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Abstract 

 

The rumen microbiome has attracted tremendous interest among microbiologists and ruminant 

nutritionists because of its crucial role in mediating feed digestion and fermentation and 

supplying most of the energy, nutrients, and precursors for producing ruminant products. The 

application of various omics technologies, including metataxonomics, metagenomics, 

metatranscriptomics, metaproteomics, and metabolomics, have enabled unprecedented 

investigations into this ecosystem, shedding new light on its interactions with diet and animals 

and its relationships with key production traits. Despite the valuable insights these omics 

technologies provide, each has its unique utility and inherent limitations. Achieving a holistic 

characterization of the rumen microbiome and deciphering its causal relationship with diet and 

key animal production traits remain an ongoing endeavor. In this perspective review paper, we 

highlight the limitations of individual technologies and advocate for an integrated multi-omics 

approach and data analyses in studying the intricate relationships between diet, rumen microbes, 

and ruminant nutrition. This approach, termed "rumen microbiome nutriomics", aims to 

comprehensively understand the rumen microbiome in the context of diets and animal 

productivity. Our emphasis lies in recognizing the necessity of integrated analysis across 

multiple data layers, encompassing data on diet, rumen microbiome features, animal genotypes, 

and production traits and identifying the causal relationship among them. We also call for 

collaborative efforts to develop a comprehensive rumen microbiome genome database, including 

protozoa, fungi, and viruses. Furthermore, standardization of processes and analyses is crucial to 

address the variability observed in the literature, facilitating comparison of results among future 

studies and enabling robust data reanalysis through advanced data analytics.  

 

Keywords: meta-omics, rumen microbiome, rumen microbiome nutriomics, integrated data 

analyses 
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1. Introduction  

Domesticated ruminants are a crucial source of high-quality proteins to meet human 

protein and nutrient requirements. They depend on the rumen microbiome to produce the 

primary source of energy, nutrients, and precursors for protein production. This unique 

microbiome features multi-kingdoms of remarkably diverse microbes, including bacteria and 

archaea as prokaryotes, protozoa and fungi as eukaryotes, and viruses. Bacteria are the most 

abundant and diverse, encompassing thousands of species [1, 2]. Rumen archaea are primarily 

methanogens, while protozoa are nearly exclusively ciliates. Despite being less diverse and 

abundant, only 10
4
 - 10

5
 individuals per ml of rumen fluid, protozoa can match bacteria in terms 

of biomass [3]. Rumen fungi represent only 10 - 16% of total rRNA transcript abundance [4] and 

less than 20% of the rumen microbial biomass [5]. Despite the smallest, rumen viruses are 

diverse and abundant [6, 7]. These microbes form a dynamic and finely tuned ecosystem. Their 

populations and metabolism can shift in response to changes in diet, allowing ruminants to adapt 

to different nutritional regimes.  

  

Previous studies have provided fundamental information on the capability of rumen microbes, 

primarily bacteria. As the most abundant microbes, bacteria play the most crucial role in the 

rumen functions, such as feed digestion, fermentation, and microbial protein synthesis. Archaea 

produce enteric CH4, a potent greenhouse gas that raises significant environmental concerns 

associated with ruminant production. Protozoa participate in feed digestion and fermentation, but 

as predators, they engulf microbial cells and degrade microbial protein, significantly contributing 

to the intraruminal recycling of microbial protein, a process primarily responsible for the lower 

nitrogen utilization efficiency in ruminants than in non-ruminants. Fungi are not abundant but 

possess a unique ability and high activity to digest feed fiber [8]. Rumen viruses do not directly 

digest or ferment feed. Still, by lysing their hosts or providing auxiliary metabolic genes (AMGs) 

and other genes, they can profoundly impact the functions and metabolic activities of various 

rumen microbes, including those that form the core rumen microbiome, in both a top-down and 

bottom-up manners [6]. The rumen microbes constitute an intricate ecosystem by interacting 

with each other, the diet, and the hosts, and this ecosystem is responsible for converting feed into 

energy, nutrients, and precursors that ruminants can utilize. Therefore, the rumen microbiome 

can profoundly affect feed efficiency, animal health, productivity, quality of products (meat, 

milk, and wool), and the environmental footprint of the ruminant industry. Understanding the 

diversity, composition, and functions of the rumen microbiome and its interaction with diet and 

host has been a long-term pursuit of research over the past century.  

 

Despite considerable progress in understanding the rumen microbiome, knowledge gaps remain 

regarding the interactions of most rumen microbes with diet and host and their contributions to 

animal nutrition and productivity. First, the role and significance of specific microbial species in 

enhancing nutrient utilization and reducing CH4 emissions are not yet fully understood. Second, 

the crosstalk between different microbial taxa and their dynamic interactions with the diet and 

the host requires further investigation. Third, the heritability (h
2
) of rumen microbes, which 

reflects the influence of host genotypes on shaping the rumen microbiome and its functions [9], 
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needs to be explored more. Fourth, the microbiability (m
2
) of key animal production traits, 

calculated as the proportion of variance in a specific production trait explained by the rumen 

microbiome [10], has only started to be assessed. Fifth, comprehensive investigations into the 

resilience of the rumen microbiome to environmental stressors, such as heat stress, are necessary 

to develop sustainable livestock management practices. Lastly, the exploration of the rumen 

virome is in its initial stages, and its influence on the populations of rumen microbes or the 

overall rumen functions remains to be determined.  

