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We use well-resolved numerical simulations to study the combined effects of buoyancy,
pressure-driven shear and rotation on the melt rate and morphology of a layer of pure solid
overlying its liquid phase in three dimensions at a Rayleigh number Ra = 1.25 × 105.
During thermal convection, we find that the rate of melting of the solid phase varies
non-monotonically with the strength of the imposed shear flow. In the absence of rotation,
depending on whether buoyancy or shear dominates the flow, we observe either domes or
ridges aligned in the direction of the shear flow, respectively. Furthermore, we show that
the geometry of the phase boundary has important effects on the magnitude and evolution
of the heat flux in the liquid layer. In the presence of rotation, the strength of which
is characterized by the Rossby number, Ro, we observe that for Ro = O(1), the mean
flow in the interior is perpendicular to the direction of the constant horizontal applied
pressure gradient. As the magnitude of this pressure gradient increases, the geometry
of solid–liquid interface evolves from the voids characteristic of melting by rotating
convection, to grooves oriented perpendicular or obliquely to the direction of the pressure
gradient.

Key words: Bénard convection, solidification/melting

1. Introduction

Fluid motions that accompany solid–liquid phase transitions are ubiquitous in both the
natural and engineering environments (Epstein & Cheung 1983; Glicksman, Coriell &
McFadden 1986; Huppert 1986; Worster 2000; Meakin & Jamtveit 2009; Hewitt 2020).
Such fluid motions either are a result of the generation of unstable density gradients
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during solidification (Davis, Müller & Dietsche 1984; Dietsche & Müller 1985; Wettlaufer,
Worster & Huppert 1997; Worster 1997; Davies Wykes et al. 2018), or are externally
imposed and thereby influence morphological and/or hydrodynamic instabilities in the
system (Delves 1968, 1971; Gilpin, Hirata & Cheng 1980; Coriell et al. 1984; Forth
& Wheeler 1989; Feltham & Worster 1999; Neufeld & Wettlaufer 2008a,b; Dallaston,
Hewitt & Wells 2015; Ramudu et al. 2016; Bushuk et al. 2019). The interactions between
fluid flows and phase-changing surfaces underlie our understanding of, among other
phenomena, the evolution of Earth’s cryosphere (McPhee 2008; Hewitt 2020), defects
in materials castings (Kurz & Fischer 1984), and production of single crystals for silicon
chips (Worster 2000). In this study, we focus on understanding the combined effects of
buoyancy, rotation and mean shear on the evolution of a phase boundary of a pure material.

The directional solidification of a pure melt is qualitatively different from that of a
multi-component melt. However, there are qualitative similarities in the responses of
the two systems to externally imposed shear flows (Toppaladoddi & Wettlaufer 2019).
During the solidification of a multi-component melt, solute particles (atoms, molecules
or colloids) are rejected into the bulk liquid, which can result in the constitutional
supercooling of the liquid adjacent to the phase boundary (Worster, Peppin & Wettlaufer
2021). This promotes ‘morphological instability’, which leads to dendritic growth: the
formation of a convoluted crystal matrix with a concentrated solution of solute particles
trapped in the interstices (Worster 2000). This region is called a mushy layer. Depending
on the equation of state of the liquid phase and the growth direction relative to the
gravitational field, convection within (the ‘mushy layer mode’) or adjacent to (the
‘boundary layer mode’) the mushy layer may result (Worster 1992). Externally imposed
flows can change the nature of these two modes.

Some of the earliest systematic investigations into the effects of a mean shear flow
on the directional solidification of binary alloys are due to Delves (1968, 1971) and
Coriell et al. (1984). Delves (1968, 1971) considered the effects of a parabolic flow on
morphological instability using linear stability analysis in two dimensions. He found that
the parabolic flow suppresses the instability, the degree of which depends on material
properties. Similarly, Coriell et al. (1984) studied the effects of a Couette flow on the
morphological and thermo-solutal instabilities in three dimensions, and found that the
latter are suppressed more than the former, which is due to the fact that the wavelength
of morphological instability is several orders of magnitude smaller than the wavelength of
thermo-solutal instability. Furthermore, the use of a Couette flow as the base-state velocity
profile in this case may be valid only locally, since the momentum equations are governed
by an asymptotic suction boundary layer profile (Drazin & Reid 2004; Toppaladoddi &
Wettlaufer 2019).

Forth & Wheeler (1989) studied the effects of an asymptotic suction boundary layer flow
on morphological instability during the directional solidification of a binary alloy using
linear stability analysis in three dimensions. They found that under certain conditions,
the shear flow inhibits the morphological instability and may lead to the development of
travelling waves along the phase boundary. However, the phase boundary was found to
have negligible effects on the stability of the shear flow itself.

In the directional solidification of mushy layers, the fate of any incipient perturbation
introduced at the mush–melt interface depends naturally on the interaction between the
mushy and boundary layer modes of convective motion. In order to understand the
evolution of such perturbations, Feltham & Worster (1999, see also the corrigendum
in Neufeld et al. 2006) considered the effects of flows of inviscid and viscous
melts on the mush–melt interface using linear stability analysis in two dimensions.
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Melting by Poiseuille–Rayleigh–Bénard flow

Neglecting buoyancy, they found that the forced flows over a corrugated interface introduce
pressure perturbations at the phase boundary, which in turn drive fluid motions in the
mushy layer. These fluid motions, in certain cases, were found to amplify the interfacial
perturbations. However, the heat flux from the melt was found to have negligible effects
on this amplification, and was found to generate only travelling waves at the interface.

Neufeld & Wettlaufer (2008a,b) used a combination of linear stability analysis in three
dimensions and experiments to examine the effects of a shear flow on the convective
motions in the mushy layer and bulk melt. Their main findings are: (i) below a critical
strength of the imposed shear flow, the convective motions are moderately suppressed;
(ii) above this critical strength, the stability of these convective motions decreases
monotonically with increasing shear flow strength; and (iii) for a sufficiently strong
shear flow, quasi-two-dimensional striations of zero volume fraction of solid are formed
perpendicular to the shear flow direction at the mush–melt interface. These striations form
due to local dissolution and growth of the mushy layer, which result from the interactions
between the shear and convective motions within and outside the mushy layer.

