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FAITHFUL REPRESENTATIONS OF FINITELY 
GENERATED METABELIAN GROUPS 

B. A. F. WEHRFRITZ 

1. In [3] Remeslennikov proves tha t a finitely generated metabelian group G 
has a faithful representation of finite degree over some field F of characteristic 
zero (respectively, p > 0) if its derived group G is torsion-free (respectively, 
of exponent p). By the Lie-Kolchin-Mal'cev theorem any metabelian subgroup 
of GL(n, F) has a subgroup of finite index whose derived group is torsion-free 
if char F = 0 and is a ^-group of finite exponent if char F = p > 0. Moreover 
every finite extension of a group with a faithful representation (of finite degree) 
has a faithful representation over the same field. Thus Remeslennikov's results 
have a gap which we propose here to fill. 

1.1 T H E O R E M . / / the group G is a finite extension of a finitely generated meta
belian group Go whose derived group Go' is a p-group JOY some prime p, then G has 
a faithful representation of finite degree over some field of characteristic p. 

A quasi-linear group is a group of matrices over a direct sum of a finite 
number of fields, its characteristic being the set of the characteristics of the 
ground fields. (This is a slight modification of the definition in [4]). If G is a 
metabelian group, by the characteristic of G we mean the set of prime divisors 
of the orders of the elements of G' of finite order, together with zero if G' is not 
a torsion group. An immediate corollary of 1.1 above and Remeslennikov's 
'characteristic zero' case is the following. 

1.2 COROLLARY. / / the group G is a finite extension, of a finitely generated 
metabelian group of characteristic T, then G is isomorphic to a quasi-linear group 
of characteristic ir. 

There are no corresponding results without the finite generation. For 
example, for any non-trivial group P the complete wreath product F I Z is not 
isomorphic to any group of automorphisms of any finitely generated module 
over any commutat ive Noetherian ring R. For R a field this is a special case of 
[4, 10.22] and essentially the same proof works in general. 

Given a field F of characteristic p > 0 there exists one and, up to iso
morphism, only one complete and unramified, discrete valuation ring with 
residue class field F [1, Lemma 13 and Theorem 11, Corollary 2]. This ring we 
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denote by J(0, F). For each positive integer m set 

Jim, F) = J(0, F)/(pn). 

J(m} F) is a commuta t ive local ring of characteristic pm, with maximal ideal 
generated by p and residue class field F. These properties uniquely determine 
J(m, F) up to isomorphism in view of [1, Theorem 11, Corollary 3] and the 
ideal s t ructure of 7(0 , F). 

To prove 1.1 we swiftly reduce to the split extension X[M of a finitely 
generated X-module M over the finitely generated abelian group X, by X. 
(Whenever X is a group and M is an X-group X[M denotes the external semi-
direct product of M by X.) A series of module theoretic reductions leaves us 
with the case of the split extension of J(m, F) by a finitely generated p-iree 
subgroup of the group of units of J(m, F). 

Suppose tha t R is a commuta t ive local ring of characteristic pm and residue 
class field F. If m is the maximal ideal of R then there is a multiplicative exact 
sequence 

(1.3) 1 -> 1 + m -> R\m -> F* -> 1. 

Now F* is p4ree since char F = p. If m is nilpotent, for example if m = pR, 
then 1 + m is a £>-group of finite exponent and the sequence (1.3) splits. 
When (1.3) splits a complement U of 1 + m in R\m we call a unit complement 
of R. In general U will not be unique though it will be of course if F is a locally 
finite field. The final step of the proof of 1.1, which in fact we present first in § 2, 
is to construct representations of certain split extensions of the type U[R with 
U and R as above. The proof of 1.1 is then completed in § 3. 

In this note all rings have an identi ty, all modules are unital and ring 
homomorphisms are identi ty preserving. 

2. Let F be a field of characteristic p > 0, let m be a positive integer and set 
n = pm~l + 1. For each a Ç F pu t 

ta = (oitj) (z Tr(n, F) where 
atJ = 1 if i = j 

= a if i = j + 1 

and is zero otherwise. Set A = (ta : a G F) Ç T r ( n , F). I t is easy to check 
tha t |/a| = pm if a ^ 0 and tha t tjp = t0ta for all a, (3 in F, [4, pp. 19-20]. In 
part icular A is an abelian group of exponent pm. 

We now define a new law of composition on A to make A into a ring. For 
0 £ F* let 

dfi = d iagO^- 1 , /3n~2, . . . , 0, 1) 6 GL(n, F). 

