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AUTOMORPHISM GROUPS OF DENUMERABLE
BOOLEAN ALGEBRAS

RALPH McKENZIE

We are concerned with the extent to which the structure of a Boolean algebra
I (or BA, for brevity) is reflected in its group of automorphisms, Aut . In
particular, for which algebras can one conclude that if Aut % = Aut B, then
I = B? Monk has conjectured [3] that this implication holds for denumerable
BA'’s with at least one atom. We shall refute his conjecture, but show that the
implication does hold if % and B are denumerable, if each has at least one atom,
and if the sum of the atoms exists in U. In fact, under those assumptions the
algebra A can be rather neatly recovered from its abstract automorphism
group.

The assumption of denumerability is important. It is well-known that the
automorphism group of any denumerable BA has the power of the continuum.
S. Shelah has recently constructed in every uncountable cardinal «, a BA of
power k having only one automorphism. (This very significant result that
concludes a long chain of investigations by de Groot, Jénsson, Lozier, Monk,
Balcar and Stépanek, and others, is yet unpublished.)

M. Rubin [4] has shown how to recover A from Aut  if A = Ay is the
atomic saturated B4 of uncountable power A = N (His result is actually much
stronger than this implies.)

Shelah independently discovered our example refuting Monk’s conjecture.

Our notation is the same as in [2], or [3]. %A, B denote Boolean algebras of
cardinality NXo. The universe of ¥ is denoted 4, its set of atoms is denoted by
At . The principal ideal algebra determined by ¢ € A is denoted A | a.

Throughout, we denote by Q a denumerable atomless BA (any two such
are isomorphic), and § = Aut Q. If « is any cardinal number, Sym « denotes
the group of all permutations of a k-element set. Monk proved that Aut 9 =~ §
if and only if A = L or Y is isomorphic to the direct product of Q and a
2-element BA. And he proved that if m = 2 is an integer, then Aut I =
Sym m X § if and only if U has exactly m atoms (2 is isomorphic to the
product of Q with m copies of a 2-element algebra). Hence we can restrict our
attention to algebras with denumerably many atoms.
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By Fin % we mean the subgroup of Aut U consisting of automorphisms that
move only finitely many atoms, and fix every element disjoint from all the
atoms moved. Each finite permutation of At ¥ is the restriction of a unique
member of Fin . We focus attention on the members of Fin 9 which move
exactly two atoms. Let us call these atomic transpositions.

LEMMA 1. Let w € Aut U, where |A| = |At A| = Ro. Then = is an atomic
transposition if and only if it satisfies in Aut U the following formula 6 (x):

=1 and ~7=1 and Vx)((xrx~lx—1)6 =1).

Proof. Let m be an atomic transposition. Clearly 72 = 1. Let ¢ € Aut ¥ and
put ewo~ 17! = 4. Now, ¢mo~! is an atomic transposition. There are two cases,
depending on whether omo~! moves some atom moved by =, or does not. In the
first case, v is essentially only acting in an interval ¥ [ ¢ that is finite with at
most 3 atoms. Hence v¢ = 1. In the second case, ewre™! commutes with =, so
vt = (omo™1)2(x1)? = 1.

The above remarks show that 6(x) holds in Aut .

Let us suppose, conversely, that = is an element of Aut U satisfying .
It must move some element of 9, and we can finda € A sothata - w(a) = 0
a. We can even suppose that a is an atom or ¥ [ a is atomless. It must be that
a is an atom, because if U [ a is atomless it has an automorphism of infinite
order, and we can concoct v € Aut A such that y[¥[7a = id[ A wa,
v(a) = a,and v [ A [ a is of infinite order —then yry~'zr—1 acts like vy on A [ a
and has infinite order. ‘

So we have an atom a with ma % a. It remains to show that = is the atomic
transposition exchanging a¢ and = (a). In other words, that = on the interval
A — (a + wa) is trivial. If not, then the above argument shows that there are
additional atoms moved by 7. We break the argument into cases: (i) # moves
at least four atoms but fixes at least two atoms; (ii) = moves at least eight
atoms.

In case (i), say ay, . . . , as are moved, ma; = aq, maz = a4; and as and ag are
fixed. Thenlet ¢ € Fin A be a mapping thatincludes the cycles (asaqas) (@4as) (a1).
One calculates that ome~'7r~! has the cycle (aia¢aqas), hence its order does not
divide 6.

In case (ii), say « includes the cycles (a;as) (asas) (asas) (aras). Let ¢ € Fin 9
be so that owe~! includes (asa3) (asas) (asaqr) (a1as). By computation, ere—1lz~!
includes (a,asasar) so its sixth power is not 1.

This concludes the proof.

We remark that the formula 6 was used in [1] to characterize the transposi-
tions in Sym «, where « is an infinite cardinal.

Lemma 1 opens the way to recovering U from its automorphism group. We
define some further group-theoretic formulas. (Here [x, y] is an abbreviation
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for xyx—1y=L.)
A(x,v,2):0(x)and #(y) and 8(z) and [x,y] # land [x, 2] # land [y, 2] # 1.