 

Understanding the complex relationship between diet, rumen microbiome, host, and specific 

production traits presents some challenges. The rumen microbiota (or microbial) composition 

can vary considerably even among cohorts of the same breed fed the same diet, making it 

challenging to attribute different production traits to differences in the rumen microbiome. 

Experimental design and analyses, including sequence data processing and bioinformatic 

analyses, lack standardization, which makes it difficult to compare results across different 

studies. Additionally, the microbiome data generated from metataxonomics and metagenomics 

are sparse, high-dimensional, zero-inflated, and compositional, necessitating complicated 

statistical analyses. Furthermore, correlations can be observed among diets, the rumen 

microbiome, rumen functions, and production traits. However, the complex and dynamic nature 

of this diverse microbiome poses challenges in establishing unequivocal causal relationships. 

Additionally, most studies identify rumen microbes only at the genus level, but species, even 

strains, can vary significantly in their metabolism, activity, and contributions to overall rumen 

functions. Furthermore, from an analytical perspective, the data layers generated by individual 

meta-omics technologies can exhibit interactions with animal production traits. Therefore, the 

integration of various omics technologies and data analyses is crucial for a comprehensive 

understanding of the rumen microbiome and its relationship with diet and animal nutrition. This 

integrated multi-omics approach, combined with integrated analysis of the multiple layers of 

data, is referred to as "rumen microbiome nutriomics."  

 

2. Omics technologies for rumen microbiome nutriomics  

 

Since the early to mid-2000s, omics have become the primary technologies in microbiome 

research, including metataxonomics, metagenomics, metatranscriptomics, metaproteomics, and 

metabolomics coupled with bioinformatics. These meta-omics technologies have enabled 

comprehensive investigations of the rumen microbiome, leading to an unrepresented 

understanding and appreciation of its vast diversity, composition, functional capacity, and 

association with diets and key animal production traits, such as feed efficiency and methane 

emission. However, each of these omics technologies has its inherent limitations. 

 

2.1. Metataxonomics 
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The 16S rRNA gene is among the few phylogenetic markers analyzed through fragment and 

sequencing analyses in early studies profiling microbiomes, including the rumen microbiome. 

Metataxonomics involves PCR amplification, high-throughput sequencing of phylogenetic 

markers, and bioinformatic analysis to taxonomically identify the microbes within microbiomes 

[11]. It is the first omics technology used in comprehensively profiling the rumen microbiome, 

greatly contributing to our understanding of its extensive diversity. Although it can help 

taxonomically identify most cellular rumen microbes, it has several limitations [11]. First, the 

preparation of amplicon sequencing libraries involved PCR, but PCR introduces biases [12] 

stemming from the choice of phylogenetic regions targeted and the primers used [13-15]. These 

biases can compromise differential abundance analysis (DAA), especially for the minor taxa, 

posing challenges in comparing DAA results among studies that use different marker regions and 

primers. Second, while metataxonomics can cost-effectively detect and identify most cellular 

microbes, the short amplicon sequences lack the necessary taxonomic resolution to support 

species-level classification [16]. This limitation is particularly profound in the analysis of rumen 

ciliates due to the highly conserved nature of their 18S rRNA gene [17]. Third, although 

comparing the marker sequences to databases with specific tools like PICRUSt2 [18] and CowPI 

[19] can help predict the functional capability of the rumen microbiome, it does not provide 

direct evidence of its functional capacities. Additionally, the lack of species-level identification 

and the detection of numerous unclassified microbes constrain the depth of functional insights. 

Lastly, metataxonomics cannot detect viruses or phages because they do not have conserved 

phylogenetic markers. Nevertheless, metataxonomics is still valuable in rumen microbiome 

studies. Sequencing alternative markers, such as the internal transcribed spacers (ITS) and 23S or 

28S rRNA genes, can help enhance the taxonomic resolution, particularly by sequencing the 

entire length of these markers. The full lengths of all the commonly used phylogenetic markers 

can be sequenced using synthetic long-read sequencing technologies, such as LoopSeq  [20], or 

long-read sequencing technologies, such as MinION  (https://nanoporetech.com/) and Sequell II 

(https://www.pacb.com/technology/hifi-sequencing/sequel-system/), enhancing the accuracy and 

resolution of taxonomic assignments [21]. Furthermore, as demonstrated by Greengene2 [22], 

amalgamating databases of phylogenetic markers and genomes can improve the utility of 

metataxonomics in analyzing the rumen microbiome.  

 

2.2. Metagenomics 

 

In brief, metagenomics encompasses shotgun sequencing and a series of bioinformatic analyses 

of DNA directly extractive from microbiome samples. This omics technology is commonly used 

to unveil the taxonomic diversity and functional capacities of microbiomes, and it has proven to 

be one of the most powerful omics technologies in rumen microbiome research (e.g., [23]). 

Through taxonomic assignments of metagenomic sequences, contigs, or metagenome-assembled 

genomes (MAGs), metagenomics can potentially identify all microbes, including viruses, 

providing insights into the overall diversity, composition, and structure. For sequence-based 

taxonomic assignments, several bioinformatics programs are available, such as MetaPhlAn2 

[24], Kraken2 [25], mOTUs2 [26], and Kaiju [27]. Contig-based taxonomic assignment enhances 
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classification accuracy, and several bioinformatics tools are available for this purpose, including 

DIAMOND [28], CAT [29], and MetaBinG2 [30]. MAG-based taxonomic assignment further 

enhances taxonomic classification. Species-level taxonomic assignment can be achieved with 

GTDB-Tk v2 [31] and its genome database and taxonomy [32]. As sequencing costs decrease, 

metagenomic sequencing depth increases, increasing the number of high-quality MAGs (>90% 

complete with <5% contamination) and thus filling some of the gaps in genome databases. 

