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SHARP BOUNDS OF CEBYSEV FUNCTIONAL FOR
STIELTJES INTEGRALS AND APPLICATIONS

S.S. DRAGOMIR

Sharp bounds of the Cebysev functional for the Stieltjes integrals similar to the Griiss
one and applications for quadrature rules are given.

1. INTRODUCTION

Consider the weighted Cebysev functional

(1.1) Tw{f,g):= b ] fbw(t)f(t)g(t)dt
Ja w (t) dt Ja

J>(*)
W d t • f

Jo

W
w (t) g (t) dt

where f,g,w: [a, b] —>• R and w (i) > 0 for almost every t € [a, b] are measurable functions
such that the involved integrals exist and Ja w (t) dt > 0.

In [1], the authors obtained, among others, the following inequalities:

(1.2) \Tw(f,g)\

/>(*)
/ ™(t)

(t) dtJa

g(t)-
fa w (S) ds Ja

w(s)g(s)ds dt

J°w(t)dtJa

i rb " 1
9^>~Tb—7VT / w(s)9(s)ds dt\

/„ W (S) ds Ja J

- (M — m) ess sup
2 te[a,b) la W

1 fb

, > . /
(S) ds Ja

ds

provided

(1.3) —cx> < m ^ / (t) ^ M < co for almost every t £ [a, b]
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and the corresponding integrals are finite. The constant 1/2 is sharp in all the inequalities
in (1.2) in the sense that it cannot be replaced by a smaller constant.

In addition, if

(1.4) - o o < n ^ g (t) $C N < oo for almost every t G [o, 6],

then the following refinement of the celebrated Griiss inequality is obtained:

(1.5) \Tw(f,g)\

i — - f w(t) g(t)- ] f w(s)g(s)ds
) (t) dt Ja f W (s) ds Ja/>(*)

dt
i rb 2 -,1/2

9(t)~ .„ w(s)g(s)ds dt\
Ja W (S) ds Ja i

^ - (M -m)(N-n).

Here, the constants 1/2 and 1/4 are also sharp in the sense mentioned above.

In this paper, we extend the above results to Riemann-Stieltjes integrals. A quadra-

ture formula is also considered.

For this purpose, we introduce the following Cebysev functional for the Stieltjes

integral

where f,g € C [a,6] (are continuous on [o,b)) and u e BV [a,b) (is of bounded variation

on [a, b)) with u(b) ^u (a).

For some recent inequalities for Stieltjes integral see [2]-[5].

2. T H E RESULTS

The following result holds.

THEOREM 1. Let / , g : [a, b] -> R be continuous on [a, b] and u : [o, 6] —> R with

u(a) 7̂  u (b). Assume also that there exists the real constants m, M such that

(2.1) m ^ f(t) ^ M tor each t E [a, b].
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If u is of bounded variation on [a,b], then we have the inequality

( 2 . 2 ) | | 4 ^

where \Ja (u) denotes the total variation ofu in [a,b\. The constant 1/2 is sharp, in the
sense that it cannot be replaced by a smaller constant.

PROOF: It is easy to see, by simple computation with the Stieltjes integral, that the
following equality

m + M

holds.

Using the known inequality

rb
(2.4) P(t)dv(t) 8UP|p(t)|V(«),

e[ab) Ite[a,b)

provided p £ C[a,b] and v € BV[a,b], we have, by (2.3), that

\T (/, 9- U) | < SUp I [/ (t) - ULtE] \g (t) _ * f g (S) du (s)l I
te[a,b}\1 2 J L u{o) -u{a) Ja J |

(since / (t) -

M — m

m + M M -m
\u(b)-u(a)\ _

for any t € [a, 6] j

i rb

9 m TT / 9 (s) du (s)
u (b) - u (a) Ja

1

!«(&)-« (a) |

and the inequality (2.2) is proved.

To prove the sharpness of the constant 1/2 in the inequality (2.2), we assume that
it holds with a constant C > 0, that is,

(2.5)

9- u (6) - u (a)
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Let us consider the functions / — g, f : [a,b] —> R, / (t) = t, t € [a, b) and u : [a, b)
given by

{- 1 i f i = o,

0 if t<E(a,b),

1 if t = b.

Then / , g are continuous on [a, b], u is of bounded variation on [a, b] and

+ a2

2 '

b + a
2

oo
- sup

te[a,b]
t-

a +
2

b b-a

and

\/(u) = 2,
a

Inserting these values in (2.5), we get

giving C ^ 1/2, and the theorem is thus proved. D

The corresponding result for a monotonic function u is incorporated in the following
theorem.

THEOREM 2 . Assume that f and g are as in Theorem 1. If u : [a, 6] —t R is

monotonic n on decreasing on [a, b], then one has the inequality:

(2.7) | r ( / , * « ) K ; < M — • > » ( > ) , . ( , , )

du (t).
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The constant 1/2 is sharp in the sense that it cannot be replaced by a smaller constant.

PROOF: Using the known inequality

rb

(2.8) f p(t)dv(t) ^ f \p(t)\dv(t),
Ja Ja

provided p € C[a, b] and v is a monotonic nondecreasing function on [a, b], we have (by
the use of equality (2.3)) that

m + M

1 I f
2{M~m)u{b)-u{a)ja

du(t)

du (t).

Now, assume that the inequality (2.7) holds with a constant D > 0, instead of 1/2, that
is,

(2.9)

(t).

If we choose the same function as in the proof of Theorem 1, we observe that f,g are
continuous and u is monotonic nondecreasing on [a, 6]. Then, for these functions, we have

T(f,g;u) =
a? + b2 (a + b)2 (b-a)2

du(t)

(a+b)/2
(o+(')/2

a + i

u(t)dt

- f u(t)
J (a+b)/2

dt
(a+b)/2 J(a+b)/2

— b — a,
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and then, by (2.9) we get

(b - a)2

giving D ̂  1/2, and the theorem is completely proved. D

The case when u is a Lipschitzian function is embodied in the following theorem.

