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CHARACTERIZATION OF PROJECTIVE SPACES AND
Pr-BUNDLES AS AMPLE DIVISORS

JIE LIU

Abstract. Let X be a projective manifold of dimension n. Suppose that TX

contains an ample subsheaf. We show that X is isomorphic to Pn. As an

application, we derive the classification of projective manifolds containing a

Pr-bundle as an ample divisor by the recent work of Litt.

§1. Introduction

Projective spaces are the simplest algebraic varieties. They can be

characterized in many ways. A very famous one is given by the Hartshorne’s

conjecture, which was proved by Mori.

Theorem A. [25, Theorem 8] Let X be a projective manifold defined

over an algebraically closed field k of characteristic > 0. Then X is a

projective space if and only if TX is ample.

This result has been generalized, over the field of complex number, by

several authors (see [1, 12, 27]).

Theorem B. [1, Theorem] Let X be a projective manifold of dimension

n. If TX contains an ample locally free subsheaf E of rank r, then X ∼= Pn
and E ∼=OPn(1)⊕r or E ∼= TPn.

This theorem was successively proved for r = 1 by Wahl [27] and later for

r > n− 2 by Campana and Peternell [12]. The proof was finally completed

by Andreatta and Wísniewski [1]. The main aim of the present article is to

prove the following generalization.

Theorem 1.1. Let X be a projective manifold of dimension n. Suppose

that TX contains an ample subsheaf F of positive rank r, then (X, F) is

isomorphic to (Pn, TPn) or (Pn,OPn(1)⊕r).

We refer to Section 2.1 for the basic definition and properties of ample

sheaves. Comparing with Theorem B, we do not require a priori the
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locally freeness of the subsheaf F in Theorem 1.1. In the case where

the Picard number of X is one, Theorem 1.1 is proved in [2]. In fact,

in [2], it was shown that the subsheaf F must be locally free under the

additional assumption ρ(X) = 1, and then Theorem B immediately implies

Theorem 1.1. In particular, to prove Theorem 1.1, it suffices to show that

X is isomorphic to some projective space if its tangent bundle contains

an ample subsheaf F ; then, the locally freeness of F follows from [2]. An

interesting and important special case of Theorem 1.1 is when the subsheaf

F comes from the image of an ample vector bundle E over X. This confirms

a conjecture of Litt [23, Conjecture 2].

Corollary 1.2. Let X be a projective manifold of dimension n, and let

E be an ample vector bundle on X. If there exists a nonzero map E→ TX ,

then X ∼= Pn.

As an application, we derive the classification of projective manifolds

containing a Pr-bundle as an ample divisor. This problem has attracted

a great deal of interest over the past few decades (see [6–8, 13, 26],

etc.). Recently, in [23, Corollary 7], Litt proved that it can be reduced

to Corollary 1.2. To be more precise, we have the following classification

theorem.

Theorem 1.3. Let X be a projective manifold of dimension n> 3, and

let A be an ample divisor on X. Assume that A is a Pr-bundle, p : A→B,

over a manifold B of dimension b > 0. Then one of the following holds.

(i) (X, A) = (P(E), H) for some ample vector bundle E over B such

that H ∈ |OP(E)(1)|. p is equal to the restriction to A of the induced

projection P(E)→B.

(ii) (X, A) = (P(E), H) for some ample vector bundle E over P1 such that

H ∈ |OP(E)(1)|. H = P1 × Pn−2, and p is the projection to the second

factor.

(iii) (X, A) = (Q3, H), where Q3 is a smooth quadric threefold and H is a

smooth quadric surface with H ∈ |OQ3(1)|. p is the projection to one of

the factors of H ∼= P1 × P1.

(iv) (X, A) = (P3, H). H is a smooth quadric surface and H ∈ |OP3(2)|,
and p is again a projection to one of the factors of H ∼= P1 × P1.

Convention. Throughout, we work over the field C of complex numbers

unless otherwise stated. Varieties are always assumed to be integral sepa-

rated schemes of finite type over C. If D is a Weil divisor on a projective
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normal variety X, we denote by OX(D) the reflexive sheaf associated to D.