Improvements in reference genome databases will facilitate profile microdiversity and 

population dynamics at species, even strain levels. Notably, strain-level profiling of 

metagenomes has been demonstrated using inStrain [33] in a recent study on the interactions 

between rumen microbiome and virome [34]. Therefore, genome-centric metagenomics will 

further enhance taxonomic profiling of the rumen microbiome, particularly at the species and 

strain levels. 

 

Metagenomics can uncover the functional potential of the entire rumen microbiome, along with 

discovering novel genes, enzymes, and pathways. Indeed, early metagenomic studies revealed an 

incredible repertoire of various genes, shining new light on the functional diversity and potential 

of the rumen microbiome [35]. However, metagenomics cannot distinguish genes from dead 

versus viable microbes. Additionally, the "bag-of-genes" generated through gene-centric 

metagenomics provides scant insight into genomic architecture. This approach also has limited 

capacity to unveil new microbial species or reconstruct the metabolic networks of individual 

microbes [36]. Genome-centric metagenomics can address some of the limitations by 

constructing MAGs. Genome-centric metagenomics also provides opportunities to estimate the 

growth rates of individual prokaryotes represented by MAGs [37, 38], illuminating the 

population dynamics of individual microbes within rumen microbiomes [39]. Nevertheless, 

genome-centric metagenomics faces several challenges. First, metagenomic sequences are often 

short (<300 bp), making it challenging and computing-demanding to assemble MAGs, 

particularly for rumen microbes at low abundance, including ciliates and fungi, which also have 

large complex genomes. Metagenomic sequences from multiple samples of the same individual 

or treatment can be co-assembled and binned to help recover genomes of low abundance species, 

but this approach leads to poor results when the samples have a high intraspecies diversity and is 

computational-consuming [40]. Second, genome reconstruction also has biases [41], leading to 

over- or under-representation of specific microbial taxa, affecting the accuracy of metagenomic 

analysis. Third, assigning functions to some genes in metagenomic datasets can be challenging 

due to gaps in reference genome databases and many unknown or hypothetical genes. Indeed, 

about one-third of the protein-coding genes from bacterial genomes could not be functionally 

annotated [42]. Deep learning models emerge as an effective tool to enhance functional 

annotation [42] 

 

Ongoing research efforts are focusing on addressing the above challenges. Integrating short- and 

long-read sequencing technologies can improve sequence assembly, increasing high-quality 

MAGs. Developing and refining bioinformatics tools can enhance the quality of MAGs and 

streamline the metagenomics process. For example, using machine learning, CheckM2 improves 
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MAG quality assessment [43]. Further, expanding and refining reference databases can improve 

the accuracy of taxonomic classification and functional annotation [34, 44, 45]. Integration of 

metagenomics, particularly genome-centric metagenomics, with other omics technologies, such 

as metatranscriptomics and metaproteomics, along with the continued refinement of 

bioinformatics tools, can provide more comprehensive insights into the rumen microbiome and 

its complex interactions with diets, animals, and production traits. It should also be noted that 

genome-centric metagenomic studies have predominantly focused on rumen bacteria and 

archaea, thereby neglecting rumen protozoa, fungi, and viruses. Leveraging on the recent 

bioinformatics tools specifically developed for viral sequence analyses, such as VirSorter2 [46], 

VIBRANT [47], and CheckV [48], several recent studies have successfully revealed that the 

rumen virome is highly diverse and can infect a wide range of rumen microbes, including the 

core rumen microbiome [6], responds to diets [49], and associates with microbial diversification, 

community dynamic, and specific production traits [34]. New bioinformatics tools capable of 

discerning eukaryotic signals amidst metagenomic sequences, coupled with new sequenced 

genomes of rumen protozoa and fungi, will significantly enhance the analysis of these rumen 

eukaryotic microbes within rumen metagenomic datasets.  

 

2.3. Metatranscriptomics 

 

Through the sequencing and bioinformatic analysis of RNA, metatranscriptomics reveals 

actively expressed genes, collectively referred to as the transcriptome. rRNA is commonly 

removed before conducting RNA-Seq to enhance sequencing efficiency and allow more precise 

sequencing of mRNA alongside non-coding RNA and small RNA. Hence, metatranscriptomics 

illuminates the ongoing metabolic and other biological processes within microbiomes. This 

omics technology has yielded valuable insights into how the rumen microbiome responds to 

dietary alterations or interfaces with specific rumen functionalities and production traits at the 

transcriptional level. Previous metatranscriptomic investigations have focused on genes 

exhibiting differential expressions between diets of feed additives (e.g., [50, 51]), animal 

productivities (e.g., [52, 53]), or breeds (e.g., [54, 55]). Linking the expressed genes to the 

specific host microbes can be challenging with such a gene-centric metatranscriptomic approach. 

Furthermore, rumen metatranscriptomes have been analyzed for transcripts of prokaryotes. The 

eukaryotic transcripts and the genomes of RNA viruses should also be analyzed in future studies.   

