FAITHFUL REPRESENTATIONS OF FINITELY GENERATED METABELIAN GROUPS

B. A. F. WEHRFRITZ

1. In [3] Remeslennikov proves that a finitely generated metabelian group G has a faithful representation of finite degree over some field F of characteristic zero (respectively, $p>0$) if its derived group G^{\prime} is torsion-free (respectively, of exponent p). By the Lie-Kolchin- \Ial'cev theorem any metabelian subgroup of $G L(n, F)$ has a subgroup of finite index whose derived group is torsion-free if char $F=0$ and is a p-group of finite exponent if char $F=p>0$. Moreover every finite extension of a group with a faithful representation (of finite degree) has a faithful representation over the same field. Thus Remeslennikov's results have a gap which we propose here to fill.
1.1 Theorem. If the group G is a finite extension of a finitely generated metabelian group G_{0} whose derived group $G_{0}{ }^{\prime}$ is a p-group for some prime p, then G has a faithful representation of finite degree over some field of characteristic p.

A quasi-linear group is a group of matrices over a direct sum of a finite number of fields, its characteristic being the set of the characteristics of the ground fields. (This is a slight modification of the definition in [4]). If G is a metabelian group, by the characteristic of G we mean the set of prime divisors of the orders of the elements of G^{\prime} of finite order, together with zero if G^{\prime} is not a torsion group. An immediate corollary of 1.1 above and Remeslennikov's 'characteristic zero' case is the following.
1.2 Corollary. If the group G is a finite extension, of a finitely generated metabelian group of characteristic π, then G is isomorphic to a quasi-linear group of characteristic π.

There are no corresponding results without the finite generation. For example, for any non-trivial group P the complete wreath product $P \bar{\chi} \mathbf{Z}$ is not isomorphic to any group of automorphisms of any finitely generated module over any commutative Noetherian ring R. For R a field this is a special case of [4, 10.22] and essentially the same proof works in general.

Given a field F of characteristic $p>0$ there exists one and, up to isomorphism, only one complete and unramified, discrete valuation ring with residue class field $F[\mathbf{1}$, Lemma 13 and Theorem 11, Corollary 2]. This ring we

[^0]denote by $J(0, F)$. For each positive integer m set
$$
J(m, F)=J(0, F) /\left(p^{m}\right)
$$
$J(m, F)$ is a commutative local ring of characteristic p^{m}, with maximal ideal generated by p and residue class field F. These properties uniquely determine $J(m, F)$ up to isomorphism in view of [1, Theorem 11, Corollary 3] and the ideal structure of $J(0, F)$.

To prove 1.1 we swiftly reduce to the split extension $X[M$ of a finitely generated X-module M over the finitely generated abelian group X, by X. (Whenever X is a group and M is an X-group $X[M$ denotes the external semidirect product of M by X.) A series of module theoretic reductions leaves us with the case of the split extension of $J(m, F)$ by a finitely generated p-free subgroup of the group of units of $J(m, F)$.

Suppose that R is a commutative local ring of characteristic p^{m} and residue class field F. If m is the maximal ideal of R then there is a multiplicative exact sequence

$$
\begin{equation*}
1 \rightarrow 1+\mathfrak{m} \rightarrow R \backslash \mathfrak{m} \rightarrow F^{*} \rightarrow 1 \tag{1.3}
\end{equation*}
$$

Now F^{*} is p-free since char $F=p$. If m is nilpotent, for example if $\mathrm{m}=p R$, then $1+m$ is a p-group of finite exponent and the sequence (1.3) splits. When (1.3) splits a complement U of $1+\mathrm{m}$ in $R \backslash \mathrm{~m}$ we call a unit complement of R. In general U will not be unique though it will be of course if F is a locally finite field. The final step of the proof of 1.1 , which in fact we present first in § 2, is to construct representations of certain split extensions of the type $U[R$ with U and R as above. The proof of 1.1 is then completed in $\S 3$.

