑥 𝑗 ≤ 𝑥𝑖 for infinitely many 𝑗 ∈ N. For 𝑛 > 0 set

𝛼(𝑛) = min{𝑖 > 𝛼(𝑛 − 1) | 𝑥 𝑗 ≤ 𝑥𝑖 ≤ 𝑥𝛼(𝑛−1) for infinitely many 𝑗 ∈ N}.

(3) ⇒ (4): Clear.
(4) ⇒ (1): Suppose there is a properly ascending chain (C𝑛)𝑛∈N of ideals

in C. Choose 𝑥𝑛 ∈ C𝑛+1 \ C𝑛 for each 𝑛 ∈ N. There are 𝑖 < 𝑗 in N such that
𝑥 𝑗 ≤ 𝑥𝑖 . This implies 𝑥 𝑗 ∈ C𝑖+1 ⊆ C 𝑗 which is a contradiction. �
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Functor Categories
Let C be an essentially small category. We simplify the notation by setting

C(𝑥, 𝑦) := HomC (𝑥, 𝑦) for objects 𝑥, 𝑦 ∈ C.

For a Grothendieck category A we denote by Fun(Cop,A) the category of
functors Cop → A. The morphisms between two functors are the natural trans-
formations. Note that Fun(Cop,A) is a Grothendieck category.

Given an object 𝑥 ∈ C, the evaluation functor

Fun(Cop,A) −→ A, 𝐹 ↦→ 𝐹 (𝑥)

admits a left adjoint

A −→ Fun(Cop,A), 𝑀 ↦→ 𝑀 [C(−, 𝑥)]

where for any set 𝑋 we denote by 𝑀 [𝑋] a coproduct of copies of 𝑀 indexed
by the elements of 𝑋 . Thus we have for objects 𝑀 ∈ A and 𝐹 ∈ Fun(Cop,A) a
natural isomorphism

Hom(𝑀 [C(−, 𝑥)], 𝐹) � Hom(𝑀, 𝐹 (𝑥)). (11.3.3)

Lemma 11.3.4. Let (𝑀𝑖)𝑖∈𝐼 be a set of generators of A. Then the functors
𝑀𝑖 [C(−, 𝑥)] with 𝑖 ∈ 𝐼 and 𝑥 ∈ C generate Fun(Cop,A).

Proof Use the adjointness isomorphism (11.3.3). �

Recall that a Grothendieck category A is locally noetherian if A has a gen-
erating set of noetherian objects. In that case an object 𝑀 ∈ A is noetherian if
and only if𝑀 is finitely presented, that is, the representable functor Hom(𝑀,−)
preserves filtered colimits; see Proposition 11.2.5

Lemma 11.3.5. Let A be locally noetherian. Then Fun(Cop,A) is locally
noetherian if and only if 𝑀 [C(−, 𝑥)] is noetherian for every noetherian 𝑀 ∈ A

and 𝑥 ∈ C.

Proof First observe that 𝑀 [C(−, 𝑥)] is finitely presented if 𝑀 is finitely
presented. This follows from the isomorphism (11.3.3) since evaluation at
𝑥 ∈ C preserves colimits. Now the assertion of the lemma is an immediate
consequence of Lemma 11.3.4. �

Noetherian Functors
Let C be a small category and fix an object 𝑥 ∈ C. Set

C(𝑥) :=
⊔
𝑡 ∈C

C(𝑡, 𝑥).
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Given 𝑓 , 𝑔 ∈ C(𝑥), let 〈 𝑓 〉 denote the set of morphisms in C(𝑥) that factor
through 𝑓 , and set 𝑓 ≤𝑥 𝑔 if 〈 𝑓 〉 ⊆ 〈𝑔〉. We identify 𝑓 and 𝑔 when 〈 𝑓 〉 = 〈𝑔〉.
This yields a poset which we denote by C̄(𝑥).

A functor is noetherian if every ascending chain of subfunctors stabilises.

Lemma 11.3.6. The functor C(−, 𝑥) : Cop → Set is noetherian if and only if
the poset C̄(𝑥) is strongly noetherian.