Then D — {dp : 13 Ç T7*) is an abelian group, and since dp~Hadp = ta$ for all 
a, 13 G Z7* conjugation makes 4̂ into a cyclic .D-module generated by tx. T h u s A 
is an image of the commuta t ive ring Z.D and hence A can be made into a 
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commuta t ive ring with identi ty t\. Note t ha t the multiplication on A, which we 
denote by circle, is determined by 

ta O tjj = tap = dp~Hadp. 

Any field automorphism of F induces a ring automorphism of A by acting on 
the matr ix entries. In particular if F is perfect the Frobenius automorphism 
a f—» av of F induces an automorphism 6 of A. Since A /Av is a commutat ive ring 
of characteristic p the binomial theorem yields tha t modulo Av the circle 
product of a with itself pk times is 

op a = n (t«/)ei = a0*, where a = f l V > 
* i 

for any positive integer &. If a is a nilpotent element of A then for sufficiently 
large k we have opk a = 1. In this situation a#fc £ ^4P, whence a G Av. We have 
now proved t ha t Av is the nilradical of A. 

For / ^ 0 pu t 

i f i = {a = (ciij) £ A : dij = 0 whenever 0 < i — j ^ / } . 

Clearly Mt is a subgroup of A and dflM4& Q Mi for all /3 £ F*. Thus Af i is an 
ideal of A for / ^ 1 and Af0 = A. Suppose a = ( a^) £ Afz_i — Mj . Then 
aifi-i 9e 0 and the (i, i — I) component of a o b is 

(a o &)<•<-* = aiti^j,yJ2 fjPjJ • 

In particular for I ^ 1 with MX-\ ^ M j the map <pt : A —> F given by 
fr^z = 12jfjPjl is w e H defined. Also <pz is a ring homomorphism—this can easily 
be checked directly bu t it is also an immediate consequence of 

(a o (bc))iii-l = ((a ob)(a o c ) ) J ( H = (a o&) i t < _, + (a o c ) 0 - _ z 

and 
(a o (6 o c ) ) M _ i = ((a o b)oc)iti-l 

Now assume tha t every polynomial X1 — a has a root in F for every a in F 
and every integer / satisfying 0 < I < n and MX-\ 9e Mx. This will certainly be 
the situation if F is algebraically closed, which is the only case t ha t we shall 
actually use. Then in particular A<pi = F for each such I and for all / ^ 1 
either M t-\ = Mx or M i~i/M t is an irreducible A -module such tha t modulo its 
annihilator, A is isomorphic to F. Hence A satisfies the minimal condition and 
so is a direct sum of a finite number of local rings A t whose maximal ideals are 
nilpotent (e.g. [5, p. 205]). Moreover the above implies tha t for each i the 
residue class field of A t is isomorphic to F and tha t the maximal ideal of A i is 
generated by p. T h u s A t is isomorphic to J(mu F) for some integer mt ^ m and 
since A has characteristic pm we have ra* = m for a t least one i. 

For Mi-i 9^ Mi our assumption on F ensures tha t the ring homomorphism <pi 
maps the subgroup W = {ta : a £ F*} of the group of units of A isomorphically 
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onto F*. T h u s if -Kt denotes the projection of A onto At then Wirt is a uni t 
complement of A t. For any a G A and /3 G F* we have 

(awi)dP = airi o t$ = airi o tpwt 

since 4 , o , 4 , = {1} i f i ^j.SetD = (dp : (3 £ F* >. Then ( i , D ) Ç T r ( w , f l 
is isomorphic to the natural split extension of 4̂ * by W/V*. In part icular we have 
now proved the following. 

2.1 T H E O R E M . If F is any algebraically closed field of characteristic p > 0 and if 
m is any positive integer there exists a unit complement V of J = J(m, F) such that 
the natural split extension V[J is isomorphic to a subgroup of Tr(pm~l + 1, F). 

An easy fact tha t we shall not need is t ha t J(m, F) has a unique unit comple
ment whenever F is perfect. I am indebted to Warren Dicks for pointing out to 
me tha t for F a perfect field J(m, F) is isomorphic to the ring of W i t t vectors 
over F of length m and t ha t the representations above of U(m, F)[J(m, F) can 
be given explicitly by means of the Art in-Hasse exponential . 

3. 