In this note all rings have an identity, all modules are unital and ring homomorphisms are identity preserving.
2. Let F be a field of characteristic $p>0$, let m be a positive integer and set $n=p^{m-1}+1$. For each $\alpha \in F$ put

$$
\begin{aligned}
t_{\alpha} & =\left(\alpha_{i j}\right) \in \operatorname{Tr}(n, F) \text { where } \\
\alpha_{i j} & =1 \text { if } i=j \\
& =\alpha \text { if } i=j+1
\end{aligned}
$$

and is zero otherwise. Set $A=\left\langle t_{\alpha}: \alpha \in F\right\rangle \subseteq \operatorname{Tr}(n, F)$. It is easy to check that $\left|t_{\alpha}\right|=p^{m}$ if $\alpha \neq 0$ and that $t_{\alpha} t_{\beta}=t_{\beta} t_{\alpha}$ for all α, β in $F,[\mathbf{4}, \mathrm{pp} .19-20]$. In particular A is an abelian group of exponent p^{m}.

We now define a new law of composition on A to make A into a ring. For $\beta \in F^{*}$ let

$$
d_{\beta}=\operatorname{diag}\left(\beta^{n-1}, \beta^{n-2}, \ldots, \beta, 1\right) \in G L(n, F) .
$$

Then $D=\left\{d_{\beta}: \beta \in F^{*}\right\}$ is an abelian group, and since $d_{\beta}-{ }^{-1} t_{\alpha} d_{\beta}=t_{\alpha \beta}$ for all $\alpha, \beta \in F^{*}$ conjugation makes A into a cyclic D-module generated by t_{1}. Thus A is an image of the commutative ring $\mathbf{Z} D$ and hence A can be made into a
commutative ring with identity t_{1}. Note that the multiplication on A, which we denote by circle, is determined by

$$
t_{\alpha} \circ t_{\beta}=t_{\alpha \beta}=d_{\beta}^{-1} t_{\alpha} d_{\beta} .
$$

Any field automorphism of F induces a ring automorphism of A by acting on the matrix entries. In particular if F is perfect the Frobenius automorphism $\alpha \mapsto \alpha^{p}$ of F induces an automorphism θ of A. Since A / A^{p} is a commutative ring of characteristic p the binomial theorem yields that modulo A^{p} the circle product of a with itself p^{k} times is

$$
{o^{o^{k}} a \equiv \prod_{i}\left(t_{\alpha_{i} p^{k}}\right)^{e^{e}}=a \theta^{k}, \quad \text { where } a=\prod_{i} t_{\alpha_{i}}^{e_{i}}, ~, ~ . ~}_{\text {in }}
$$

for any positive integer k. If a is a nilpotent element of A then for sufficiently large k we have $\circ^{p^{k}} a=1$. In this situation $a \theta^{k} \in A^{p}$, whence $a \in A^{p}$. We have now proved that A^{p} is the nilradical of A.

For $l \geqq 0$ put

$$
M_{l}=\left\{a=\left(a_{i j}\right) \in A: a_{i j}=0 \text { whenever } 0<\mathrm{i}-\mathrm{j} \leqq l\right\}
$$

Clearly M_{l} is a subgroup of A and $d_{\beta}{ }^{-1} M_{l} d_{\beta} \subseteq M_{l}$ for all $\beta \in F^{*}$. Thus M_{l} is an ideal of A for $l \geqq 1$ and $M_{0}=A$. Suppose $a=\left(a_{i j}\right) \in M_{l-1}-M_{l}$. Then $a_{i, i-l} \neq 0$ and the ($i, i-l$) component of $a \circ b$ is

$$
(a \circ b)_{i, i-l}=a_{i, i-l}\left(\sum_{j=1}^{s} f_{j} \beta_{j}^{l}\right) .
$$

In particular for $l \geqq 1$ with $M_{l-1} \neq M_{l}$ the map $\varphi_{l}: A \rightarrow F$ given by $b \varphi_{l}=\sum_{j} f_{j} \beta_{j}{ }^{l}$ is well defined. Also φ_{l} is a ring homomorphism-this can easily be checked directly but it is also an immediate consequence of

$$
(a \circ(b c))_{i, i-l}=((a \circ b)(a \circ c))_{i, i-l}=(a \circ b)_{i, i-l}+(a \circ c)_{i, i-l}
$$

and

$$
(a \circ(b \circ c))_{i, i-l}=((a \circ b) o c)_{i, i-l}
$$

Now assume that every polynomial $X^{l}-\alpha$ has a root in F for every α in F and every integer l satisfying $0<l<n$ and $M_{l-1} \neq M_{l}$. This will certainly be the situation if F is algebraically closed, which is the only case that we shall actually use. Then in particular $A \varphi_{l}=F$ for each such l and for all $l \geqq 1$ either $M_{l-1}=M_{l}$ or M_{l-1} / M_{l} is an irreducible A-module such that modulo its annihilator, A is isomorphic to F. Hence A satisfies the minimal condition and so is a direct sum of a finite number of local rings A_{i} whose maximal ideals are nilpotent (e.g. [5, p. 205]). Moreover the above implies that for each i the residue class field of A_{i} is isomorphic to F and that the maximal ideal of A_{i} is generated by p. Thus A_{i} is isomorphic to $J\left(m_{i}, F\right)$ for some integer $m_{i} \leqq m$ and since A has characteristic p^{m} we have $m_{i}=m$ for at least one i.