Proof Sending 𝐹 ⊆ C(−, 𝑥) to
⋃

𝑡 ∈C 𝐹 (𝑡) induces an inclusion preserving
bijection between the subfunctors of C(−, 𝑥) and the ideals in C̄(𝑥). �

For a poset T let Set � T denote the category consisting of pairs (𝑋, 𝜉) given
by a set 𝑋 and a map 𝜉 : 𝑋 → T. A morphism (𝑋, 𝜉) → (𝑋 ′, 𝜉 ′) is a map
𝑓 : 𝑋 → 𝑋 ′ such that 𝜉 (𝑎) ≤ 𝜉 ′ 𝑓 (𝑎) for all 𝑎 ∈ 𝑋 .

A functor Cop → Set � T is given by a pair (𝐹, 𝜙) consisting of a functor
𝐹 : Cop → Set and a map 𝜙 :

⊔
𝑡 ∈C 𝐹 (𝑡) → T such that 𝜙(𝑎) ≤ 𝜙(𝐹 ( 𝑓 ) (𝑎))

for every 𝑎 ∈ 𝐹 (𝑡) and 𝑓 : 𝑡 ′ → 𝑡 in C.

Lemma 11.3.7. Let T be a noetherian poset. If the functor C(−, 𝑥) : Cop → Set
is noetherian, then every functor Cop → Set � T whose composite with the
canonical functor Set � T → Set equals C(−, 𝑥) is also noetherian.

Proof Fix a functor (𝐹, 𝜙) : Cop → Set � T, and let (𝐹𝑛, 𝜙𝑛)𝑛∈N be a strictly
ascending chain of subfunctors of (𝐹, 𝜙). The chain (𝐹𝑛)𝑛∈N stabilises since
C(−, 𝑥) is noetherian. Thus we may assume that 𝐹𝑛 = 𝐹 for all 𝑛 ∈ N, and we
find 𝑓𝑛 ∈

⊔
𝑡 ∈C 𝐹 (𝑡) such that 𝜙𝑛 ( 𝑓𝑛) < 𝜙𝑛+1 ( 𝑓𝑛). The poset C̄(𝑥) is strongly

noetherian by Lemma 11.3.6. It follows from Lemma 11.3.2 that there is a map
𝛼 : N→ N such that 𝑖 < 𝑗 implies 𝛼(𝑖) < 𝛼( 𝑗) and 𝑓𝛼( 𝑗) ≤𝑥 𝑓𝛼(𝑖) . Thus

𝜙𝛼(𝑛) ( 𝑓𝛼(𝑛) ) < 𝜙𝛼(𝑛)+1( 𝑓𝛼(𝑛) ) ≤ 𝜙𝛼(𝑛+1) ( 𝑓𝛼(𝑛) ) ≤ 𝜙𝛼(𝑛+1) ( 𝑓𝛼(𝑛+1) ).

This yields a strictly ascending chain in T, contradicting the assumption on T

to be noetherian. �

A partial order ≤ on C(𝑥) is admissible if the following holds.

(Ad1) The order ≤ restricted to C(𝑡, 𝑥) is total and noetherian for every 𝑡 ∈ C.
(Ad2) For 𝑓 , 𝑓 ′ ∈ C(𝑡, 𝑥) and 𝑒 ∈ C(𝑠, 𝑡), the condition 𝑓 < 𝑓 ′ implies

𝑓 𝑒 < 𝑓 ′𝑒.

Assume there is given an admissible partial order ≤ on C(𝑥) and an object
𝑀 in a Grothendieck category A. Let Sub(𝑀) denote the poset of subobjects
of 𝑀 and consider the functor

C(−, 𝑥) � 𝑀 : Cop −→ Set � Sub(𝑀), 𝑡 ↦→
(
C(𝑡, 𝑥), (𝑀) 𝑓 ∈C(𝑡 ,𝑥)

)
.
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For a subfunctor 𝐹 ⊆ 𝑀 [C(−, 𝑥)] define a subfunctor 𝐹̃ ⊆ C(−, 𝑥) � 𝑀 as
follows:

𝐹̃ : Cop −→ Set � Sub(𝑀), 𝑡 ↦→
(
C(𝑡, 𝑥),

(
𝜋 𝑓 (𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐹 (𝑡))

)
𝑓 ∈C(𝑡 ,𝑥)

)
where C(𝑡, 𝑥) 𝑓 = {𝑔 ∈ C(𝑡, 𝑥) | 𝑓 ≤ 𝑔} and 𝜋 𝑓 : 𝑀 [C(𝑡, 𝑥) 𝑓 ] → 𝑀 is the
projection onto the factor corresponding to 𝑓 . For a morphism 𝑒 : 𝑡 ′ → 𝑡 in C,
the morphism 𝐹̃ (𝑒) is induced by precomposition with 𝑒. Note that

𝜋 𝑓 (𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐹 (𝑡)) ⊆ 𝜋 𝑓 𝑒 (𝑀 [C(𝑡
′, 𝑥) 𝑓 𝑒] ∩ 𝐹 (𝑡

′))

since ≤ is compatible with the composition in C.