Given a coherent sheaf F on a variety X of generic rank r, then we denote

by F∨ the sheaf HomOX
(F ,OX), and by det(F) the sheaf (∧rF)∨∨. We

denote by F(x) = Fx ⊗OX,x
k(x) the fiber of F at x ∈X. If F is a coherent

sheaf on a variety X, we denote by P(F) the Grothendieck projectivization

Proj(
⊕

m>0SymmF). If f : X → Y is a morphism between projective normal

varieties, we denote by Ω1
X/Y the relative differential sheaf. Moreover, if Y

is smooth, we denote by KX/Y the relative canonical divisor KX − f∗KY ,

and by ωX/Y the reflexive sheaf ωX ⊗ f∗ω∨Y .

§2. Ample sheaves and rational curves

Let X be a projective manifold. In this section, we gather some results

about the behavior of an ample subsheaf F ⊂ TX with respect to a family

of minimal rational curves on X.

2.1 Ample sheaves

Recall that an invertible sheaf L on a quasi-projective variety X is said

to be ample if for every coherent sheaf G on X, there is an integer n0 > 0

such that for every n> n0, the sheaf G ⊗ Ln is generated by its global

sections (see [18, Section II.7]). In general, a coherent sheaf F on a quasi-

projective variety X is said to be ample if the invertible sheaf OP(F)(1) is

ample on P(F) [22].

Well-known properties of ampleness of locally free sheaves still hold in

this general setting.

(i) A sheaf F on a quasi-projective variety X is ample if and only if, for any

coherent sheaf G on X, G ⊗ SymmF is globally generated for m� 1 (see

[22, Theorem 1]).

(ii) If i : Y →X is an immersion, and F is an ample sheaf on X, then i∗F
is an ample sheaf on Y (see [22, Proposition 6]).

(iii) If π : Y →X is a finite morphism with X and Y quasi-projective

varieties, and F is a coherent sheaf on X, then F is ample if and

only if π∗F is ample. Note that P(π∗F) = P(F)×X Y , and OP(F)(1)

pulls back, by a finite morphism, to OP(π∗F)(1).

(iv) Any quotient of an ample sheaf is ample (see [22, Proposition 1]). In

particular, the image of an ample sheaf under a nonzero map is also

ample.

(v) If F is a locally free ample sheaf of rank r, then the sth exterior power

∧sF is ample for any 16 s6 r (see [17, Corollary 5.3]).
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(vi) If L is an ample invertible sheaf on a quasi-projective variety X, then

Lm is very ample for some m> 0; that is, there is an immersion i : X →
Pn for some n such that Lm = i∗OPn(1) (see [18, II, Theorem 7.6]).

2.2 Minimal rational curves

Let X be a normal projective variety. By Hom(P1, X) we denote the open

subscheme ⊂Hilb(P1 ×X) of morphisms from P1 to X. Let Hom1(P1, X)⊂
Hom(P1, X) be the open subscheme corresponding to those morphisms

f : P1→X that are birational onto their image. The group Aut(P1) acts

on Hom1(P1, X) and its quotient “really parametrizes” morphisms from P1

into X. It can be proved that the quotient exists, and its normalization is

denoted RatCurvesn(X) and called the space of rational curve on X. For

more details we refer to [19].

Let V be an irreducible component of RatCurvesn(X). V is said to be

a covering family of rational curves on X if the corresponding universal

family dominates X. A covering family V of rational curves on X is called

minimal if its general members have minimal anticanonical degree. If X is

a uniruled projective manifold, then X carries a minimal covering family of

rational curves. We fix such a family V, and let [`] ∈ V be a general point.

Then, the tangent bundle TX can be decomposed on the normalization of

` as OP1(2)⊕OP1(1)⊕d ⊕O⊕(n−d−1)P1 , where d+ 2 = det(TX) · `> 2 is the

anticanonical degree of V.