In addition to shear flows, several studies have explored the effects of rotation on the
stability of the mush–melt interface and the convective motions inside and outside the
mushy layer. For example, Sample & Hellawell (1982, 1984) explored experimentally the
effects of rotation and rotational-and-precessional motions during directional solidification
of NH4Cl–H2O and Pb–Sn systems, respectively. Their key findings are as follows.
(i) Channels in the mushy layer through which solute is expelled into the bulk melt
originate close to the mush–melt interface due to perturbations in the solutal boundary
layer. (ii) When the mould is rotated by approximately an angle to the vertical of
20◦–30◦ at low speeds (<5 rpm), the induced interfacial shear flow arrests the growth
of the perturbations, thereby inhibiting the formation of channels. (iii) Rotation about
the vertical axis has very little effect on the evolution of the perturbations. In a related
study, Lu & Chen (1997) used linear stability analysis to show that the rotation about
a vertical axis has an appreciable stabilizing effect only for very large rotation rates
(∼105 rpm).

Motivated by the experiments of Sample & Hellawell (1984), Chung & Chen used linear
stability analysis to study the detailed effects of inclined rotation and precessional motions
on the stability of the mushy layer (Chung & Chen 2000), the mush–melt interface and
the bulk melt (Chung & Chen 2003). They found the following. (i) Rotation of the system
about an inclined axis induces flow parallel to the mush–melt interface in both the mushy
layer and the bulk melt. However, the maximum velocity in the bulk is much larger than
the maximum velocity in the mushy layer (Chung & Chen 2000). (ii) The induced velocity
in the melt increases with increasing angle of inclination and decreases with rotation rate,
but the induced velocity in the mushy layer is sensitive only to the inclination angle and
increases with it (Chung & Chen 2000). (iii) The stabilization of the mushy layer is due
largely to the reduction in buoyancy perpendicular to the mush–melt interface (Chung
& Chen 2000). (iv) When there is only precessional motion, the most unstable mode of
instability in the mushy layer is in the direction perpendicular to the mush–melt interface.
Introducing rotation allows the induced flow to explore all directions equally, thereby
stabilizing all modes equally (Chung & Chen 2000). (v) Five competing mechanisms – the
(stabilizing) reduction of buoyancy and rotation normal to the interface, the (destabilizing)
component of gravity parallel to the interface, and the (stabilizing or destabilizing) flow
induced by inclination and precession – determine the stability of the bulk melt and the
interface (Chung & Chen 2003).
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There have been relatively few studies on the effects of buoyancy, mean shear and
rotation on directional solidification of pure melts. Using linear and weakly nonlinear
stability analyses and experiments, Davis et al. (1984) explored the different patterns on
the phase boundary that result due to thermal convection. These patterns and the transition
between them were further explored experimentally by Dietsche & Müller (1985). Recent
studies have focused on the effects of high-Rayleigh-number convection on the phase
boundary (Esfahani et al. 2018; Favier, Purseed & Duchemin 2019; Purseed et al. 2020).
A detailed summary of these studies can be found in Toppaladoddi (2021).

Hirata, Gilpin & Cheng (1979a), Hirata et al. (1979b) and Gilpin et al. (1980) studied
experimentally the effects of laminar and turbulent boundary layer flows on the evolution
of phase boundaries between ice and water. Gilpin et al. (1980) observed that when the
conductive heat flux through the ice is less than approximately twice the water-to-ice flux,
a perturbation introduced initially at the interface grew and advected downstream, leading
to the formation of ‘rippled’ surfaces. The heat transfer rate increased by approximately
30–60 % over these corrugated surfaces when compared with a planar interface. These
observations were attributed solely to mean shear by Gilpin et al. (1980), but a recent
re-analysis of their data showed that there were substantial buoyancy effects due to
anomalous behaviour of water at 4 ◦C in their experiments (Toppaladoddi & Wettlaufer
2019). Furthermore, a linear stability analysis of the Rayleigh–Bénard–Couette flow over
a phase boundary showed that mean shear has a stabilizing effect and buoyancy has
a destabilizing effect on the phase boundary (Toppaladoddi & Wettlaufer 2019). More
recently, the interplay between mean shear, buoyancy and phase boundaries has been
explored further in two dimensions (Toppaladoddi 2021) and three dimensions (Couston
et al. 2020) using direct numerical simulations.

Ravichandran & Wettlaufer (2021) explored the combined effects of rotation and
thermal convection on the evolution of a phase boundary in three dimensions. They found
that the rotation-dominated convection of a pure liquid, which takes the form of columnar
vortices (Rossby 1969), melts voids into its overlying solid phase. They showed that the
feedback of the melting on the convective flow can arrest the horizontal motion of flow
structures like the peripheral streaming flow in wall-bounded rotating convection, and
hypothesized that the columnar vortices may also be pinned to the locations of the voids.
Furthermore, their study revealed that the degree of interfacial roughness co-varies with
the heat flux.

Here, we use direct numerical simulations to study the melting of the solid phase of
a pure substance driven by thermal convection of its melt, subject to a constant applied
pressure gradient in the horizontal direction and rotation about the vertical axis. The
combined effects of shear, rotation and buoyancy on the evolution of phase boundaries
are important in several geophysical settings (Wells & Wettlaufer 2008; Ramudu et al.
2016; Hewitt 2020), and provide important motivations for this study.

The remainder of the paper is organized as follows. In § 2, we formulate the problem
and present the equations of motion along with the initial and boundary conditions. We
discuss briefly the numerical method used to solve the equations of motion in § 3. We then
discuss results from simulations of non-rotating flows in § 4.1, and of rotation-influenced
flows in § 4.2. Finally, we conclude with a summary of our observations and suggestions
for future work in § 5.

2. Problem formulation and governing equations

In this study, we consider a cuboid of dimensions L × L × 2H. The aspect ratio of the cell
is defined as A = L/2H and is fixed at either 4 or 8 in the simulations reported here.
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Solid

Tm+�T

Tm

Tm

Liquid

z

z = 2H

z = h(t)

z = 0x

y

Ω

Figure 1. A vertical cross-section of the geometry considered. The size of the domain is L × L × 2H, with
aspect ratio A = L/2H. The bottom surface is maintained at a higher temperature than the interface. No-slip
and no-penetration conditions for the fluid velocity are imposed at the bottom boundary and the evolving
interface, and periodic boundary conditions are imposed in the horizontal.