Lemma 11.3.8. Suppose there is an admissible partial order on C(𝑥). Then the
assignment which sends a subfunctor 𝐹 ⊆ 𝑀 [C(−, 𝑥)] to 𝐹̃ preserves proper
inclusions. Therefore 𝑀 [C(−, 𝑥)] is noetherian provided that C(−, 𝑥) � 𝑀 is
noetherian.

Proof Let 𝐹 ⊆ 𝐺 ⊆ 𝑀 [C(−, 𝑥)]. Then 𝐹̃ ⊆ 𝐺̃. Now suppose that 𝐹 ≠
𝐺. Thus there exists 𝑡 ∈ C such that 𝐹 (𝑡) ≠ 𝐺 (𝑡). We have C(𝑡, 𝑥) =⋃

𝑓 ∈C(𝑡 ,𝑥) C(𝑡, 𝑥) 𝑓 , and this union is directed since ≤ is total. Thus

𝐹 (𝑡) =
∑

𝑓 ∈C(𝑡 ,𝑥)

(
𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐹 (𝑡)

)
since filtered colimits in A are exact. This yields 𝑓 such that

𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐹 (𝑡) ≠ 𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐺 (𝑡).

Choose 𝑓 ∈ C(𝑡, 𝑥) maximal with respect to this property, using that ≤ is
noetherian. Now observe that the projection 𝜋 𝑓 induces an exact sequence

0 −→
∑
𝑓 <𝑔

(
𝑀 [C(𝑡, 𝑥)𝑔] ∩ 𝐹 (𝑡)

)
−→ 𝐹 (𝑡) −→ 𝜋 𝑓

(
𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐹 (𝑡)

)
−→ 0

since the kernel of 𝜋 𝑓 equals the directed union
∑

𝑓 <𝑔 𝑀 [C(𝑡, 𝑥)𝑔]. For the
directedness one uses again that ≤ is total. Thus

𝜋 𝑓
(
𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐹 (𝑡)

)
≠ 𝜋 𝑓

(
𝑀 [C(𝑡, 𝑥) 𝑓 ] ∩ 𝐺 (𝑡)

)
and therefore 𝐹̃ ≠ 𝐺̃. �

Proposition 11.3.9. Let 𝑥 ∈ C. Suppose that C(−, 𝑥) is noetherian and that
C(𝑥) has an admissible partial order. If 𝑀 ∈ A is noetherian, then 𝑀 [C(−, 𝑥)]
is noetherian.

Proof Combine Lemma 11.3.7 and Lemma 11.3.8. �
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Gröbner Categories
A small category C is a Gröbner category if the following holds.

(Gr1) The functor C(−, 𝑥) is noetherian for every 𝑥 ∈ C.
(Gr2) There is an admissible partial order on C(𝑥) for every 𝑥 ∈ C.

Theorem 11.3.10. Let C be a Gröbner category and A a Grothendieck cate-
gory. If A is locally noetherian, then Fun(Cop,A) is locally noetherian.

Proof Combine Lemma 11.3.4 and Proposition 11.3.9. �

Example 11.3.11. A strongly noetherian poset (viewed as a category) is a
Gröbner category.

Example 11.3.12. Consider the additive monoid N̄ of non-negative integers,
viewed as a category with a single object, and the poset *N of non-negative
integers, again viewed as a category. Then N̄op and *Nop are Gröbner categories.
Let A be the module category of a right noetherian ring 𝐴. Then Fun(N̄,A)
and Fun( *N,A) identify with categories of modules over the polynomial ring in
one variable over 𝐴 (ungraded and graded). Thus Theorem 11.3.10 generalises
Hilbert’s basis theorem (Theorem 11.3.1).