Let V̄ be the normalization of the closure of V in Chow(X). We define the

following equivalence relation on X. Two points x, y ∈X are V̄-equivalent

if they can be connected by a chain of 1-cycle from V̄. By [10] (see also [21]),

there exists a proper surjective morphism ϕ0 : X0→ T0 from an open subset

of X onto a normal variety T0 whose fibers are V̄-equivalence classes. We

call this map the V̄-rationally connected quotient of X.

The first step toward Theorem 1.1 is the following result, which was

essentially proved in [3].

Theorem 2.1. [5, Proposition 2.7] Let X be a projective uniruled man-

ifold, and let V be a minimal covering family of rational curves on X. If

TX contains a subsheaf F of rank r such that F|` is an ample vector bundle

for a general member [`] ∈ V, then there exists a dense open subset X0 of

X and a Pd+1-bundle ϕ0 : X0→ T0 such that any curve on X parametrized

by V and meeting X0 is a line on a fiber of ϕ0. In particular, ϕ0 is the

V̄-rationally connected quotient of X.
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Recall that the singular locus Sing(S) of a coherent sheaf S over X is the

set of all points of X where S is not locally free.

Remark 2.2. The hypothesis in Theorem 2.1 that F is locally free over

a general member of V is automatically satisfied. In fact, since F is torsion-

free and X is smooth, F is locally free in codimension one. By [19, II,

Proposition 3.7], a general member of V is disjoint from Sing(F); hence, F
is locally free over a general member of V.

As an immediate application of Theorem 2.1, we can derive a weak version

of [2, Theorem 4.2].

Corollary 2.3. Let X be a projective uniruled manifold with ρ(X) = 1,

and let V be a minimal covering family of rational curves on X. If TX
contains a subsheaf F of rank r such that F|` is ample for a general member

[`] ∈ V, then X ∼= Pn.

Corollary 2.4. [2, Corollary 4.3] Let X be a projective manifold with

ρ(X) = 1. Assume that TX contains an ample subsheaf, then X ∼= Pn.

Proof. Since the tangent bundle TX contains an ample subsheaf F , X is

uniruled (see [24, Corollary 8.6]), and it carries a minimal covering family

V of rational curves. Note that the restriction F|C is ample for any curve

C ⊂X; thus, we can deduce the result from Corollary 2.3. �

Remark 2.5. Our approach above is quite different from that in [2].

The proof in [2] is based on a careful analysis of the singular locus of F ,

and the locally freeness of F has been proved. Even though our argument

does not tell anything about the singular locus of F , it has the advantage of

giving a rough description of the geometric structure of projective manifolds

whose tangent bundle contains a “positive” subsheaf.

§3. Foliations and Pfaff fields

Let S be a subsheaf of TX on a quasi-projective manifold X. We denote

by Sreg the largest open subset of X such that S is a subbundle of TX over

Sreg. Note that, in general, Sing(S) is a proper subset of X \ Sreg.

Definition 3.1. Let X be a quasi-projective manifold, and let S ( TX
be a coherent subsheaf of positive rank. S is called a foliation if it satisfies

the following conditions.
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(i) S is saturated in TX ; that is, TX/S is torsion-free.

(ii) The sheaf S is closed under the Lie bracket.

In addition, S is called an algebraically integrable foliation if the following

holds.

(iii) For a general point x ∈X, there exists a projective subvariety Fx
passing through x such that

S|Fx∩Sreg = TFx |Fx∩Sreg ⊂ TX |Fx∩Sreg .

We call Fx the S-leaf through x.

Remark 3.2. Let X be a projective manifold, and let S be a saturated

subsheaf of TX . To show that S is an algebraically integrable foliation, it

is sufficient to show that it is an algebraically integrable foliation over a

Zariski open subset of X.

Example 3.3. Let X → Y be a fibration with X and Y projective

manifolds. Then TX/Y ⊂ TX defines an algebraically integrable foliation on

X such that the general leaves are the fibers.

Example 3.4. [4, 4.1] Let F be a subsheaf OPn(1)⊕r of TPn on Pn.