Figure 1 shows a vertical cross-section of the domain. At the initial time, the planar
phase boundary is located at z = h0 and the fluid is contained in the region 0 ≤ z ≤ h0.
By definition, the temperature at the phase boundary is T = Tm, and that at the top
plate, z = 2H, is maintained at T = Tm. The bottom plate located at z = 0 is maintained
at a temperature above the melting point, T = Tm + �T . We note that because of the
isothermal temperature field in the solid phase, it completely melts before a stationary state
is reached. Thus we focus solely on the system dynamics until the solid phase vanishes.
Periodic boundary conditions are imposed in the horizontal directions.

The equations of motion in the different regions of the domain are as discussed below.

2.1. Liquid
The conservations of momentum, mass and heat are given by

∂u
∂t

+ u · ∇u = − 1
ρ0

∇p + gα(T − Tm) ẑ − 2Ω ẑ × u + ν ∇2u + Fp x̂, (2.1)

∇ · u = 0, and (2.2)

∂T
∂t

+ u · ∇T = κ ∇2T, (2.3)

respectively. Here, u(x, t) = (u, v, w) is the three-dimensional velocity field; ρ0 is the
reference density; p(x, t) is the pressure field; g is acceleration due to gravity; α is
the thermal expansion coefficient; T(x, t) is the temperature field; the constant pressure
gradient is applied as a horizontal body force per unit mass, Fp; x̂ and ẑ are the unit
vectors along the x- and z-axes, respectively; Ω is the constant speed of rotation; ν is the
kinematic viscosity; and κ is the thermal diffusivity.

2.2. Solid
The entire solid phase is isothermal because of the temperature boundary condition at the
upper boundary. Hence the temperature field in the solid phase is given by

T(x, t) = Tm. (2.4)
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2.3. Evolution of the phase boundary
The location of the phase boundary is determined using the Stefan condition, which is a
statement of energy balance (Worster 2000):

ρ0 Ls vn = −n · ql, at z = h(x, y, t). (2.5)

Here, Ls is the latent heat of fusion; vn is the normal component of growth rate of the solid
phase; n is the unit normal pointing into the liquid; and ql is the heat flux towards the
phase boundary from the liquid.

2.4. Boundary conditions
We impose Dirichlet conditions on the temperature at the bottom and top boundaries of
the domain:

T(x, y, z = 0, t) = Tm + �T and T(x, y, z = H, t) = Tm, (2.6a,b)

where �T > 0. The temperature at the phase boundary is the bulk melting temperature:

T(x, y, z = h, t) = Tm. (2.7)

We impose no-slip and no-penetration conditions on the flow velocity at the lower
boundary and the phase boundary, given by

u(x, y, z = 0, t) = v(x, y, z = 0, t) = w(x, y, z = 0, t) = 0, (2.8)

u · n = u · t1 = u · t2 = 0, at z = h(x, y, t), (2.9)

respectively, where t1 and t2 are the x and y projections of the unit tangents at the phase
boundary. For simplicity, we assume that the reference densities of the solid and liquid
phases are equal to ρ0. Hence there is no additional normal velocity created at the phase
boundary due to density difference between the phases. We also impose periodic boundary
conditions for the temperature and velocity fields at x = 0 and x = L, and y = 0 and y = L.

2.5. Initial conditions
At t = 0, the temperature of the liquid layer is maintained at T(x, t = 0) = Tm, and the
velocity field is u(x, t = 0) = 0. The shear flow in the horizontal direction is driven by the
body force starting at t = 0.

2.6. Non-dimensional equations of motion
To non-dimensionalize the equations of motion and the associated boundary conditions,
we choose H as the length scale, U0 = √

gα �T H as the velocity scale, t0 = H/U0 as the
time scale, p0 = ρ0U2

0 as the pressure scale, and �T as the temperature scale. Using these
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in (2.1)–(2.3) and (2.5), and maintaining pre-scaled notation, we have

∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u − 2
Ro

ẑ × u + θ ẑ + 1
Rib

x̂, (2.10)

∇ · u = 0, (2.11)

∂θ

∂t
+ u · ∇θ =

√
1

Pr × Ra
∇2θ , and (2.12)

vn =
√

1
Pr × Ra × St2

n · ∇θ, at z = h(x, y, t), (2.13)

where the dimensionless temperature,

θ = T − Tm

�T
, (2.14)

is defined such that θ = 0 at the phase boundary, and θ = 1 at the heated lower boundary.
The five dimensionless parameters that govern the dynamics of the system are the Rayleigh
(Ra), bulk Richardson (Rib), Prandtl (Pr), Stefan (St) and Rossby (Ro) numbers, defined
as

Ra = gα �T H3

νκ
, Rib = gα �T

Fp
, Pr = ν

κ
, (2.15a–c)

St = Ls

Cp �T
and Ro =

√
gα �T
Ω2H

, (2.16a,b)

where Cp is the specific heat of the solid phase. These represent the ratios of buoyancy to
viscous forces (Ra), of buoyancy to the imposed horizontal body force per unit mass (Rib),
of momentum to heat diffusivities (Pr), of the latent to specific heats (St), and of rotational
to convective time scales (Ro). Note that St is defined based on the temperature difference
across the liquid layer and not the solid layer. A bulk Reynolds number can be defined by
combining Ra and Rib, and is given by

Re =
√

Ra
Rib × Pr

. (2.17)

In cases where both rotation and shear are present, we define Σ as the ratio of centrifugal
to applied body forces,

Σ = Rib
Ro2 = Ω2H

Fp
, (2.18)

such that mean shear dominates when Σ < 1.
The dimensionless temperature boundary conditions are

θ(x, y, z = 0, t) = 1 and θ(x, y, z = H, t) = 0 (2.19a,b)

at the bottom and top surfaces, respectively, and

θ(x, y, z = h, t) = 0 (2.20)

at the phase boundary. The no-slip and no-penetration boundary conditions for the velocity
field remain unaltered after the non-dimensionalization.

941 A39-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

30
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.304


S. Ravichandran, S. Toppaladoddi and J.S. Wettlaufer

An important means of quantifying the response of the system is in terms of the Nusselt
number, which is defined as the ratio of total heat flux to the heat flux due only to
conduction. We define the Nusselt number as

Nu =
√

Ra Pr St2 h
dh
dt

, (2.21)

where h is the horizontally averaged height of the fluid layer. It is the total heat flux scaled
by the conductive heat flux over the liquid layer, whose depth is evolving. This follows
Ravichandran & Wettlaufer (2021), although their Stefan number is the inverse of that
defined here.