3.1 LEMMA. / / E is a finitely generated subfield of the field F of positive 
characteristic and if m is a positive integer then J(m, E) is isomorphic to a subring 
of J{m, F). 

A slight var iant of the a rgument below yields the corresponding result for 
m = 0. T h e finite generation of E is irrelevant. 

Proof. R = J(m, F) contains a finitely generated (and hence Noether ian) 
subring 6" whose image in R/pli generates a copy of E. The localization T in R 
of S a t S r\ pR is a commuta t ive Noetherian ring with residue class field E and 
nilpotent maximal I H pR. T h u s T is also complete and Theorem 11, Corol
lary 1 of [1] yields a homomorphism <p of / = J(0, E) into T. Since <p preserves 
the identi ty ker <p — pmJ and hence <p induces an embedding of J(m, E) = J/pmJ 
into R. 

3.2 Proof of Theorem 1.1. By hypothesis our group G contains a finitely 
generated metabelian group Go of finite index such tha t GV is a p-group. 
Put t ing H = Go/G{/ consider the Kaluznin-Krasner embedding <p of Go into 
W = Go X H and denote the base group of W by B. Then G\ = (Go<p, H) is a 
finitely generated metabelian group, M = Gi C\ B is an abelian normal p-
subgroup of Gi and G\ is the split extension of M by H. M is a finitely generated 
i ï -module and in part icular has finite exponent (e.g. [4], p . 189). By [4, 2.3] it 
suffices to construct a faithful representat ion of G\ = HM. 

If a : Gi —-> GL(r, F) and r : G\ —» GL(s, F) are homomorphisms with 
ker a Pi ker r = (1 ) then 

(3.3) x *—> diag(xc7, xr) 
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is a faithful representation of G\ into GL(r + s, F). By choosing a primary 
decomposition of {1} in the finitely generated Ziï-module M and applying (3.3) 
it follows that we may assume that i f is a primary Zi?-module. Clearly there 
exist fields of characteristic p over which H has a faithful representation of 
finite degree, e.g. 2.2 of [4]. Hence it suffices to construct a faithful representa
tion of HM/CH(M) ^ (H/CH(M))[M. That is, we may also assume that H 
acts faithfully on M. 

Let R denote the subring of Endz M generated by H and set r = rad M. 
Then r is a nilpotent prime ideal. We localize at r ; whence 5 = Rx is a commuta
tive Noetherian local ring with nilpotent maximal ideal m = rr and, since M is 
primary, M embeds into TV = M ®RS. Regarding R as a subring of 5 we have 
that G\ = HM is isomorphic to a subgroup of H[N. Also M has finite exponent 
pm say, whence S has characteristic pm. 

By [1, Theorem 11] there exists a subring J oi S satisfying S = J + m and 
J r\ m = pJ. If we put F = S/m then clearly J is isomorphic to Jim, F). Since 
S is Noetherian each m V m m has finite F-dimension. Thus the nilpotency of m 
yields that 5 is a finitely generated /-module and therefore N is also a finitely 
generated /-module. 

If U is a unit complement of J then U is also a unit complement of 5 and 
H C U X (1 + m). Now 1 + m is a ^-group and H is finitely generated, hence 
H C H\ X P for some finitely generated subgroup H\ of U and some finite 
subgroup P of 1 + m. If Hi[N is isomorphic to a subgroup of GL(n, E) for 
some n and some field E then Gi is isomorphic to a subgroup of GL(»|P|, E) by 
[4, 2.3] again. / is an image of the principal ideal domain 7(0, F) so N is a 
direct sum of cyclic /-modules. The only cyclic /-modules up to isomorphism 
are the J/pfJ for i = 1, 2, . . . , m and as rings J/plJ = J(i, F). Applying the 
reduction 3.3 again this shows that it suffices to construct a faithful representa
tion of the split extension H\[J of characteristic p. 

Let F denote the algebraic closure of F. Now F is the quotient field of the 
finitely generated ring R/v and hence by 3.1 there exists a copy J of J(m, F) 
containing / as a subring. Now there exists by 2.3 a unit complement V oi J 
such that GL(pm~l + 1, F) contains an isomorphic copy of V[J. Since 
Hx C V X (1 + pJ) the finite generation of Hi yields that Hx C V X Q for 
some finite ^-subgroup Q. Then 

# i [ / Ç f f i [ J ç QF[J 

and by [4, 2.3] the latter group is isomorphic to a subgroup of GL(\Q\ (pm~l + 
1), P). This completes the proof of 1.1. 
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