Base Change
Given functors 𝐹, 𝐺 : Cop → Set, we write 𝐹 � 𝐺 if there is a finite chain

𝐹 = 𝐹0 � 𝐹1 	 𝐹2 � · · ·� 𝐹𝑛−1 	 𝐹𝑛 = 𝐺

of epimorphisms and monomorphisms of functors Cop → Set.
A functor 𝜙 : C→ D is contravariantly finite if the following holds.

(Con1) Every object 𝑦 ∈ D is isomorphic to 𝜙(𝑥) for some 𝑥 ∈ C.
(Con2) For every object 𝑦 ∈ D there are objects 𝑥1, . . . , 𝑥𝑛 in C such that

𝑛⊔
𝑖=1

C(−, 𝑥𝑖) � D(𝜙−, 𝑦).

The functor 𝜙 is covariantly finite if 𝜙op : Cop → Dop is contravariantly finite.
Note that a composite of contravariantly finite functors is contravariantly

finite.

Lemma 11.3.13. Let 𝑓 : C → D be a contravariantly finite functor and A a
Grothendieck category. Fix 𝑀 ∈ A and suppose that 𝑀 [C(−, 𝑥)] is noetherian
for all 𝑥 ∈ C. Then 𝑀 [D(−, 𝑦)] is noetherian for all 𝑦 ∈ D.
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11.3 Gröbner Categories 373

Proof A finite chain
𝑛⊔
𝑖=1

C(−, 𝑥𝑖) = 𝐹0 � 𝐹1 	 𝐹2 � · · ·� 𝐹𝑛−1 	 𝐹𝑛 = D(𝜙−, 𝑦)

of epimorphisms and monomorphisms induces a chain
𝑛∐
𝑖=1
𝑀 [C(−, 𝑥𝑖)] = 𝐹̄0 � 𝐹̄1 	 𝐹̄2 � · · ·� 𝐹̄𝑛−1 	 𝐹̄𝑛 = 𝑀 [D(𝜙−, 𝑦)]

of epimorphisms and monomorphisms in Fun(Cop,A). Thus 𝑀 [D(𝜙−, 𝑦)] is
noetherian. It follows that 𝑀 [D(−, 𝑦)] is noetherian, since precomposition
with 𝜙 yields a faithful and exact functor Fun(Dop,A) → Fun(Cop,A). �

Proposition 11.3.14. Let 𝑓 : C → D be a contravariantly finite functor and
A a locally noetherian Grothendieck category. If the category Fun(Cop,A) is
locally noetherian, then Fun(Dop,A) is locally noetherian.

Proof Combine Lemma 11.3.5 and Lemma 11.3.13. �

Categories of Finite Sets
Let Γ denote the category of finite sets; a skeleton is given by the sets
n = {1, 2, . . . , 𝑛}. The subcategory of finite sets with surjective morphisms
is denoted by Γsur. A surjection 𝑓 : m → n is ordered if 𝑖 < 𝑗 implies
min 𝑓 −1 (𝑖) < min 𝑓 −1 ( 𝑗). We write Γos for the subcategory of finite sets
whose morphisms are ordered surjections. Given a surjection 𝑓 : m → n, let
𝑓 ! : n → m denote the map given by 𝑓 ! (𝑖) = min 𝑓 −1 (𝑖). Note that 𝑓 𝑓 ! = id,
and 𝑔 𝑓 = 𝑓 !𝑔! provided that 𝑓 and 𝑔 are ordered surjections.

Lemma 11.3.15. The inclusions Γos → Γsur and Γsur → Γ are both contravari-
antly finite.

Proof For each integer 𝑛 ≥ 0 there is an isomorphism

Γos (−, n) ×𝔖𝑛
∼−−→ Γsur (−, n)

which sends a pair ( 𝑓 , 𝜎) to 𝜎 𝑓 . The inverse sends a surjective map 𝑔 : m → n
to (𝜏−1𝑔, 𝜏) where 𝜏 ∈ 𝔖𝑛 is the unique permutation such that 𝑔!𝜏 is increasing.

For each integer 𝑛 ≥ 0 there is an isomorphism⊔
m↩→n

Γsur (−,m) ∼−−→ Γ(−, n)

which is induced by the injective maps m → n. �
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Fix an integer 𝑛 ≥ 0. Given 𝑓 , 𝑔 ∈ Γ(n) we set 𝑓 ≤ 𝑔 if there exists an
ordered surjection ℎ such that 𝑓 = 𝑔ℎ.