E(x1, 2, 235 ¥1, Y2, ¥3): A (%1, x2, x3) and 4 (y1, ¥2, ¥3) and
{\' ([xs, 35l = 1> 2, =y)).
¥

M (u; %1, %2, X33 Y1, Y2, ¥3): A(F) and4 (§) and
E(uxlu_l, uxgu_l, uxgu_l, V1, V2, V3).

Let A bea BA,let ® = (G, -) be its automorphism group, and let 3 be the
predicate defined by:

M(o,a,b) ®c €G and a € At and o(a) = D.

Consider the 2-sorted structure Aut *U = (G, At ¥, -, M). The above formulas
serve to interpret Aut *I in ¢, provided that U is denumerable and has
infinitely many atoms. More precisely, & = A4 (a1, 09, 03) if and only if a4, 02, 03
are distinct atomic transpositions with just one atom moved by all; & = E(¢, 7)
if and only if ¢ and 7 are nested over the same common atom. Clearly, £ defines
an equivalence relation on 4 and A/E is canonically isomorphic to At . If
equivalence classes ¢/E and 7/E are canonically associated with the atoms «
and b, then ® = M(w, ¢, 7) if and only if 7 (a) = b.
The following should now be obvious.

COROLLARY 2. Let I and B be denumerable BA's having infinitely many atoms.
If Aut % = Aut B, then Aut *A = Aut *3.

COROLLARY 3. For every definable property ® of structures of the type of
Aut *U, there is a corresponding property & of groups so that for denumerable A
with denumerably many atoms, Aut *A = ® if and only if Aut A = &'.

Monk proved [3, Thm. 4] that the property of ¥ that it is atomic is reflected
faithfully in a property of Aut ¥, viz that it is not simple and that it has a
smallest non-trivial normal subgroup. We have a similar result for the property:
the sum of all atoms exists in 9.

THEOREM 4. Let A and B be denumerable BA's such that Aut I =~ Aut B.
Then 3 At A exists in W if 3 At B exists in B.

Proof. Relying on Monk's results for algebras with finitely many atoms, we
can assume that each of 9 and B has infinitely many atoms. The formula
(Va)(At(a) — M(x, a, a)) defines in Aut *¥ the subgroup ¥ of Aut 9 con-
stituted by the automorphisms that fix all atoms. If the sum of atoms exists
in 9, then the group J# either is trivial (3 is atomic) or is simple (isomorphic
to §). If the sum of atoms does not exist, then.”# has a large normal subgroup
composed of those = such that for some atomless ¢ # 0in A, 7 [ AT —a is the
identity function.

We shall show that this is a proper subgroup of 7. Let (¢,: n < w) be an
enumeration of 4, and {c¢, : # < w) be an enumeration of the non-zero atomless
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elements of . Since there is no least element above all the atoms of 2, like-
wise the set of atomless elements has no least upper bound in A. We con-
struct by induction a sequence (d,: # < w) of atomless elements, and a
sequence (b, : n < w) such that in ¥ [b, the sum of atoms does not exist.

Put by = ao, or by = —a, according as the sum of atoms does not, or does
exist in A [ ao. Then there is an atomless d < by with d- ¢y = 0 # d. Put
dy = d. Having obtained b,, d,, put b,.1 = b, - @yy10r byy1 = b, - — a,410 that

the sum of atoms = b,,, does not exist. Then choose for d,;1 a non-zero atom-
less element such that d,1+ (X iga @i + D igns1 €1) = 0and d,y1 < by

The sequence (d, : n < w) has the following properties: (1) for each x € 4,
either x - d, = 0 for large n, or x = d, for large n; (2) for each atomlessx € 4,
we have x - d, = 0 for n large.

Now we can define an automorphism = as follows. Fix, for each # < w, an
isomorphism ¢, : ¥ [ ds, ™ A [ do,r1. Then put (where either x-d,, = 0 for
m = 2k,orelsex = d, form = 2k):

m(x) =% — Z d; + Z [o;(x - d2y) + Ujd(x “daj1)].
i<tk <k

Clearly, = € 5 and its action is not bounded by any atomless element.

We have produced a property of Aut *I that determines whether the sum
of atoms exists in A. By Corollary 3, this is equivalent to a definable property
of Aut .

THEOREM 5. Let A and B be denumerable BA's not isomorphic to Q, with
Aut U = Aut B. If the sum of atoms exists in U, then A = B.

Proof. By [3], we can assume that each algebra has denumerably many
atoms. By Theorem 4, the sum of atoms exists in 8. Hence A = A, X AL,
B =~ B, X B, where A, B are either atomless or 1-element algebras, A; and
B, are atomic. By Monk’s result, A is atomic if and only if B is, i.e. A = B,
By Corollary 2, Aut *I = Aut *®B. Part of this isomorphism is a bijection
j: At A < At B. Now ¥, is canonically isomorphic to an algebra of subsets of
At 9, whose universe is {d: « € A} = A, where @ = {x € At %: x < a}. And
likewise for B;. To establish the theorem, it is sufficient to prove that j carries
4 onto B. Actually, we can define 4 in the structure Aut *3(, as follows.