 

Genome-centric metatranscriptomics focuses on the analysis of transcriptional activity within 

microbiomes, potentially at the level of individual genomes. This approach employs RNA-Seq 

and comparing transcript sequences to individual genomes or MAGs. Hence, it enables 

researchers to i) associate transcripts with the expressing genomes or MAGs and ii) reconstruct 

genome-scale metabolic networks or models for individual microbes. Such information 

facilitates a more precise evaluation of the contributions of those microbes to the critical 

metabolic processes, such as feed digestion and fermentation, protein synthesis, and CH4 

emissions. Additionally, differential gene expression and pathway enrichment analyses are 

crucial in revealing how microbial activities respond to variations in diets and interface with 
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rumen functions and animal productivity. Furthermore, genome-centric metatranscriptomics 

facilitates identifying the rumen fungi that produce microRNA-like RNAs (no evidence is 

available indicating that bacteria, archaea, and protozoa produce microRNAs) and all cellular 

rumen microbes produce small RNAs. While genome-centric metatranscriptomics can 

potentially provide dynamic insights into rumen functions at the genome and dynamics in the 

rumen microbiome, it faces several challenges with low-abundance transcripts. Gaps in reference 

genome databases and the presence of unknown or hypothetical genes further hinder the 

identification of some expressed genes [56]. Furthermore, genome-centric metatranscriptomics 

can be biased toward cultured microbes with well-annotated genomes. As sequencing costs 

decrease and reference genome databases expand, metagenome-centric metatranscriptomics is 

poised to surpass gene-centric metagenomics.     

 

2.4. Metaproteomics  

 

Metaproteomics, the study of all the proteins expressed in a microbiome, the metaproteome, 

offers a snapshot of the expressed proteins therein. Unlike metagenomics or metatranscriptomics, 

it provides a "snapshot" of actively working proteins, revealing the actual metabolic landscape at 

the sampling time. Pathway enrichment analysis can help identify the pathways corresponding to 

the identified proteins, providing dynamic insights into the activities of a microbiome. This 

extends beyond the capabilities of metagenomics or metatranscriptomics, furnishing a more 

direct perspective on the actual functional processes and their connection to animal productivity 

[57]. Studies have used metaproteomics in investigating the metabolic influence of rumen 

protozoa within the rumen microbiome [3] and its responses to dietary interventions [58] and 

heat stress [59]. Metaproteomics can also help identify biomarkers associated with specific 

microbial functions, microbiome dysbiosis, rumen functions, or production traits. However, 

metaproteomics can face several challenges, as demonstrated in other microbiomes, including 

the complexity and diversity of the rumen microbiome, limitations in detecting low-abundance 

proteins, and issues with identical peptides from homologous proteins [60-62]. Finally, the lack 

of complete genomes and protein databases for many rumen microbes, particularly rumen fungi 

and protozoa, hinders precise annotation and taxonomic assignment, leaving some identified 

proteins with unknown origins. These challenges are further exacerbated by the presence of 

dietary proteins in the rumen. To fully harness the potential of genomic-centric metaproteomics 

for studying the rumen microbiome, comprehensive reference genome databases specific to this 

microbiome are essential. The Rumen Microbial Global (RMG) Network or a similar 

international network can facilitate collaborative efforts to compile existing and future genomics 

data including MAGs. These databases, designed to minimize gaps in the representation of key 

rumen microbes, will enable genome-centric metaproteomics. Such an approach promises 

unprecedented insights into the roles of key rumen microbes and their impacts on various rumen 

functions and production traits. Ultimately, this information will empower efforts to optimize the 

rumen microbiome for improved animal health and productivity.  

 

2.5. Metabolomics  
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Metabolomics leverages proton NMR spectroscopy and gas or liquid chromatography coupled 

with mass spectrometry (GC-MS or LC-MS) or tandem MS (GC-MS/MS, or LC-MS/MS) to 

separate and identify individual metabolites. Targeted metabolomics analyzes a predefined set of 

related metabolites, whereas untargeted metabolomics involves global metabolic profiling. 

Metabolomics enables the elucidation of the complex metabolic profiles within the rumen 

microbiomes, offering valuable insights into its functional activities. Univariate and multivariate 

statistical analyses can help identify specific metabolites that differ between animals or 

treatments. Moreover, pathway enrichment analysis can help identify the metabolic pathways 

that are influenced or differentially expressed. Metabolomics has been used in examining how 

the rumen metabolic profiles respond to dietary shifts [63, 64], dietary supplements [65, 66], 

stresses [67, 68], and health status [69, 70]. Furthermore, metabolomics aids in the identification 

of rumen metabolites or pathway enrichment indicative of divergent rumen functions or 

production traits, including residual body weight gain [71], RFI [72], and efficiency of milk 

production in dairy cows [53].  