THEOREM 3 . Assume that f, g : [a, b] —• R are Riemann integrable functions on
[a,b] and f satisfies t ie condition (2.1). Ifu : (a,b) —> R {u(b) ^ u(a)) is Lipschitzian
with the constant L, then we have the inequality

(2.10) \T{f,g;u)\^\L{M-m)
\u (b) — u (a) |

dt.

The constant 1/2 cannot be replaced by a smaller constant.

P R O O F : It is well known that if p : [a,b] —t R is Riemann integrable on [a,b] and
v : [a,b] - t R is Lipschitzian with the constant L, then the Riemann-Stieltjes integral
J p (t) dv (t) exists and

(2.11) p(t)dv(t) \p(t)\dt.

Using this fact and the identity (2.3), we deduce

,., m + M

i r
u{b)-u (a) Ja

du dt

" -
dt

and the inequality (2.10) is proved.

Now, assume that (2.10) holds with a constant E > 0 instead of 1/2, that is,

1
(2.12)

Consider the function / — g, f : [a, b] —> R with

/(*) =

dt.
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and u : [a, b] —> R, u (t) = t. Then, obviously, / and g are Riemann integrable on [a, b]

and u is Lipschitzian with the constant L = 1.
Since

= » •

and
M = 1, m = l

then, by (2.12), we deduce i? ̂  1/2, and the theorem is completely proved. D

3. A QUADRATURE FORMULA

Let us consider the partition of the interval [a, b] given by

(3.1) In : a = x0 < xx < • • • < xn_i < xn = b.

Denote v (/„) := max {h,\i = 0, n — l } where hi :— i j + 1 — Xi, i = 0,n — 1.

If / : [a, b] —> K is continuous on [a, 6] and if we define

Mi := sup / (t), m* := inf / (t), and
tetxi.zi.H,] te[xi,xi+i]

•y (/ , /„) = max (M* - m j ) ,
•=0,n-l

then, obviously, by the continuity of / on [a, b], for any e > 0, we may find a division /„
with norm v (/„) < 6 such that v (/, /„) < e.

Consider now the quadrature rule

(3.2) Sn (/, g; u, /„) := £ -7 ^ ^ / / (*) du (t) • [ g (t) du (t)
^ u{x) u(Xi) J Jx.

provided / , g € C [a, b], u € BV [a, b] and u (xi+i) ^ u (XJ), i = 0 , . . . , n - 1.

We may now state the following result in approximating the Stieltjes integral

r f(t)g(t)du(t).f
J a

THEOREM 4 . Let f:g e C [a, b] and u G BV [a, b]. Ifln is a division of the interval

[a, b] and u (xi+1) ^ u (z;), i = 0 , . . . , n - 1, then we have:

rb
rb

(3.3) /
Ja
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where Sn (/, g; u, /„) is as deGned in (3.2) and t ie remainder Rn (/, g; u, /„) satisfies the

estimate

\(3.4) \Rn (/, g; u, /„)| < \v (/,/„)

II 1 f
x max g -; r r~T /

i=0^-l\\ U (xi+l) - U (Xi) JX

Xi+l I w
V (u) •

The constant 1/2 is sharp in (3.4) in the sense that it cannot be replaced by a smaller

constant.

have

(3.5)

PROOF: Applying the inequality (2.2) on the intervals [xt, xi+i], i = 0 , . . . , n - 1 , we

" / (t) g (t) du (t) - * fX'+1 f (t) du (t) • fX'+1 g (t) du (t)

1 , . ,
sup U (Xi+1) - U (Xi) JXi

9 ^ du \J{U).

Summing the inequalities (3.5) over i from 0 to n — 1, and using the generalised triangle
inequality, we have

(3.6) \Rn(f,9\u,In)\

m a X

i=0,n-l

t=0,n-l

and the estimate (3.4) is obtained.

r^T / 9 (s) du (s)
-u(xi)Jx.

n-1 ij+

t=0 i (

D

REMARK 1. Similar results may be stated for either u monotonic or Lipschitzian. We

omit the details.
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4. SOME PARTICULAR CASES

For f,g,w : [a, b] —t R, integrable and with the property that J"o* w (t) dt ^ 0,
reconsider the weighted Cebysev functional

(4.1) Tw (f, g) := ) f w(t)f (t) g (t) dt
I w (t) dt Jo

/>(*)

X-—fw (t) f (t) dt • ) f w (t) g (t) dt.
(t) dt Ja f W it) dt Ja

1. If / , g, w : [a,b] -» R are continuous and there exists the real constants m, M such
that

(4.2) m < / (t) < Af for each t G [a, b],

then one has the inequality

(4.3)
\Jaw(a)ds\

9-
f ds

g(s)w(s)ds /
r .i Jaa,6j,oo '

The proof follows by Theorem 1 on choosing u (t) = Ja w (s) ds.

2. If / , g, w are as in 1 and w (s) ^ 0 for s € [a, b], then one has the inequality

(4.4)
/ „ w ( s ) d s

fb 1 f
X 9 ^ ~ rb I x ., / 9 (

Ja I. W (S) dS Ja

W ^ ds w (s) ds.

The proof follows by Theorem 2 on choosing u (t) = Ja w (s) ds.

3. If f,g are._Riemann integrable on [a,b] and / satisfies (4.2), and w is continuous on

[a, b], then one has the inequality

(4.5)
> ( ) |

/

* 1 fb

9 W ~ rb , s . /I W is) dS Ja

ds ds.

The proof follows by Theorem 3 on choosing u (t) — Ja w (s) ds.
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