For $M_{l-1} \neq M_{l}$ our assumption on F ensures that the ring homomorphism φ_{l} maps the subgroup $W=\left\{t_{\alpha}: \alpha \in F^{*}\right\}$ of the group of units of A isomorphically
onto F^{*}. Thus if π_{i} denotes the projection of A onto A_{i} then $W \pi_{i}$ is a unit complement of A_{i}. For any $a \in A$ and $\beta \in F^{*}$ we have

$$
\left(a \pi_{i}\right)^{d_{\beta}}=a \pi_{i} \circ t_{\beta}=a \pi_{i} \circ t_{\beta} \pi_{i}
$$

since $A_{i} \circ A_{j}=\{1\}$ if $i \neq j$. Set $D=\left\langle d_{\beta}: \beta \in F^{*}\right\rangle$. Then $\left\langle A_{i}, D\right\rangle \subseteq \operatorname{Tr}(n, F)$ is isomorphic to the natural split extension of A_{i} by W_{i}. In particular we have now proved the following.
2.1 Theorem. If F is any algebraically closed field of characteristic $p>0$ and if m is any positive integer there exists a unit complement V of $J=J(m, F)$ such that the natural split extension $V\left[J\right.$ is isomorphic to a subgroup of $\operatorname{Tr}\left(p^{m-1}+1, F\right)$.

An easy fact that we shall not need is that $J(m, F)$ has a unique unit complement whenever F is perfect. I am indebted to Warren Dicks for pointing out to me that for F a perfect field $J(m, F)$ is isomorphic to the ring of Witt vectors over F of length m and that the representations above of $U(m, F)[J(m, F)$ can be given explicitly by means of the Artin-Hasse exponential.

3.

3.1 Lemma. If E is a finitely generated subfield of the field F of positive characteristic and if m is a positive integer then $J(m, E)$ is isomorphic to a subring of $J(m, F)$.

A slight variant of the argument below yields the corresponding result for $m=0$. The finite generation of E is irrelevant.

Proof. $R=J(m, F)$ contains a finitely generated (and hence Noetherian) subring S whose image in $R / p R$ generates a copy of E. The localization T in R of S at $S \cap p R$ is a commutative Noetherian ring with residue class field E and nilpotent maximal $T \cap p R$. Thus T is also complete and Theorem 11, Corollary 1 of $[\mathbf{1}]$ yields a homomorphism φ of $J=J(0, E)$ into T. Since φ preserves the identity ker $\varphi=p^{m} J$ and hence φ induces an embedding of $J(m, E)=J / p^{m} J$ into R.
3.2 Proof of Theorem 1.1. By hypothesis our group G contains a finitely generated metabelian group G_{0} of finite index such that $G_{0}{ }^{\prime}$ is a p-group. Putting $H=G_{0} / G_{0}{ }^{\prime}$ consider the Kalužnin-Krasner embedding φ of G_{0} into $W=G_{0}{ }^{\prime} \bar{\gamma} H$ and denote the base group of W by B. Then $G_{1}=\left\langle G_{0} \varphi, H\right\rangle$ is a finitely generated metabelian group, $M=G_{1} \cap B$ is an abelian normal p subgroup of G_{1} and G_{1} is the split extension of M by $H . M$ is a finitely generated H-module and in particular has finite exponent (e.g. [4], p. 189). By [4, 2.3] it suffices to construct a faithful representation of $G_{1}=H M$.