 

Rumen metabolomics also faces several challenges. First, the rumen microbiome produces a 

myriad of metabolites at various concentrations, but only a relatively small number of them can 

be detected or identified. Second, identifying and annotating rumen microbiome metabolites 

pose challenges because many metabolites lack known reference standards, leading to 

uncertainties in result interpretation. Third, the accurate assessment of the metabolic response of 

the rumen metabolome necessitates the quantification of metabolites, but the complex matrices 

of rumen samples may compromise the reliability of quantification. Fourth, several metabolomic 

databases like BMDB (www.bovinedb.ca), MetaboBank (https://metabo.ca) and MetaboLights 

(http://www.ebi.ac.uk/metabolights/), as well as pathway databases like KEGG 

(https://www.genome.jp/kegg/) and MetaCyc (https://metacyc.org/) can be used to map 

metabolites to their corresponding metabolic pathways. However, gaps in these databases 

constrain the reliable identification of metabolites and linking metabolites or metabolic pathways 

to the producers. The development of metabolomic databases specific to the rumen ecosystem 

and advancements in bioinformatics tools for metabolite annotation and pathway analysis will 

contribute to a more accurate and meaningful interpretation of rumen microbiome metabolomic 

data. Furthermore, integration with other omics technologies, such as genomics, genome-centric 

metagenomics, metatranscriptomics, and metaproteomics, is essential to further enhance the 

capability of metabolomic analysis of the rumen microbiome. As demonstrated in a recent study 

[71], integrating currently used LC-MS with other techniques, such as isotope labeling, can 

increase the sensitivity of metabolite detection. 

 

2.6. Bioinformatics and databases 

 

Bioinformatics is essential for data analysis in all meta-omics. The power of omics technologies 

depends on the capabilities of available bioinformatic tools in identifying and classifying 

microbial species, annotating sequences and proteins, predicting functional capabilities, and 
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unveiling metabolic activities. Many bioinformatics algorithms and tools are available to analyze 

the omics data derived from various microbiomes. Most bioinformatics tools are initially 

developed for other microbiomes, and they are applied to omics investigations of the rumen 

microbiome. However, unlike other host-associated microbiomes, the rumen microbiome has 

diverse eukaryotic microbes (protozoa and fungi), which play significant roles in ruminant 

nutrition. These eukaryotic microbes are often overlooked and under-studied due to the lack of 

appropriate bioinformatics tools. Bioinformatics algorithms employing machine learning are now 

available to analyze eukaryotes [73-75]. Machine learning-based bioinformatics algorithms have 

also been developed to extract the largely underexplored viral sequence data [46, 48, 76, 77] and 

mobile genetic elements [78]. The advent of novel bioinformatics tools will greatly enhance 

comprehensive analyses of all domains and kingdoms within the rumen microbiome. It is 

envisaged that the near future will witness a substantial surge in data volumes capturing various 

facets of the rumen microbiome with unparalleled depth and resolution. Advancements in 

bioinformatics algorithms and tools, particularly those that can seamlessly integrate datasets 

from multi-omics sources, are needed to analyze this anticipated influx of diverse data 

effectively and adequately.  

 

The experience from the preceding decades has shown that general-purpose genome databases 

have gaps, with inadequate representations of numerous microbial species. This deficiency 

becomes particularly evident when these databases are employed in rumen microbiome 

investigations. For example, a substantial portion of the biomass in the rumen is attributed to 

microbial eukaryotes, particularly protozoa [3]. However, the current databases have few 

genomes of rumen protozoa. Rumen viruses and fungi are also underrepresented in general-

purpose databases. The recent bioinformatics tools tailored for viral sequence analysis have 

enabled the development of the first global comprehensive rumen virome database [6]. A genome 

database of rumen protozoa and fungi must be developed for multi-omics investigations into this 

important group of rumen predators. The recently sequenced 52 single-cell amplified genomes 

(SAGs) are a valuable initial resource [79]. Since zoospores of rumen fungi can be singularly 

picked, the single-cell genome sequencing approach used to sequence the SAGs of rumen 

protozoa may be used to sequence the genomes of rumen fungi.    

 

3. Rumen microbiome nutriomics – connecting the rumen microbiome and 

nutrition 
 

The intricate interplay among diet, the rumen microbiome, and ruminants establishes a dynamic 

nexus that forms the foundation for rumen functions, nutritional processes, and, ultimately, 

productivity. Investigating this nexus and identifying the rumen microbes or metabolic pathways 

that influence specific rumen functions or animal production traits has long been a focus of 

research. Through integrating multi-omics technologies and data analyses, rumen microbiome 

nutriomics can advance our comprehension of the roles played by rumen microbes in rumen 

functions and nutrition.  
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3.1. Rumen microbiome nutriomics through integrated omics and data analysis  

 

Each omics technology has distinct capabilities and limitations. This recognition has led to the 

utilization of multiple omics in some recent studies, resulting in a more comprehensive 

characterization of the rumen microbiome [69, 80, 81]. However, few studies have sufficiently 

integrated the analysis of the data derived from different omics technologies or established the 

links between the data and rumen functions or animal production traits. This challenge is 

attributed, in part, to the multiple layers of high-dimensional microbiome data generated by 

individual omics technologies [82]. Several strategies can reduce data dimensionality. These 

include combining data normalization, binning of co-abundant features (genes or metabolites), 

integration with prior biological knowledge [82], and clustering MAGs into metagenomic 

species [83]. Additionally, identifying modules of related microbiome features, such as modules 

of microbiome, gene expression, and metabolites, can contribute to a more cohesive analysis. 