3. Numerical method

Equations (2.11)–(2.13), along with the boundary conditions, are solved using the
finite-volume solver Megha-5, with a volume penalization method for the melting
solid. The solver uses second-order central differences in space and a second-order
Adams–Bashforth time-stepping scheme, and has been validated extensively for free
shear flows (Singhal et al. 2021, 2022) and Rayleigh–Bénard convection (Ravichandran,
Meiburg & Govindarajan 2020; Ravichandran & Wettlaufer 2020, 2021). Details of the
volume-penalization algorithm – including validation against the analytical solution for
the purely conductive Stefan problem, tests of sensitivity to the penalization parameter, and
the convergence of the solution under grid-refinement – may be found in Ravichandran &
Wettlaufer (2021). To test the results for grid independence in this study, simulations for the
lowest Rib cases were repeated with double the number of grid points in the vertical, and
the difference in the results was found to be negligible. Furthermore, we have verified that
the body force prescribed in (2.1) produces the known analytical plane-Poiseuille velocity
profile with an exponential relaxation time scale of (π2ν)−1 for the peak velocity.

4. Results

Here, we present our results on the effects of mean shear, buoyancy and rotation on the
evolution of the phase boundary. A list of the parameter combinations studied is presented
in Tables 1. In order to highlight the effects of rotation, we first consider only the effects
of mean shear and buoyancy, and later introduce rotation. Choosing Pr > 1 ensures that
Ro < 1 without unduly increasing the resolution requirement for the Ekman boundary
layers at the upper and lower surfaces. For this reason, we choose Pr = 5 for the cases
where rotation is present (see e.g. Ravichandran & Wettlaufer 2020). In the absence of
rotation, there is no qualitative difference in the melting dynamics for Pr = 1 and 5. The
choice of Ra in this study reflects a balance between choosing a sufficiently large Ra to
observe the convective dynamics whilst minimizing the computational effort required to
resolve the thermal boundary layers.

4.1. Zero rotation (Ro = ∞)
When rotational effects are absent, the evolution of the phase boundary is affected by the
combined action of the mean shear flow and convection. The relative strength of mean
shear to buoyancy is quantified using Rib: buoyancy dominates when Rib � 1, and mean
shear dominates when Rib 	 1. We explore the range Rib ∈ [1, ∞) in this section, with
the other dimensionless parameters fixed at Ra = 1.25 × 105 and Pr = St = 1.

In figures 2(a–d), we show the effects of increasing the strength of the mean shear flow
on the phase boundary at t = 85.
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Ro Pr Rib Re h0 (Lx × Ly) × Lz Nx, Ny, Nz �t Figures

∞ 1 ∞ 0 1 162 × 2 10242 × 128 7 × 10−4 2, 7
∞ 1 100 35.4 1 162 × 2 10242 × 128 7 × 10−4 2, 7
∞ 1 10 111.8 1 162 × 2 10242 × 128 7 × 10−4 2, 3, 4, 6, 7
∞ 1 4 176.8 1 162 × 2 10242 × 128 7 × 10−4 2, 3, 4, 6, 7
∞ 1 1 353.6 1 162 × 2 10242 × 256 2.8 × 10−4 2, 5, 6, 7

Ro Pr Rib Σ h0 (Lx × Ly) × Lz Nx, Ny, Nz �t Figures

0.6325 5 100 250 1 162 × 2 10242 × 128 7 × 10−4 9, 15
0.6325 5 10 25 1 162 × 2 10242 × 128 7 × 10−4 9, 15
0.6325 5 1 2.5 1 162 × 2 10242 × 128 7 × 10−4 9, 10, 15
0.6325 5 0.5 1.25 1 162 × 2 10242 × 128 7 × 10−4 9, 15
0.6325 5 0.2 0.5 0.5 82 × 2 5122 × 128 7 × 10−4 12, 13, 16
0.6325 5 0.1 0.25 0.5 82 × 2 5122 × 128 7 × 10−4 11, 12, 13, 14, 16, 17

Table 1. List of cases reported here. In all cases, the Rayleigh number is Ra = 1.25 × 105, the Stefan number
is St = 1, and the penalization parameter is η = 1.4 × 10−3. We also give the bulk Reynolds number Re for
the non-rotating cases (2.17), and the parameter Σ for the rotating cases (2.18). The solutions obtained are
independent of the grid resolution, time step �t, and volume penalization parameter η.

(a) (b)

(c) (d)

2

0
4

0

–4
–4

0
4

0

2

–8

z
z

x

2

0
4

0

–4
–4

0
4

0

2

–8

z
z

x

2

0
4

0

–4
–4

0
4

0

2

–8

z
z

x

2

0
4

0

–4
–4

0
4

0

2

–8

z

yy

y y

z

x

Figure 2. The solid–liquid interface viewed from the solid side for Ro = ∞, Ra = 1.25 × 105, Pr = 1 and
St = 1 at t = 85 for (a) Rib = ∞, (b) Rib = 100, (c) Rib = 10, (d) Rib = 1. The arrow in (a) denotes the
direction of the shear flow along the x-direction. For Rib = ∞, the melting creates dome-like voids in the solid,
as seen in (a). Nascent streamwise alignment of the melting pattern appears for Rib = 100 in (b). For smaller
Rib, the formation of quasi-two-dimensional grooves separated by sharp furrows is seen in (c,d). The mean
liquid layer depths are comparable in (a–c), while the liquid depth in (d) is approximately 20 % larger (see
figure 7).

When mean shear is absent (Rib = ∞), convective motions tend to create dome-like
features at the boundary, which ‘lock in’ the convection cells. This is seen in figure 2(a).
Such features have been investigated in detail in both two (Favier et al. 2019; Purseed
et al. 2020) and three (Esfahani et al. 2018) dimensions. As the strength of the mean
shear is increased (decreasing Rib), quasi-two-dimensional corrugations with a wavelength
transverse to the direction of the shear flow begin to emerge at the phase boundary, as seen
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Figure 3. Contours of vertical velocity w and temperature θ at the horizontal section z = H/2 (a,b) and the
vertical sections y = 0 (c,d) and x = 0 (e, f ) at t = 84. The solid–liquid interface is shown in the vertical
sections as a solid yellow line. The flow parameters are Rib = 10, Ro = ∞, Ra = 1.25 × 105, Pr = 1 and
St = 1. Here, quasi-two-dimensional corrugations with a wavelength transverse to the direction of the shear
flow are clearly associated with longitudinal roll structures in the flow.

in figures 2(b–d). The shear flow, which is parallel to the x-axis, tends to homogenize
the phase boundary along the flow direction. However, it does not affect the corrugations
perpendicular to the flow, parallel to the y-axis (Toppaladoddi & Wettlaufer 2019). Such
features have also been observed in the recent study of Couston et al. (2020). The effect of
the mean shear flow here is consistent with that in two dimensions, where the corrugations
of a phase boundary decrease in amplitude as a result of shear (Toppaladoddi 2021).