If $\sigma: G_{1} \rightarrow G L(r, F)$ and $\tau: G_{1} \rightarrow G L(s, F)$ are homomorphisms with $\operatorname{ker} \sigma \cap \operatorname{ker} \tau=\langle 1\rangle$ then

$$
\begin{equation*}
x \mapsto \operatorname{diag}(x \sigma, x \tau) \tag{3.3}
\end{equation*}
$$

is a faithful representation of G_{1} into $G L(r+s, F)$. By choosing a primary decomposition of $\{1\}$ in the finitely generated $\mathbf{Z} H$-module M and applying (3.3) it follows that we may assume that M is a primary $\mathbf{Z} H$-module. Clearly there exist fields of characteristic p over which H has a faithful representation of finite degree, e.g. 2.2 of [4]. Hence it suffices to construct a faithful representation of $H M / C_{H}(M) \cong\left(H / C_{H}(M)\right)[M$. That is, we may also assume that H acts faithfully on M.

Let R denote the subring of $\operatorname{End}_{\mathbf{z}} M$ generated by H and set $\mathfrak{r}=\operatorname{rad} M$. Then \mathfrak{r} is a nilpotent prime ideal. We localize at \mathfrak{r}; whence $S=R_{\mathrm{r}}$ is a commutative Noetherian local ring with nilpotent maximal ideal $m=r_{r}$ and, since M is primary, M embeds into $N=M \otimes_{R} S$. Regarding R as a subring of S we have that $G_{1}=H M$ is isomorphic to a subgroup of $H[N$. Also M has finite exponent p^{m} say, whence S has characteristic p^{m}.

By [1, Theorem 11] there exists a subring J of S satisfying $S=J+\mathfrak{m}$ and $J \cap \mathfrak{m}=p J$. If we put $F=S / \mathfrak{m}$ then clearly J is isomorphic to $J(m, F)$. Since S is Noetherian each $\mathrm{m}^{i} / \mathrm{m}^{i+1}$ has finite F-dimension. Thus the nilpotency of \mathfrak{m} yields that S is a finitely generated J-module and therefore N is also a finitely generated J-module.

If U is a unit complement of J then U is also a unit complement of S and $H \subseteq U \times(1+m)$. Now $1+m$ is a p-group and H is finitely generated, hence $H \subseteq H_{1} \times P$ for some finitely generated subgroup H_{1} of U and some finite subgroup P of $1+\mathrm{m}$. If $H_{1}[N$ is isomorphic to a subgroup of $G L(n, E)$ for some n and some field E then G_{1} is isomorphic to a subgroup of $G L(n|P|, E)$ by [4, 2.3] again. J is an image of the principal ideal domain $J(0, F)$ so N is a direct sum of cyclic J-modules. The only cyclic J-modules up to isomorphism are the $J / p^{i} J$ for $i=1,2, \ldots, m$ and as rings $J / p^{i} J \cong J(i, F)$. Applying the reduction 3.3 again this shows that it suffices to construct a faithful representation of the split extension H_{1} [J of characteristic p.

Let \bar{F} denote the algebraic closure of F. Now F is the quotient field of the finitely generated ring R / r and hence by 3.1 there exists a copy \bar{J} of $J(m, \bar{F})$ containing J as a subring. Now there exists by 2.3 a unit complement V of \bar{J} such that $G L\left(p^{m-1}+1, \bar{F}\right)$ contains an isomorphic copy of $V[\bar{J}$. Since $H_{1} \subseteq V \times(1+p \bar{J})$ the finite generation of H_{1} yields that $H_{1} \subseteq V \times Q$ for some finite p-subgroup Q. Then

$$
H_{1}\left[J \subseteq H_{1}[\bar{J} \subseteq Q V[\bar{J}\right.
$$

and by $[4,2.3]$ the latter group is isomorphic to a subgroup of $G L\left(|Q|\left(p^{m-1}+\right.\right.$ $1), \bar{F})$. This completes the proof of 1.1.

References

1. I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54-106.
2. V. N. Remeslennikov, Finite approximability of metabelian groups (Russian), Alg. i Logika 7 (1968), 106-113; Alg. and Logic 7 (1968), 268-272.
3. Representations of finitely generated metabelian groups by matrices (Russian), Alg. i Logika 8 (1969), 72-75); Alg. and Logic 8 (1969), 39-40
4. B. A. F. Wehrfritz, Infinite linear groups, Ergeb. d. Math. Bd. 76 (Springer-Berlin Heidelberg New York, 1973).
5. O. Zariski and P. Samuel, Commutative algebra Vol. 1 (Van Nostrand-Princeton, 19:8).

Queen Mary College, London, England

[^0]: Received October 21, 1974 and in revised form, February 13, 197.).
 The author is indebted to Carleton University, Ottawa for their hospitality while working on this paper.