Bioinformatic approaches are continually evolving to integrate data derived from multi-omics 

technologies. For instance, a recent study utilized weighted gene co-expression network analysis 

(WGCNA) and structural equation modeling (SEM) to integrate metataxonomic, metagenomic, 

and metabolomic data, revealing informative connections from rumen microbes to metabolites 

and milk protein yield [83]. Furthermore, combinatorial network and machine learning methods 

have demonstrated utility in identifying metagenomic and host genotypes potentially linked to 

CH4 emissions and feed efficiency in dairy cows [84]. In line with these advancements, we 

propose an integrated genome-centric multi-omics approach to holistically characterize all the 

rumen microbes (i.e., prokaryotes, eukaryotes, and viruses) and key aspects of the rumen 

microbiome and establish connections with diets, rumen functions, and animal phenotype and 

production traits (Fig. 1).   

 

In brief, existing high-quality MAGs, such as the large sets of prokaryotic MAGs reported 

recently [3, 44, 45], viruses [34, 85], and genomes of the rumen microbiome such as those of the 

Hungate1000 project, ciliates [79, 86], and anaerobic fungi [87-89], along with high-quality 

MAGs generated from ongoing studies, are combined to develop a comprehensive genome 

database (rumen microbiome genome database, RMGD). These MAGs and genomes are 

taxonomically annotated using the taxonomy implemented in GTDB, which supports species-

level classification based on the phylogeny derived from a concatenated set of 120 single-copy 

marker proteins. The RMGD is used for taxonomic classification and functional annotation of 

metagenomic and metatranscriptomic data. The RMGD can also be used in classifying OTUs or 

ASVs generated by metataxonomics, potentially at the species level, by sequence mapping. The 

existing 52 SAGs of rumen ciliates [79] and the recent (RVD) [6] can be expanded to support 

rumen virome analysis. However, as discussed above, concerted efforts are needed to sequence 

more rumen protozoan and fungal genomes to develop a rumen eukaryotic genome database and 

genome-based taxonomy.  

 

The AA sequences translated from all the ORFs of the RMGD are then used to prepare a 

proteome database (RMPD) to aid in metaproteomic investigations of the rumen microbiome. 
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Metabolic networks (MN) are assembled from the pathways reconstructed from individual 

MAGs and genomes to assist in identifying the transcripts and metabolites detected through 

metatranscriptomic and metabolomic analyses, respectively. The multiple layers of omics data 

are analyzed in an integrated manner [90]. While having not been used in rumen microbiome 

nutriomics studies, xMWAS [91] may be a valuable software for data integration, network 

visualization, clustering, and differential network analysis of data derived from two or more 

omics platforms. This integrated omics approach and data analysis will comprehensively 

characterize the rumen microbiome with respect to its many key features (Fig. 1). Furthermore, 

the integration of multiple omics data and analyses will enhance the accuracy of functional 

annotations. Such detailed data can be further interrogated in the context of diet, rumen 

functions, animal genotypes, and production traits.   

 

3.2. Deciphering the interdependent labyrinth within the rumen ecosystem - Advancing towards 

establishing causality in the nutriomics of the rumen microbiome  

 

The central goal of rumen microbiome nutriomics investigations is to delve into connections 

between various sets of data encompassing diets, rumen microbiome features identified through 

the omics technologies, rumen functions (i.e., feed digestion and fermentation characteristics), 

key production traits (e.g., feed digestibility, feed efficiency, growth, lactation performance, CH4 

emissions, etc.), and response to stress (e.g., heat stress), and nutritional disorders (e.g., subacute 

rumen acidosis). However, determining the causal relationships among these datasets remains an 

arduous task. Hence, researchers have used several analyses, such as DAA, correlation, and 

association analyses, to infer potential relationships. Differential abundance analysis can identify 

microbial taxa (primarily genera, OTUs, or ASV), functional categories of genes, and less 

frequently pathway enrichment, transcripts, and proteins that are differentially abundant between 

diets, animal groups, treatments, and animal production traits. Several analysis methods, 

including ANCOM-BC, which address the data features of the rumen microbiome, in particular 

zero inflation and compositional effects, along with partial least squares discriminant analysis 

(PLS-DA) and linear discriminant analysis effect size (LEfSe), have been commonly used in 

DAA. Studies in ruminant nutrition frequently involve repeated measurements of the same 

subjects (for example, using a Latin square design) and experimental designs incorporating fixed 

and random effects (such as the randomized complete block design). For these studies, DAA 

methods capable of analyzing mixed effects, like LinDA [92], should be used. However, all these 

methods have certain limitations [93]. To further improve DAA of microbiome data, some new 

methods that can better address the microbiome data features have been developed, such as 

ZicoSeq [94], LOCOM [95], and CDEMI [96]. Future rumen microbiome nutriomics studies 

should employ these new methods. Like DAA, differential gene expression (DGE) analysis 

unveils variations in the expression of microbial genes and pathway enrichment; these variations 

can be associated with differences in diets, rumen microbiome structure, rumen functions, or 

animal production traits. Correlations among these datasets can also be evaluated with 

appropriate, non-parametric methods. Differentially abundant microbial taxa and other 

microbiome features between, or those correlated with, specific rumen functions and animal 
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production traits may guide further investigations into the causal relationships in rumen 

microbiome nutriomics.  

 

Association analyses are used to reveal specific rumen microbiome taxa, often at the OTU (or 

ASV) and genus levels, as well as categories of functional genes linked to diets and animal 

production traits. Recently, microbiome, microbiota, or metagenome-wide association studies 

(MWAS) have been conducted to discover all taxa or functional gene categories associated with 

a specific host phenotype or disease status in humans and animals [97]. Despite having been 

frequently used to unveil gut microbes associated with diseases in humans (e.g., [98]) and feed 

efficiency [99] along with intramuscular fat content [100] in pigs, MWAS has only been used in 

a few recent studies on ruminants [101, 102]. In a sheep study, MWAS did not identify any 

OTUs associated with dairy traits [101]. The rumen microbiome has thousands of OTUs. 