The quasi-two-dimensional features at the phase boundary are due to the emergence of
the longitudinal rolls, which are the preferred form of convection when Ra > Rac and
Re is not too large (Clever & Busse 1991). These longitudinal rolls can be discerned
in the contours of the vertical components of the velocity and temperature. While these
effects begin to appear for Rib = 100 (not shown), they are clearly evident for Rib = 10,
as shown in figure 3. Vertical sections of the flow in figures 3(c,d) show that the interface
is homogeneous in the direction of the shear flow. These phase boundary patterns are
qualitatively different from those observed experimentally by Gilpin et al. (1980). This
is due to the fact that in their experiments, Re based on the boundary layer thickness
was O(104), whereas in our simulations bulk Re is O(102–103), and the wavelength
of transverse patterns is O(103) times the viscous sublayer thickness (Claudin, Durán
& Andreotti 2017) and hence longer than our simulation domain. Longitudinal features
are also observed in flows over eroding (Allen 1971) and dissolving (Cohen et al. 2016,
2020) boundaries, where the associated grooves eventually merge to produce scallops
(see also Bushuk et al. 2019). Another interesting feature to note is that for Rib = 10,
the corrugations at the phase boundary become more regular in the y–z plane, which is
shown in figure 3( f ). This shows that the mean shear flow inhibits vertical motions, which
is similar to its effects in two dimensions (Toppaladoddi 2021).
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Figure 4. Hövmöller plots of the fluid height at x = 0, plotted as a function of (t, y) for (a) Rib = 10, showing
the emergence of six domes of nearly equal widths (of approximately 2.66), and (b) Rib = 4, showing the
emergence of three domes each of two distinct sizes. In both instances, the domes maintain their horizontal
positions.

The longitudinal rolls persist down to Rib ≈ 4, below which they start to merge. The
effects of the convective rolls on the melting morphology are shown in the Hövmöller
diagrams of the liquid layer depth as functions of y and t in figure 4. At t = 150, for
Rib = 10, the six corrugations have wavelength approximately 2.66, which is slightly
larger than twice the initial fluid depth, whereas for Rib = 4, the merging and coarsening
of corrugations is evident (cf. figures 4a,b). Prior to this time, the dynamics of the
corrugations depends on Rib, highlighting the importance of the specific history in
controlling the interfacial structure. The coupling of the flow structures and the melting
morphology is thus seen more starkly here than in convection without shear in non-rotating
(e.g. Esfahani et al. 2018) and rotating (Ravichandran & Wettlaufer 2021) cases, where
there are domes, like those in figure 2(a), rather than longitudinal structures, whose
average size increases continuously as the solid melts.

When Rib is decreased further, the longitudinal rolls lose coherence and the bulk flow
becomes turbulent and fully three-dimensional. This is shown in figures 5 and 6(a,b) for
Rib = 1. Nonetheless, remnants of the longitudinal rolls can still be seen along the phase
boundary parallel to the y-axis (figures 5e, f ), which is homogeneous along the x-axis
(figure 5c). Clearly, as seen in figure 6(c), the classical log layer of a turbulent shear flow
is responsible for a significant temperature gradient in the bulk. In contrast, for Rib = 10,
the bulk is nearly isothermal as expected in convection-dominated flows.

The melting rates and interface roughness are functions of the flow properties and, as we
have seen from figure 4, can also determine the behaviour of flow structures. In figure 7(a)
we show the time evolution of hs and Nu for different Rib. The melting rate of the solid,
ascertained from the slopes of the hs(t) curves, is a non-monotonic function of Rib. When
Rib is reduced from ∞ to 4, the rate of melting decreases. However, with a further decrease
in Rib from 4 to 1, there is an increase in the melting rate. This non-monotonicity results
from the relative dominance of shear flow and convection in the dynamics of the system,
and can also be seen in figures 7 and 8. For Rib = 100, the mean shear flow is relatively
weak, but still acts to inhibit vertical motions. This results in decreased heat transport
relative to the Rib = ∞ case. This trend continues for Rib = 10, where the vertical motions
are further inhibited. However, a further decrease in Rib to 1 results in the mean shear flow
becoming dominant, and Nu and the melting rate increase due to the action of forced
convection. These effects of decreasing Rib can be seen by comparing figures 3( f ) and
5( f ), where the flow field transitions from having distinct plume structures to a more
chaotic three-dimensional flow. The effects are qualitatively consistent with those observed
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Figure 5. Contours of vertical velocity w and temperature θ as in figure 3 and for the same flow parameters
except Rib = 1. The increased shear, compared to Rib = 10, causes the flow to become fully three-dimensional.
This greatly increases the heat transfer rate and the Nusselt number (see also figure 7). As a result, the grooves
are less prominent (cf. figure 2).

in the study of pure Rayleigh–Bénard–Poiseuille flow in three dimensions by Scagliarini,
Gylfason & Toschi (2014).

The roughness of the solid–liquid interface, defined here as the standard deviation σh of
the fluid height h(x, y), is plotted in figure 7(b). Similar to the melting rate, we see that the
roughness also varies non-monotonically with increasing Rib, and is largest in the absence
of shear, Rib = ∞. For Rib = 100, the incipient homogenization of the flow structures, and
thus the melting morphology, causes a decrease in σh. The emergence of the streamwise
corrugations commensurate with convective rolls offsets the decrease of the roughness.
As a result, an increase in the maximum of σh is seen at Rib = 10. For Rib ≤ 10, the
dominance of shear and the resulting turbulent flow lead to less prominent morphological
features and hence a reduction in σh. Furthermore, we note that by comparing figures
7(a,b), it can be seen that the roughness and the Nusselt number reach their maximal
values as the solid–liquid interface reaches the upper boundary, as seen in the absence of
shear (Ravichandran & Wettlaufer 2021).

