Contents

	Prefa	<i>page</i> xi	
1	Class	1	
	1.1	Z_2 kink	2
	1.2	Rescaling	6
	1.3	Derrick's argument	6
	1.4	Domain walls	7
	1.5	Bogomolnyi method for Z_2 kink	7
	1.6	Z_2 antikink	8
	1.7	Many kinks	9
	1.8	Inter-kink force	10
	1.9	Sine-Gordon kink	12
	1.10	Topology: π_0	14
	1.11	Bogomolnyi method revisited	17
	1.12	On more techniques	18
	1.13	Open questions	19
2	Kink	s in more complicated models	20
	2.1	SU(5) model	21
	2.2	$SU(5) \times Z_2$ symmetry breaking and topological kinks	22
	2.3	Non-topological $SU(5) \times Z_2$ kinks	26
	2.4	Space of $SU(5) \times Z_2$ kinks	27
	2.5	S _n kinks	28
	2.6	Symmetries within kinks	29
	2.7	Interactions of static kinks in non-Abelian models	31
	2.8	Kink lattices	32
	2.9	Open questions	34
3	Inter	actions	35
	3.1	Breathers and oscillons	35
	3.2	Kinks and radiation	38

1	700	to	nte
. (_on	ier	แร

	3.3	Structure of the fluctuation Hamiltonian	39
	3.4	Interaction of kinks and radiation	40
	3.5	Radiation from kink deformations	42
	3.6	Kinks from radiation	45
	3.7	Scattering of kinks	45
	3.8	Intercommuting of domain walls	48
	3.9	Open questions	48
4	Kink	s in quantum field theory	50
	4.1	Quantization of kinks: broad outline	51
	4.2	Example: Z_2 kink	58
	4.3	Example: sine-Gordon kink	60
	4.4	Quantized excitations of the kink	62
	4.5	Sign of the leading order correction	63
	4.6	Boson-fermion connection	65
	4.7	Equivalence of sine-Gordon and massive Thirring models	67
	4.8	Z_2 kinks on the lattice	70
	4.9	Comments	70
	4.10	Open questions	71
5	Cond	ensates and zero modes on kinks	73
	5.1	Bosonic condensates	74
	5.2	Fermionic zero modes	76
	5.3	Fractional quantum numbers	81
	5.4	Other consequences	82
	5.5	Condensates on $SU(5) \times Z_2$ kinks	84
	5.6	Possibility of fermion bound states	88
	5.7	Open questions	89
6	Form	ation of kinks	90
	6.1	Effective potential	90
	6.2	Phase dynamics	93
	6.3	Kibble mechanism: first-order phase transition	95
	6.4	Correlation length	97
	6.5	Kibble-Zurek mechanism: second-order phase transition	101
	6.6	Domain wall network formation	105
	6.7	Formation of $S_5 \times Z_2$ domain wall network	107
	6.8	Biased phase transitions	110
_	6.9	Open questions	112
7	Dyna	mics of domain walls	113
	7.1	Kinks in $1 + 1$ dimensions	113
	7.2	Walls in $3 + 1$ dimensions	116
	7.3	Some solutions	118

		Contents	ix	
	7.4	Solutions in field theory: traveling waves	125	
	7.5	Spherical domain walls: field theory	126	
	7.6	Kink lattice dynamics (Toda lattice)	126	
	7.7	Open questions	127	
8	Grav	ity and cosmology of domain walls	128	
	8.1	Energy-momentum of domain walls	128	
	8.2	Gravity: thin planar domain walls	129	
	8.3	Gravitational properties of the thin planar wall	130	
	8.4	Gravity: thick planar wall	132	
	8.5	Topological inflation	133	
	8.6	Spherical domain wall	134	
	8.7	Scalar and gravitational radiation from domain walls	135	
	8.8	Collapse into black holes	136	
	8.9	Cosmological domain walls: formation	136	
	8.10	Cosmological domain walls: evolution	137	
	8.11	Evolution: numerical results	139	
	8.12	Evolution: analytical work	139	
	8.13	Cosmological constraints	141	
	8.14	Constraints on and implications for particle physics	142	
	8.15	Metastable domain walls	143	
	8.16	Open questions	146	
9	Kink	s in the laboratory	147	
	9.1	Polyacetylene	147	
	9.2	Josephson junction transmission line	149	
	9.3	Solitons in shallow water	152	
	9.4	Concluding remarks	152	
	9.5	Open questions	153	
Aŗ	opendi	x A Units, numbers and conventions	154	
Aŗ	opendi	x B $SU(N)$ generators	155	
Aŗ	opendi	x C Solution to a common differential equation	157	
Appendix D U		x D Useful operator identities	159	
Aŗ	opendi	x E Variation of the determinant	162	
Ap	opendi	x F Summary of cosmological equations	163	
References			165	
	Index			