Individual OTUs may lack sufficient "weight" to exhibit significant association. Therefore, 

MWAS might be more effectively applied to genera. Until now, MWAS has only been utilized to 

associate microbes detected through metataxonomics with animal production traits. However, 

assessing associations between rumen microbes and variations in diets and rumen functions will 

be equally applicable. Furthermore, MWAS should be able to examine associations between diet 

or animal production traits with rumen microbiome data derived from other omics technologies. 

An analogous approach, virome-wide association studies (VWAS), could be developed to 

identify rumen viruses associated with diets, specific rumen microbes, rumen functions, and 

animal production traits. This would represent a viral version of MWAS, extending the scope of 

broad association studies to include the viral component of the rumen ecosystem. 

   

Many statistical or data analytics approaches, such as correlation, regression, probability, random 

forest, and deep learning, can be used in MWAS. However, the unique data features of 

microbiomes may pose challenges to the robustness of MWAS. New methods are being 

developed to improve and streamline MWAS further. Recent examples include omnibus 

metagenome-wide association study with robustness (OMARU) [103], MiATDS [104], and 

multiMiAT [105]. OMARU rigorously controls the statistical significance of MWAS results, 

including correction of hidden confounding factors and application of multiple test comparisons 

[103]. Additionally, OMARU can evaluate pathway-level links between metagenomes and 

GWAS, as well as links between taxa and genes in metagenomes. MiATDS performs adaptive 

microbiome-based association test to detect microbial association signals with diverse sparsity 

levels (i.e., sparse, low sparse, non-sparse). This is achieved by defining probability degree to 

measure the associations between microbes and host phenotypes and introducing the adaptive 

weighted sum of powered score tests by considering both probability degree and phylogenetic 

information [104]. Divergently, implementing the multinomial logit model framework, 

multiMiAT supports MWAS between microbiomes and ordinal or nominal multicategory host 

phenotypes or traits [105]. Additionally, genome-wide association studies (GWAS) using rumen 

microbes as traits can identify heritable rumen microbes [102, 106]. The integration of MWAS 

with GWAS, referred to as microbiome genome‐wide association studies (mGWAS), provides a 

comprehensive approach for identifying heritable microbes associated with a specific phenotype 
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[107]. For example, in growing lambs, mGWAS helped identify four genera of heritable rumen 

microbes associated with body weight [102]. This integrated methodology holds promise in 

identifying rumen microbes that can serve as potential markers, facilitating selective breeding for 

enhanced production traits.    

 

It should be emphasized that association studies can only identify rumen microbes or other 

microbiome features exhibiting statistical correlations with diets, rumen functions, or specific 

animal production traits. Although prior knowledge of rumen microbes and their metabolism, 

meta-analyses of relevant studies, and longitudinal studies can help infer the biological 

plausibility of associations, caution must be exercised in interpreting these associations as causal 

relationships. To transcend mere correlation and association, it is crucial to establish causal 

relationships between diets, features of the rumen microbiome, rumen functions, and key animal 

production traits. Experimental testing or verification of the above causal relationships is arduous 

due to the complexity of the rumen microbiome and its intricate interactions with diet and 

animals. At the microbiome level, causality can be deduced through modeling approaches that 

integrate causality principles [108]. Several methods have been used to predict the microbes 

potentially driving a specific production trait in ruminants. These methodologies include 

structural equation modeling (SEM) [109] and causal Bayesian networks (CBNs) [110]. SEM 

allows researchers to investigate the direct and indirect effects of variables on one another, 

furnishing comprehensive insights into their complex relationships within a theoretical 

framework. On the other hand, CBNs utilize directed edges to represent causal relationships or 

data dependencies between variables, providing causal inference between rumen microbes and 

diet or animal production traits. SEM has proven valuable in identifying rumen microbial 

modules in dairy cows that potentially regulate milk protein yield [83] and CH4 emissions [111]. 

While CBN analysis has not been used in rumen microbiome nutriomics studies, it has 

demonstrated utility in inferring causality between the gut microbiome and colorectal cancer 

[112] and between infant gut microbiome and resistome [110] in humans. Causal inference 

models have also found applications in human gut microbiome research [113, 114]. These 

analysis methods can be instrumental in deducing causal relationships in rumen microbiome 

nutriomics studies.  

 

Machine learning has been increasingly used in investigating microbiomes, including rumen 

microbiomes. Compared with the traditional linear models commonly used in animal science 

research, machine learning is advantageous in analyzing large multidimensional data and 

inferring non-linear relationships. Machine learning has proven effective in predicting animal 

performance, exemplified by its application in forecasting CH4 emissions from sheep [115], feed 

efficiency in dairy cows [53], and animal health conditions [116] based on high-dimensional 

rumen microbiome data. Akin to its potential in human microbiome research, machine learning 

will prove itself to be useful in rumen microbiome nutriomics investigations, particularly in 

facilitating causal inference. Furthermore, recent studies have demonstrated the potential of 

artificial intelligence in human microbiome research (e.g., [117]). This suggests the prospect of 

applying artificial intelligence in rumen microbiome nutriomics research, including discovering 
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causality by analyzing large datasets of diets, rumen microbiomes, and animals and identifying 

their patterns and associations with animal production traits. 