4.2. The effects of rotation
Having studied the effects of mean shear and buoyancy on the flow dynamics, we now
consider the effects of rotation. We use the same Ra = 1.25 × 105 as in § 4.1, and choose
Pr = 5 to give Ro = 0.6325, which is fixed for all the cases discussed in this subsection.
The range of Rib explored here is Rib ∈ [0.1, 100], which is slightly larger than in § 4.1.

Figures 9(a–d) show the phase boundary geometries for the different Rib when the
solid layer has nearly completed melted. For Rib = 100, the effects of shear are small
and the phase boundary has the regular dome-like features seen in purely rotating case,
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Figure 6. Profiles of the horizontally averaged (a) horizontal velocity ū and (b) temperature θ̄ , at t ≈ 85 for
Rib = 1 and Rib = 10 , with Ro = ∞, Ra = 1.25 × 105, Pr = 1, St = 1. The velocity and thermal boundary
layer thicknesses (30 wall units for the velocity) are shown using dashed lines; the average height of the fluid
layer is shown using dotted lines; the boundary layers are thinner for smaller Rib. (c) For sufficiently small
Rib, a turbulent boundary layer develops at the lower (smooth) boundary, with the well-known logarithmic
velocity profile for z+ � 30, where z+ = z/δτ is the vertical coordinate scaled in terms of the wall-friction
thickness δτ = ν/uτ , and uτ = [ν(∂ ū/∂z)z=0]1/2 is the friction velocity. As a result, for large Rib, convection
dominates, and the fluid bulk is nearly isothermal; for small Rib, on the other hand, the fluid bulk has a constant
temperature gradient. The friction Reynolds numbers Reτ = uτ H/ν, based on the initial liquid height, are 85.4
and 306.5 for Rib = 10 and Rib = 1, respectively.

where columnar vortices span the height of the liquid layer and transport heat between
the lower and upper boundaries (Rossby 1969; Ravichandran & Wettlaufer 2021), as
seen in figure 9(a). Upon decreasing Rib, the homogeneous distribution of domes is
replaced by a weak transverse structure, as seen for Rib = 10 in figure 9(b). With a further
decrease in Rib, the phase boundary develops patterns that are similar to the ones seen
in absence of rotation (compare figures 2c,d and 9c,d). The alignment of the longitudinal
corrugations/grooves differs between rotating and non-rotating cases because in the former
case the flow in the bulk is determined by the balance between the Coriolis effect and the
applied pressure gradient. Therefore, the mean shear flow in the bulk is in the negative
y-direction rather than in the positive x-direction. Hence, despite the external pressure
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Figure 7. (a) Average thickness of the solid layer hs (red dashed curves, left axis) and the melting Nusselt
number (from (2.21); blue curves, right axis). (b) Roughness of the solid–liquid interface σh for Ro = ∞,
Ra = 1.25 × 105, Pr = 1, St = 1, and varying Rib. The rate of melting, and thus the Nusselt number, varies
non-monotonically with Rib, as seen in (a). Similarly, the interface roughness also varies non-monotonically
with Rib. (See also figure 8.)
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Figure 8. Maximum values of (a) Nu and (b) σh in figure 7 as functions of Rib.

gradient applied in the positive x-direction, the longitudinal grooves in the presence of
rotation are parallel to the y-axis.

The merging of the columnar vortices for Rib = 1 can also be seen in the vertical
velocity and temperature fields, as shown in figure 10. In particular, figure 10 panels (a) and
(b) show some of the merger events and the incipient longitudinal streaks that develop as a
result of the mean shear flow. These features can also be seen in the vertical cross-sections
of the flow (figure 10c–f ).

The loss of coherence of the columnar vortices is complete for Rib ≤ 0.2, and the
longitudinal rolls now appear clearly in the flow field. This is seen in figure 11, which
shows the contours of vertical velocity and temperature for Rib = 0.1. In addition to the
complete merger of the vortices, one can also see that the longitudinal rolls meander about
their mean location. This indicates the onset of a wave-like instability of the rolls that is
qualitatively similar to that seen in thermal convection with mean shear flows, but without
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Figure 9. The solid–liquid interface seen from the solid side with flow parameters Ro = 0.6325,
Ra = 1.25 × 105, Pr = 5, St = 1, and (a) Rib = 100 at t = 155, (b) Rib = 10 at t = 155, (c) Rib = 1 at t = 240,
(d) Rib = 0.5 at t = 240. (a) Characteristic melting by rotating convection (see e.g. Ravichandran & Wettlaufer
2021) is seen for large Rib. Compare the effect of large Rib for Ro = ∞ in figure 2(b), and note that the figures
are plotted at different times owing to the differences in the time scales of melting. (b) For Rib = 10, the lateral
drift of the vortices is reflected in the connectivity between neighbouring solid voids to form longer grooves
that do not span the width of the domain. (c) For Rib = 1, the grooves become quasi-two-dimensional and span
the width of the domain in the lateral direction. (d) For Rib = 0.5, the grooves are less prominent than in (c).
The times chosen are such that the liquid layer depths are comparable. The values of Σ for these cases are (a)
250, (b) 25, (c) 2.5, and (d) 1.25, respectively. Hence, in all these cases, rotation dominates over mean shear.
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Figure 10. Contours of vertical velocity w and temperature θ at the horizontal section z = H/2 (a,b), and the
vertical sections y = 0 (c,d) and x = 0 (e, f ). The solid–liquid interface is shown in the vertical sections as
a solid yellow line. The flow parameters are Rib = 1, Ro = 0.6325, Ra = 1.25 × 105, Pr = 5 and St = 1.
The value of Σ is 0.25 for this case, so that mean shear dominates rotation. The drift velocity of the
columnar vortices along the negative y-direction is sufficiently strong for the melting morphology to become
quasi-two-dimensional (compare the vertical sections (e, f ) to the melting morphology shown in figure 9c).
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Figure 11. Contours of vertical velocity w and temperature θ as in figure 10, and for the same parameters
except Rib = 0.1 (Σ = 0.25) and initial liquid layer height h0 = 0.5. The columnar vortices are no longer
distinguishable and have merged to produce two-dimensional rolls in the bulk (see also figure 13). The turning
of the flow in the Ekman layers creates the grooves aligned at an angle intermediate between the x- and
y-directions.

rotation (Clever & Busse 1991, 1992; Pabiou, Mergui & Bénard 2005). These waves are
clearly visible in the patterns at the phase boundary, as seen in figure 12(d).