Then F is an algebraically integrable foliation and it is defined by a linear

projection Pn 99K Pn−r. The set of points of indeterminacy S of this rational

map is an (r − 1)-dimensional linear subspace. Let x 6∈ S be a point. Then

the leaf passing through x is the r-dimensional linear subspace L of Pn
containing both x and S.

Definition 3.5. Let X be a projective variety, and r a positive integer.

A Pfaff field of rank r on X is a nonzero map ∂ : Ωr
X →L, where L is an

invertible sheaf on X.

Lemma 3.6. [5, Proposition 4.5] Let X be a projective variety, and let

n : X̃ →X be its normalization. Let L be an invertible sheaf on X, let r be a

positive integer, and let ∂ : Ωr
X →L be a Pfaff field. Then ∂ can be extended

uniquely to a Pfaff field ∂̃ : Ωr
X̃
→ n∗L.

Let X be a projective manifold, and let S ⊂ TX be a subsheaf with

positive rank r. We denote by KS the canonical class −c1(det(S)) of S.

Then there is a natural associated Pfaff field of rank r:

Ωr
X = ∧r(Ω1

X) = ∧r(T∨X) = (∧rTX)∨→OX(KS).
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Lemma 3.7. [4, Lemma 3.2] Let X be a projective manifold, and let S be

an algebraically integrable foliation on X. Then there is a unique irreducible

projective subvariety W of Chow(X) whose general point parametrizes a

general leaf of S.

Remark 3.8. Let X be a projective manifold, and let S be an

algebraically integrable foliation of rank r on X. Let W be the subvariety of

Chow(X) provided in Lemma 3.7. Let Z ⊂W be a general closed subvariety

of W , and let U ⊂ Z ×X be the universal cycle over Z. Let Z̃ and Ũ be

the normalizations of Z and U , respectively. We claim that the Pfaff field

Ωr
X →OX(KS) can be extended to a Pfaff field Ωr

Ũ/Z̃
→ n∗p∗OX(KS).

Ũ
n //

q̃
��

U

q

��

⊂ Z ×X

q

��

p
// X

Z̃ // Z
= // Z

Let V be the universal cycle over W with v : V →X. From the proof of

[4, Lemma 3.2], we know that the Pfaff field Ωr
X →OX(KS) extends to be a

Pfaff field Ωr
V → v∗OX(KS). It induces a Pfaff field Ωr

U → p∗OX(KS). Note

that U is irreducible since Z is a general subvariety. By Lemma 3.6, it can

be uniquely extended to a Pfaff field Ωr
Ũ
→ n∗p∗OX(KS).

Let K be the kernel of the morphism Ωr
Ũ
� Ωr

Ũ/Z̃
. Let F be a general

fiber of q̃ such that its image under p ◦ n is an S-leaf and the morphism

p ◦ n restricted on F is finite and birational. Let x ∈ F be a point such that

F is smooth at x and p ◦ n is an isomorphism at a neighborhood of x. Then

the composite map Ωr
Ũ
|F � Ωr

Ũ/Z̃
|F � Ωr

F implies that the composite map

K→ Ωr
Ũ
→ n∗p∗OX(KS)

vanishes in a neighborhood of x; hence, it vanishes generically over Ũ . Since

the sheaf n∗p∗OX(KS) is torsion-free, it vanishes identically and finally

yields a Pfaff field Ωr
Ũ/Z̃
→ n∗p∗OX(KS).

Let X be a projective manifold, and let S ⊂ TX be a subsheaf. We

define its saturation S as the kernel of the natural surjection TX �
(TX/S)/(torsion). Then S is obviously saturated.
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Theorem 3.9. Let X be a projective manifold. Assume that TX contains

an ample subsheaf F of rank r < dim(X). Then its saturation F defines an

algebraically integrable foliation on X, and the F-leaf passing through a

general point is isomorphic to Pr.

Proof. Let ϕ0 : X0→ T0 be as the morphism provided in Theorem 2.1.

Since F is locally free in codimension one, we may assume that no fiber of

ϕ0 is completely contained in Sing(F).