Lemma 11.3.16. The poset (Γ(n), ≤) is strongly noetherian.

Proof We fix some notation for each 𝑓 ∈ Γ(m, n). Set 𝜆( 𝑓 ) = 𝑚. If 𝑓 is not
injective, set

𝜇( 𝑓 ) = 𝑚 −max{𝑖 ∈ m | there exists 𝑗 < 𝑖 such that 𝑓 (𝑖) = 𝑓 ( 𝑗)}

and 𝜋( 𝑓 ) = 𝑓 (𝑚 − 𝜇( 𝑓 )). Define 𝑓 ∈ Γ(m − 1, n) by setting 𝑓 (𝑖) = 𝑓 (𝑖) for
𝑖 < 𝑚 − 𝜇( 𝑓 ) and 𝑓 (𝑖) = 𝑓 (𝑖 + 1) otherwise.

Note that 𝑓 ≤ 𝑓 . Moreover, 𝜇( 𝑓 ) = 𝜇(𝑔), 𝜋( 𝑓 ) = 𝜋(𝑔), and 𝑓 ≤ 𝑔̃ imply
𝑓 ≤ 𝑔.

Suppose that (Γ(n), ≤) is not strongly noetherian. Then there exists an infinite
sequence ( 𝑓𝑟 )𝑟 ∈N in Γ(n) such that 𝑖 < 𝑗 implies 𝑓 𝑗 %≤ 𝑓𝑖; see Lemma 11.3.2.
Call such a sequence bad. Choose the sequence minimal in the sense that 𝜆( 𝑓𝑖)
is minimal for all bad sequences (𝑔𝑟 )𝑟 ∈N with 𝑔 𝑗 = 𝑓 𝑗 for all 𝑗 < 𝑖. There is
an infinite subsequence ( 𝑓𝛼(𝑟) )𝑟 ∈N (given by some increasing map 𝛼 : N→ N)
such that 𝜇 and 𝜋 agree on all 𝑓𝛼(𝑟) , since the values of 𝜇 and 𝜋 are bounded by
𝑛. Now consider the sequence 𝑓0, 𝑓1, . . . , 𝑓𝛼(0)−1, 𝑓𝛼(0) , 𝑓𝛼(1) , . . . and denote
this by (𝑔𝑟 )𝑟 ∈N. This sequence is not bad, since ( 𝑓𝑟 )𝑟 ∈N is minimal. Thus there
are 𝑖 < 𝑗 in N with 𝑔 𝑗 ≤ 𝑔𝑖 . Clearly, 𝑗 < 𝛼(0) is impossible. If 𝑖 < 𝛼(0), then

𝑓𝛼( 𝑗−𝛼(0)) ≤ 𝑓𝛼( 𝑗−𝛼(0)) = 𝑔 𝑗 ≤ 𝑔𝑖 = 𝑓𝑖 ,

which is a contradiction, since 𝑖 < 𝛼(0) ≤ 𝛼( 𝑗 − 𝛼(0)). If 𝑖 ≥ 𝛼(0), then
𝑓𝛼( 𝑗−𝛼(0)) ≤ 𝑓𝛼(𝑖−𝛼(0)) ; this is a contradiction again. Thus (Γ(n), ≤) is strongly
noetherian. �

Proposition 11.3.17. The category Γos is a Gröbner category.

Proof Fix an integer 𝑛 ≥ 0. The poset Γ̄os (n) is strongly noetherian by
Lemma 11.3.16, and it follows from Lemma 11.3.6 that the functor Γos (−, n)
is noetherian.

The admissible partial order on Γos (n) is given by the lexicographic order.
Thus for 𝑓 , 𝑔 ∈ Γos (m, n), we have 𝑓 < 𝑔 if there exists 𝑗 ∈ m with 𝑓 ( 𝑗) < 𝑔( 𝑗)
and 𝑓 (𝑖) = 𝑔(𝑖) for all 𝑖 < 𝑗 . �

Theorem 11.3.18. Let A be a locally noetherian Grothendieck category. Then
the category Fun(Γop,A) is locally noetherian.

Proof The category Γos is a Gröbner category by Proposition 11.3.17. It fol-
lows from Theorem 11.3.10 that Fun((Γos)

op,A) is locally noetherian. The in-
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clusion Γos → Γ is contravariantly finite by Lemma 11.3.15. Thus Fun(Γop,A)

is locally noetherian by Proposition 11.3.14. �

FI-Modules
Let Γinj denote the category whose objects are finite sets and whose morphisms
are injective maps. When A is the category of modules over a ring, then a
functor Γinj → A is called an FI-module (F = finite sets, I = injective maps).