To understand the alignment of the longitudinal corrugations with respect to the applied
pressure gradient, we study the mean flow in the bulk. In figure 13, we plot the horizontal
components of the mean velocity averaged over the horizontal planes and the angle that the
mean horizontal velocity makes with the applied pressure gradient for Rib = 0.1. These
plots show that despite the strength of the applied pressure gradient, the flow in the bulk
remains in geostrophic balance (thus the angle made by the flow relative to the x-direction
is φ = −π/2). However, the no-slip upper and lower boundaries force the mean flow
direction to rotate and form Ekman spirals. Thus this counter-clockwise rotation of the
mean flow direction (φ increases from −π/2 to 0) in the Ekman layer adjacent to the
upper boundary has profound effects on the melting morphology. This is seen in figure 12,
which shows the formation of grooves at the phase boundary for Rib = 0.2 (figures 12a,b)
and Rib = 0.1 (figures 12c,d). In contrast to the large Rib cases, these grooves are aligned
neither parallel nor perpendicular to the direction of the applied pressure gradient, but at
an intermediate angle.

The Ekman layer at the upper boundary may be defined as the region where φ /=−π/2
(see figure 13b). For smaller Rib, the average horizontal velocity in this region is larger and
makes a slightly smaller angle with the x-axis, decreasing from 85◦ for Rib = 0.2, to 80◦
for Rib = 0.1 (at the times shown in figure 12). Similarly, we find that the angle between
the grooves and the x-axis decreases slightly, from 75◦ to 70◦, as Rib decreases.

In the absence of rotation (figure 2), and with finite background rotation for Rib ≥ O(1)

(figure 9), the grooves formed are stationary in that once formed they do not move, but
become more prominent with time (see figure 4). In contrast, the obliquely aligned grooves
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Figure 12. Morphology of the solid–liquid interface (seen from the solid side) at (a) t = 354 and (b) t = 495,
for Rib = 0.2, and (c) t = 495 and (d) t = 552, for Rib = 0.1. Here, Σ < 1 for both cases, and mean shear also
dominates rotation. As melting proceeds, the grooves are aligned in a direction intermediate between the x- and
y-directions, with a smaller angle between the grooves and the x-axis for smaller Rib. At late times, the interface
develops a sinusoidal mode parallel to the grooves. The initial liquid height is h0 = 0.5 in these simulations.
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ū v̄0.4

0.2

0

1.0 1.5
z

2.0

0

–1

–2

–3

0 0.5 1.0 1.5
z

2.0

(b)(a)

Figure 13. (a) Horizontally averaged mean values of the velocities u (left axis, blue) and v (right axis, red)
along the x- and y-directions, respectively. (b) Angle φ = tan−1(v̄/ū) relative to the applied pressure gradient
for Rib = 0.1 at t = 552 corresponding to the snapshot in figure 12(d). The fluid velocity is nearly perpendicular
to the applied pressure gradient in the bulk, and turns counter-clockwise in the Ekman layer at the solid–liquid
interface. For Rib/Ro2 < 1, this counter-clockwise turning of the flow in the upper Ekman layer leads to the
observed formation of grooves at an oblique angle. Note that the grid point at z = 0 is not shown.

for small Rib are advected perpendicular to their lengths, as seen from the Hövmöller
plots in figure 14 for Rib = 0.1. Since the propagation speeds are proportional to the
wavelengths in the x- and y-directions, figures 14(a,b) also show that the grooves translate
horizontally perpendicular to their lengths.

The impact of the flow and phase boundary dynamics on the time evolution of hs, Nu
and σh for the cases corresponding to figure 9 are shown in figure 15. The melt rate and
the Nusselt number decrease as Rib decreases, because as the strength of the shear flow
increases, vertical convective motions are suppressed, as shown in figure 15(a). For large
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Figure 14. Hövmöller plots of the fluid height at (a) x = 0 and (b) y = 0, showing the drift of the grooves for
the same parameters as in figure 11. The grooves move perpendicular to their lengths and thus maintain the
same angle to the x-axis for the duration of their existence.
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Figure 15. (a) Thickness of the solid layer hs (red dashed curves, left axis) and the melting Nusselt number
(from (2.21); blue curves, right axis). (b) Roughness of the solid–liquid interface σh for Rib = 100, 10, 1, 0.5
(with Σ = 250, 25, 2.5, 1.25, respectively) and other parameters as in figure 10. The rate of melting decreases
with decreasing Rib, unlike in figure 7. We also note that the maxima of Nu and σh are reached simultaneously
for Rib = 10.

Rib, columnar convection dominates the flow, leading to a more ramified dome structure
of the phase boundary, which gives way to an aligned periodic phase boundary as Rib
decreases and shear dominates. Thus σh increases with Rib, as shown in figure 15(b). Note
that for Rib = 10 and 100, σh reaches a maximum at the same time as the corresponding
Nu, as observed in the case of Rib = ∞ (Ravichandran & Wettlaufer 2021).

Similar behaviour in the evolution of hs, Nu and σh is observed for the smallest three Rib
cases studied, as shown in figure 16. However, for large times, there are substantial jumps
in Nu and σh for Rib = 0.1 and 0.2. This is due to the onset of the wave-like interfacial
instability of the longitudinal rolls shown in figures 11 and 12. This change in the phase
boundary geometry leads to the generation of more intense downwelling plumes that result
in enhanced heat transfer (Toppaladoddi, Succi & Wettlaufer 2015). Another effect of these
cold plumes is that the bulk fluid is at a temperature lower than the mean of the top and
bottom surfaces, as shown in figure 17 for Rib = 0.1.

In geostrophic convection, the interaction between the thermal and momentum
boundary layers plays an important role in the transport of heat (Rossby 1969; Julien
et al. 2012; King, Stellmach & Aurnou 2012). In figure 17, we plot the vertical profiles
of the horizontally averaged temperature θ̄ and the horizontally averaged velocity −v̄ for
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Figure 16. (a) The thickness of the solid layer hs and the Nusselt number Nu and (b) the roughness of
the phase boundary σh as a function of time, for Ro = 0.6325, Ra = 1.25 × 105, Pr = 5, St = 1, with
Σ = 1.25, 0.5, 0.25 for Rib = 0.5, 0.2, 0.1, respectively. The overall rate of melting is initially smaller for
smaller Rib, but as the flow develops, the Nusselt number increases sharply with the development of the
along-groove sinusoidal mode. Also note the abrupt change in the slope of the thickness curve for Rib = 0.1 at
t ≈ 552, which coincides with the increase in Nu.
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Figure 17. Profiles of the horizontally averaged (a) horizontal velocity −v̄ and (b) temperature θ̄ , for Ro =
0.6325, Ra = 1.25 × 105, Pr = 5, St = 1, Rib = 0.1 at the times shown. The temperature in the fluid bulk has
a pronounced temperature gradient due to the combined influence of shear and rotation in the initial stages of
evolution; the emergence of the along-groove sinusoidal mode coincides with the disappearance of the bulk
temperature gradient. The dashed lines show the thermal boundary layer at the lower surface, while the dotted
lines show the average height of the fluid layer.