The first step is to show that F|X0 ⊂ TX0/T0 . Since ϕ0 : X0→ T0 is

smooth, we get a short exact sequence of vector bundles,

0→ TX0/T0 → TX |X0 → ϕ∗0TT0 → 0.

The composite map F|X0 → TX |X0 → ϕ∗0TT0 vanishes on a Zariski open

subset of every fiber. Since ϕ∗0TT0 is torsion-free, it vanishes identically, and

it follows that F|X0 ⊂ TX0/T0 .

Next, we show that, after shrinking X0 and T0 if necessary, F is actually

locally free over X0. By the generic flatness theorem [15, Théorème 6.9.1],

after shrinking T0, we can suppose that (TX/F)|X0 is flat over T0. Let F ∼=
Pd+1 be an arbitrary fiber of ϕ0. The short exact sequence of sheaves

0→F|X0 → TX |X0 → (TX/F)|X0 → 0

induces a long exact sequence of sheaves

T or((TX/F)|X0 ,OF )→F|F → TX |F → (TX/F)|F → 0.

Since (TX/F)|X0 is flat over T0, it follows that F|F is a subsheaf of TX |F ;

in particular, F|F is torsion-free. Without loss of generality, we may assume

that the restrictions of F on all fibers of ϕ0 are torsion-free. By Remark 2.5,

the restrictions of F on all fibers of ϕ0 are locally free. This yields, in

particular, that the dimension of the fibers of F is constant on every fiber of

ϕ0 due to F(x) = (F|F )(x). Note that no fiber of ϕ0 is contained in Sing(F).

We conclude that the dimension of the fibers F(x) of F is constant over X0.

Hence, F is locally free over X0.

Now, we claim that F actually defines an algebraically integrable foliation

on X0. Let F ∼= Pd+1 be an arbitrary fiber of ϕ0. We know that (F, F|F )

is isomorphic to (Pd+1, TPd+1) or (Pd+1,OPd+1(1)⊕r) (cf. Theorem B);

therefore, F defines an algebraically integrable foliation over X0 (cf. Exam-

ple 3.4). Note that we have F|X0 = F|X0 , since F|X0 is saturated in

TX0 . Hence, F also defines an algebraically integrable foliation over X

(cf. Remark 3.2). �
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Remark 3.10. Since F is locally free on X0, it follows that

OX(−KF )|X0 is isomorphic to ∧r(F|X0) and the invertible sheaf OX(−KF )

is ample over X0. Moreover, as F is locally free in codimension one, there

exists an open subset X ′ ⊂X containing X0 such that codim(X \X ′)> 2

and OX(−KF ) is ample on X ′.

§4. Proof of main theorem

The aim of this section is to prove Theorem 1.1. Let X be a normal

projective variety, and let X → C be a surjective morphism with connected

fibers onto a smooth curve. Let ∆ be an effective Weil divisor on X such

that (X,∆) is log-canonical over the generic point of C. In [4, Theorem 5.1],

it was proved that −(KX/C + ∆) cannot be ample. In the next theorem, we

give a variant of this result which is the key ingredient in our proof of

Theorem 1.1.

Theorem 4.1. Let X be a normal projective variety, and let f : X → C

be a surjective morphism with connected fibers onto a smooth curve. Let ∆

be a Weil divisor on X such that KX + ∆ is Cartier and ∆hor is reduced.

Assume that there exists an open subset C0 such that the pair (X,∆hor) is

snc over X0 = f−1(C0). If X ′ ⊂X is an open subset such that no fiber of

f is completely contained in X \X ′ and X0 ⊂X ′, then the invertible sheaf

OX(−KX/C −∆) is not ample over X ′.

Proof. To prove the theorem, we assume, to the contrary, that the

invertible sheaf OX(−KX/C −∆) is ample over X ′. Let A be an ample

divisor supported on C0. Then, for some m� 1, the sheaf OX(−m(KX/C +

∆)− f∗A) is very ample over X ′ (see [14, Corollaire 4.5.11]). It follows that

there exists a prime divisor D′ on X ′ such that the pair (X ′,∆hor|X′ +D′)

is snc over X0 and

D′ ∼ (−m(KX/C + ∆)− f∗A)|X′ .