P) Let X C At . There exists a € A with X = a if and only if {¢X: ¢ €
Aut 9} is countable.

The proof of the forward implication in P) is trivial. For the converse, we
first prove

Q) Let X C At A, X ¢ A. There is a convergent set ¥ C At 9 such that
YN X and ¥V ~ X are infinite. (By ‘‘convergent’’ is meant that foralla € 4,
one of the sets Y M @, ¥ ~ a is finite.)

To prove Q), start with an enumeration (a,: # < w) of A. Assume that
X ¢ A. Then put ¢o = ag or — a, so that X N ¢ ¢ A. Having generated
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0= ...=¢c,and XN, @ A, put 1 = €y Apy1 OF Gy — Gy SO that
X N ¢yy1 @ A. Now with the sequence (c,: # < w) so constructed, we can
choose distinct atoms a,, b,(n < w) with a, € ¢, N X, b, € ¢, ~ X. (Since
e, X ¢ 4,also¢, ~X ¢ A, soboth sets are infinite.) Put ¥ = {a,: # < v}
\U {b,: n < w}. This set has the desired properties.

To finish the proof of P),let X ¢ A,and let Y beasin Q). By [3, Lemma 1.1],
every permutation of ¥ extends to an automorphism of . This gives con-
tinuum many automorphic images of X in ¥.

The proof of Theorem 5 is complete.

Remarks. The Cantor-Bendixson derivative of 9 is the factor algebra
AMD = Y /I where I is the ideal generated by the atoms in U. Restricted to
isomorphism types of atomic denumerable algebras, the Cantor-Bendixson
derivative gives a one-to-one map onto all isomorphism types of countable
algebras excepting that of the 1-element algebra. If % denotes the unique
atomic denumerable algebra whose derivative is U, then by Theorem 5, the
map A — Aut AED provides a one-to-one map of isomorphism types of
countable BA’s with at least two elements into isomorphism types of groups
of permutations of a denumerable set, each group having continuum many
elements.

THEOREM 6. There exist denumerable BA's Y and B, each having denumerably
many atoms, such that Aut A = Aut B and U is not isomorphic to B.

Proof. Let U, be the algebra of finite and co-finite subsets of w. Let D be
an ultrafilter in Q (the denumerable atomless algebra). Let A, be the sub-
algebra of 9, X £ whose universe is

{(a, d): a co-finite <> b € D}.

Set Ao = ALY, Ay = ApEY, € = Yo X Wi Now Uy has an ultrafilter D,
which is the inverse image under the projection %, - ¥, of the filter of cofinite
subsets of w. In ; we have an ultrafilter D, which is the inverse image under
A1 — A of the filter

{(a, b): a is cofinite and b € D}.

These filters have unique extensions to ultrafilters in €, which we also denote
by Do, Dl.

Claim. Let m € Aut €. Then 7*Dy = Dy and 7*D; = D,. In fact, it's easy
to see that for ¢ € C, ¢ € D, if and only if there exists ¢ < ¢, € [t =2 Ay; and
¢ € D,if and only if there exists t < ¢, €[ ¢ = ..

Now we define A and B as the subalgebras of € X Q with respective universes

{(€, ¢): ¢ € Dy g € D},
{(¢,¢9): ¢ € D, < q € D}.
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In B there is an interval B | x that is atomic and has derivative isomorphic
to ;. In A there is no such element. Hence ¥ 2% B.
Now let & be the group of automorphisms of Q that fix D. We claim that

Aut A = (Aut €) X @ = Aut B.

Toseeit,letw € Aut A, x = (@1, q1) € 4,y = @2, q2) € A, 7x = &, ¢/'),
my = (T, g2'), x @ y the symmetric difference of xand y. Now¢; = go ©x @ y
is atomic & mx @ wy is atomic & ¢’ = ¢). Similarly, ¢, = ¢, © x @ y is
atomless & ¢, = z,. It follows that we can write 7 = (m,, m;) where m¢ is a
permutation of €, 7, a permutation of Q.

Since very automorphism of € fixes Dy, it’s very easy to see that the above
analysis yields an isomorphism Aut A = (Aut €) X ©. The proof for B is
the same.

Remarks. In view of Theorem 5, it is natural (although a bit naive) to
expect that the automorphism group may be a one-to-one function of infinite
atomic Boolean algebras. To demolish this possibility, we note that by [2,
Thm 3.1] there is for every infinite k, an atomic BA A whose automorphism
group is naturally isomorphic to the group of finite permutations of «, while
AD is a free BA of power 2% On the other hand, it is known that there exists
a rigid, complete, and atomless BA B. Let S be the Stone space of such a 8.
Let ® be the algebra of subsets of S generated (by finite operations) from
B\U {{s}: s € S}. Then {® =~ P, while it is not hard to show that Aut € is
naturally isomorphic to the group of finite permutations of S (2 is atomic).

I offer two conjectures that ought not be too hard to prove or disprove:
Let A and B be denumerable Boolean algebras not isomorphic to Q. If Aut 9
= Aut B (or if these groups are elementarily equivalent), then % and B are
elementarily equivalent—in the sense of first order logic.
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