Rib = 0.1. At early times, the thermal boundary layer is much thicker than the Ekman
layer and the heat transport is controlled by rotation. This also results in a significant
bulk temperature gradient. As the depth of the liquid layer increases with time, the
effective Rayleigh number increases and the thermal boundary layer becomes thinner, and
is comparable to the Ekman layer thickness at t ≈ 500. The crossing of the thermal and
velocity boundary layers leads to convection-dominated dynamics, which is evident from
the small temperature gradient in the bulk at t ≈ 550 shown in figure 17(b).

The different phase boundary geometries suggest the existence of four distinct regimes.
(1) For Rib � 1, the mean shear flow is weak, and rotation and buoyancy dominate,
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leading to columnar vortices and dome-like features at the phase boundary. (2) For
Rib = O(1), the mean shear flow is stronger, and the columnar vortices are advected with
the flow. This is reflected in the phase boundary geometry, which shows incipient grooves
perpendicular to the direction of the applied pressure gradient (figures 9b,c and 10a,b).
(3) For Rib � 0.5, strong shear leads to the loss of coherence of the columnar vortices,
resulting in their partial merger, while the interfacial grooves become less prominent. This
is seen in figure 9(d). (4) For Rib � 0.2, the columnar vortices merge completely, and
convective motions become quasi-two-dimensional in the bulk. The flow in these cells is
turned counter-clockwise in the Ekman layers, leading to the formation of grooves aligned
at an angle to the direction of the bulk shear flow and thereby become sinusoidal.

5. Conclusions

We have systematically explored the effects of buoyancy, rotation and shear on the
evolution of a phase boundary using direct numerical simulations in three dimensions
for Ro = ∞ and 1, Ra = 1.25 × 105, St = 1, Pr = 1 and 5, and Rib ∈ [0.1, ∞). The main
conclusions from our study are as follows.

(1) In the absence of rotation (Ro = ∞), we observe either dome-like features or
grooves on the phase boundary depending on whether buoyancy or mean shear
dominates the flow. In particular, we find the following three features.
(i) As the value of Rib decreases from ∞, the strength of the shear flow increases,

and both the flow structure and phase boundary geometry transition from being
three-dimensional to being quasi-two-dimensional. This is seen in figures 2 and
3(a,b).

(ii) For small Rib, the grooves formed on the phase boundary are aligned parallel
to the direction of the shear flow. These grooves are due to longitudinal rolls,
which are the preferred form of convection in this case (Clever & Busse 1991).
This is in agreement with the numerical results of Couston et al. (2020), but in
contrast to the experimental results of Gilpin et al. (1980). In our simulations,
the bulk Reynolds number is Re = O(102–103), whereas in the experiments of
Gilpin et al. (1980), Re based on the boundary layer thickness is O(104), so the
flow regimes are not directly comparable.

(iii) The dimensionless heat flux, Nu, is a non-monotonic function of Rib. For Rib ∈
[10, 100], the mean shear is weaker than buoyancy, but nonetheless inhibits
vertical motions, leading to smaller melt rates and vertical heat transport. On
further decreasing Rib to 1, the flow becomes three-dimensional and enters the
forced turbulent convection regime. This results in larger heat transport and
hence an increased melt rate.

(2) When rotation is introduced (Ro = 0.6325), the mean flow in the interior is in
geostrophic balance and thus in a direction perpendicular to the applied pressure
gradient. The dynamics are governed by the balance between mean shear and
rotation, and are represented by the parameter Σ (see (2.18)), with the imposed
shear becoming dominant for Σ < 1. The following features are observed for the
rotation-influenced flows.
(i) For Rib = 100 (Σ � 1), the shear flow is weak and the phase boundary consists

of dome-like features.
(ii) On reducing Rib to 10 (Σ = 25), these dome-like features begin to merge. A

further reduction in Rib leads to the formation of grooves at the phase boundary.
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(iii) For Rib ∈ [0.2, 0.5] (Σ ∈ [0.5, 1.25]), the merger of the dome-like features is
complete. The rolls develop a wave-like instability for Rib =0.2 and 0.1 (Σ =0.5
and 0.25, respectively), which leads to sinusoidal evolution of the phase
boundary. This instability is similar qualitatively to that observed in thermal
convection in the presence of a mean shear flow (Clever & Busse 1991, 1992;
Pabiou et al. 2005).

Our study provides foundational understanding of the effects of buoyancy, mean shear
and rotation on phase-changing boundaries. Although we have treated values of Ra and
Re that are much larger than previously examined, the parameter range explored here
is representative of many but certainly not all geophysical settings (see e.g. Meakin &
Jamtveit 2009; Neufeld, Goldstein & Worster 2010; Bushuk et al. 2019; Weady et al. 2022,
and references therein). Our results suggest several avenues for further research. With or
without rotation, our findings suggest that a secondary instability disrupts the basic flow
state in which the applied pressure gradient is balanced by other forces in the flow. The
mechanism of the instability, and the boundary between the quasi-two-dimensional state
and the three-dimensional state, are compelling foci for further study. In particular, in
rotating convection, the competition between the geostrophic bulk and the viscous Ekman
layers is crucial in determining the state of the flow and the concomitant heat transport,
which is a question of significant interest in the literature (King et al. 2012; Julien et al.
2012). Here, however, this competition is reflected in the morphology of the solid–liquid
interface, with either the bulk flow or the Ekman boundary layers controlling the alignment
of the observed grooves. Therefore, the manner in which the free boundary reflects the
state of the flow, and the associated flow-geometry feedback, provide an ideal testing
ground for general questions in rotating convection and a framework for the wide range
of settings, from geophysical to industrial, in which such flows accompany phase changes.
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