 

3.3. Assessing the magnitude of the rumen microbiome contribution to animal production traits 

Because of its vital role in ruminant nutrition, the rumen microbiome significantly influences key 

animal production traits. Recent studies have quantitatively assessed the microbiability of 

specific animal traits, shedding light on the contribution of the rumen microbiome. Noteworthy 

among these traits are CH4 emissions (m
2 

of 13%) [10], RFI (m
2 

of about 20%), milk energy (m
2 

of about 25%) [118], and milk fatty acid composition in dairy cows (m
2 

>30% for some fatty 

acids) [119], as well as milk composition (m
2 

of up to 7%) [101] and body weight (m
2 

of 20%) in 

sheep [102]. These studies estimated the plausible contribution of the entire rumen microbiome 

to the production traits. Furthermore, MWAS based on single-OTU regression has revealed a 

small number of fecal OTUs significantly or suggestively linked to traits like RFI, FCR, daily 

feed intake, and backfat thickness in pigs [99]. In a recent study utilizing machine learning to 

develop prediction models for CH4 emissions from sheep, certain genera of rumen microbes 

were selected as predictor variables alongside animal data [115]. The incorporation of microbial 

prediction variables not only enhanced prediction accuracy but also bolstered model robustness. 

This machine learning approach identifies rumen microbes potentially associated with CH4 

emissions and provides insights into their effect sizes through the coefficients of the microbial 

predictor variables. 

 

No study has assessed the microbiability of rumen functions, such as feed digestibility and VFA 

profiles. Significant microbiability has been demonstrated for digestive efficiency in pigs [120]. 

Given the direct correlation between rumen functions, feed efficiency, and other key animal 

production traits, future research is warranted to investigate the microbiability of major rumen 

functions and the rumen microbial taxa (genera or species) contributing to those functions. 

Furthermore, heritable rumen bacteria contribute more to the microbiability of lactation 

performance than their nonheritable counterpart [121]. Given that host genetics significantly 

influence heritable rumen microbes, a novel metric called 'holobiality' (ho²) has been proposed. 

This metric combines the heritability of specific production traits with their microbial 

contribution (microbiability). By quantifying the joint influence of the host genome and rumen 

microbiome, holobiality offers promising potential for predicting improvement in these traits. 

 

4. Concluding remarks and future perspectives 

 

The ruminant industry faces challenges in optimizing feed efficiency, minimizing environmental 

impact, and enhancing the quality of milk and meat to meet growing global demands for dairy 

and meat products. The diverse rumen microbiome, as the primary supplier of metabolizable 

energy, protein, and precursors of milk and muscle protein, requires a more profound 

understanding with respect to its composition and functions, as well as its interactions with diet, 

animal genotypes, and production traits. Furthermore, it is essential to unveil the causal 

relationship among these layers of variables, including data from ruminants. While various omics 
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technologies have been used to investigate the rumen microbiome, each has limitations. 

Recently, the use of two or three multi-omics has shown promise in providing a more 

comprehensive characterization of the rumen microbiome. However, the data generated through 

these technologies are often not sufficiently analyzed or interpreted in an integrated manner. The 

proposed concept of rumen microbiome nutriomics advocates for the integration of multiple 

omics and data analyses. This integrated approach aims to advance our comprehensive 

understanding of the rumen microbiome and its intricate interactions with both diet and animals. 

The establishment of the Animal Nutriomics journal serves as a vital platform for disseminating 

and exchanging novel findings from rumen microbiome nutriomics investigations, facilitating 

collaboration and knowledge dissemination within the scientific community. 

 

Central to rumen microbiome nutriomics is the development of a comprehensive RMGD. While 

some researchers have developed in-house databases, there exists significant variability in their 

completeness and accuracy of curation, thereby exerting a significant influence on the analysis 

outcomes [122]. A serious undertaking is needed to compile the genomes and high-quality 

MAGs of rumen microbes into a publicly accessible RMGD. Concerted efforts among 

researchers in the realm of the rumen microbiome are needed to sequence more genomes of 

rumen protozoa, fungi (in particular), and viruses or mine the existing rumen metagenomes. 

Moreover, comparisons of results and findings among studies have been compromised or 

difficult due to the lack of sufficient metadata and technical variations across studies, such as 

study design; sampling; extraction of isolation of DNA, RNA, protein, and metabolites; as well 

as bioinformatic analyses [123-125]. A set of criteria for the above technical aspects and 

workflows will be valuable to standardize the processes of rumen microbiome nutriomics 

investigations. Such standardization will be particularly invaluable for data reanalysis using big 

data analytics. 

 

The "holy grail" of rumen microbiome nutriomics is to reveal and understand the causal 

relationships between different layers of data, ranging from diet, rumen microbiome, rumen 

functions, animal genotypes, and key production traits. Differential abundance analysis, 

correlation, and association analysis may help identify potential interactions and indicators of 

some important aspects, such as feed efficiency, product quality, or methane emissions. However, 

causal inference is urgently needed to establish their cause-effect relationships. Several 

approaches, including modeling and causal Bayesian networks, can be used. Machine learning 

and artificial intelligence also hold potential in this pursuit in future investigations.    
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