Theorem 11.3.19. Let A be a locally noetherian Grothendieck category. Then
the category Fun(Γinj,A) is locally noetherian.

Proof Consider the functor 𝜙 : Γos → (Γinj)
op which is the identity on objects

and takes a map 𝑓 : m → n to 𝑓 ! : n → m given by 𝑓 ! (𝑖) = min 𝑓 −1 (𝑖). This
functor is contravariantly finite, since for each integer 𝑛 ≥ 0 the morphism

Γos (−, n) ×𝔖𝑛 −→ Γinj (n, 𝜙−)

which sends a pair ( 𝑓 , 𝜎) to 𝑓 !𝜎 is an epimorphism.
It follows from Proposition 11.3.14 that the category Fun(Γinj,A) is locally

noetherian, since Fun((Γos)
op,A) is locally noetherian by Proposition 11.3.17

and Theorem 11.3.10. �

Generic Representations
Let 𝐴 be a ring. We denote by F(𝐴) the category of finitely generated free
𝐴-modules. Note that F(𝐴)op ∼−→ F(𝐴op). Now fix the module category A =
Mod 𝑘 of a commutative ring 𝑘 . Then a functor 𝐹 : F(𝐴) → A yields a
family 𝐹 (𝐴𝑛) of 𝑘-linear representations of GL𝑛 (𝐴) for 𝑛 ≥ 0 via evaluation;
so one calls 𝐹 a generic representation of 𝐴. In fact, 𝐹 is equivalent to a
compatible family of 𝑘-linear representations of 𝑀𝑛 (𝐴), where 𝑀𝑛 (𝐴) denotes
the semigroup of all 𝑛 × 𝑛 matrices over 𝐴.

Suppose that 𝐴 is finite, that is, the underlying set has finite cardinality. Then
the functor Γ → F(𝐴) sending 𝑋 to 𝐴[𝑋] is a left adjoint of the forgetful
functor F(𝐴) → Γ.

Lemma 11.3.20. Let 𝐴 be finite. Then the functor Γ → F(𝐴) is contravariantly
finite.

Proof The assertion follows from the adjointness isomorphism

F(𝐴) (𝐴[𝑋], 𝑃) � Γ(𝑋, 𝑃). �
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Theorem 11.3.21. Let 𝐴 be a finite ring and A a locally noetherian Grothen-
dieck category. Then the category Fun(F(𝐴),A) is locally noetherian.

Proof We reduce the assertion about F(𝐴) to the category of finite sets, using
Lemma 11.3.20 and Proposition 11.3.14. Then one applies Theorem 11.3.18.

�

There is the following immediate consequence, also known as the artinian
conjecture, because it amounts to the fact that the standard injective objects are
artinian.

Corollary 11.3.22. For a finite field F the category of generic representations
Fun(mod F,Mod F) is locally noetherian. �

Notes

Locally finitely presented categories were introduced by Gabriel and Ulmer
[84]. For the special case of abelian categories and the properties of injective
objects, see Gabriel’s thesis [79]. In particular, that work contains the idea of
using categories of left exact functors. The decomposition theory of injective
objects in locally noetherian categories goes back to results for modules by
Matlis [143] and Papp [155]; see also the exposition of Roos [177, 178].

Chase’s lemma appears as an argument in [49] and is formulated explicitly
in [50].

In a seminal paper Mitchell pointed out the parallel between modules and
additive functors, introducing the term ring with several objects for a preadditive
category [145].

The concept of a Gröbner category and the corresponding generalisation of
Hilbert’s basis theorem [112] is due to Richter [169] and was rediscovered by
Sam and Snowden [180]. In particular, [180] contains a proof of the artinian
conjecture. Lannes and Schwartz formulated this conjecture and were motivated
by their study of unstable modules over the Steeenrod algebra [109]. The fact
that FI-modules over a noetherian ring form a locally noetherian category is
due to Church, Ellenberg, Farb and Nagpal [51]. Our exposition follows notes
of Djament [63] which are motivated by applications to generic representation
theory; see also the expository articles by Kuhn, Powell and Schwartz in [133].
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