This implies that there exists a rational function h ∈K(X ′) =K(X) such

that the restriction of the Cartier divisorD = div(h)−m(KX/C + ∆)− f∗A
on X ′ is D′, and Dhor is the closure of D′ in X. Note that we can write

D =D+ −D− for some effective divisors D+ and D− with no common

components. Then we have Supp(D−)⊂X \X ′. In particular, no fiber of

f is supported on D−. By [20, Theorem 4.15], there exists a log-resolution

µ : X̃ →X such that we have the following.
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(i) The induced morphism f̃ = f ◦ µ : X̃ → C is prepared (cf. [11, Sec-

tion 4.3]).

(ii) The birational morphism µ is an isomorphism over X0.

(iii) µ−1∗ ∆hor + µ−1∗ Dhor is a snc divisor.

Let E be the exceptional divisor of µ. Note that we have f̃∗(E) 6= C.

Moreover, we also have

K
X̃

+ µ−1∗ ∆ +
1

m
µ−1∗ D+ = µ∗

(
KX + ∆ +

1

m
D

)
+

1

m
µ−1∗ D− + E+ − E−,

where E+ and E− are effective µ-exceptional divisors with no common

components.

Set D̃ =mµ−1∗ ∆ + µ−1∗ D+ +mE−. Then D̃hor =mµ−1∗ ∆hor + µ−1∗ Dhor is

an snc effective divisor with coefficients 6m. Since D is linearly equivalent

to −m(KX/C + ∆)− f∗A, we can write

K
X̃/C

+
1

m
D̃ ∼Q −

1

m
f̃∗A+

1

m
µ−1∗ D− + E+.

After multiplying by some positive l divisible by the denominators of the

coefficients of E+ and E−, we may assume that lm E+ and lm E− are

integer coefficients. By replacing D̃ by lD̃, the weak positivity theorem [11,

Theorem 4.13] implies that the direct image sheaf

f̃∗(ω
lm
X̃/C
⊗O

X̃
(D̃)) ' f̃∗(OX̃(−lf̃∗A+ lm E+ + lµ−1∗ D−))

' OC(−lA)⊗ f̃∗OX̃(lm E+ + lµ−1∗ D−)

is weakly positive.

Observe that f̃∗(OX̃(lm E+ + lµ−1∗ D−)) =OC . Indeed, E+ is a µ-

exceptional divisor. It follows that µ∗(OX̃(lm E+ + lµ−1∗ D−)) =OX(lD−).

Note that we have f∗(OX(lD−)) =OC(P ) for some effective divisor P on

C such that Supp(P )⊂ f(Supp(D−)). Let V be an open subset of C, and

let λ ∈H0(V,OC(P )). That is, λ is a rational function on C such that

div(λ) + P > 0 over V . It follows that div(λ ◦ f) + lD− > 0 over f−1(V ).

Since there is no fiber of f completely supported on D−, the rational

function λ ◦ f is regular over f−1(V ). Consequently, the rational function

λ is regular over V . This implies that the natural inclusion OC →OC(P )

is surjective, which yields f̃∗(OX̃(lm E+ + lµ−1∗ D−)) =OC . However, this

shows that OC(−lA) is weakly positive, which is a contradiction. Hence,

OX(−KX/C −∆) is not ample over X ′. �
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Lemma 4.2. Let X be a normal projective variety, and let f : X → C

be a surjective morphism with reduced and connected fibers onto a smooth

curve C. Let D be a Cartier divisor on X. If there exists a nonzero morphism

Ωr
X/C →OX(D), where r is the relative dimension of f , then there exists

an effective Weil divisor ∆ on X such that KX/C + ∆ =D.

Proof. Since all of the fibers of f are reduced, the sheaf Ωr
X/C is

locally free in codimension one. Hence, the reflexive hull of Ωr
X/C is

ωX/C 'OX(KX/C). Note that OX(D) is reflexive; the nonzero morphism

Ωr
X/C →OX(D) induces a nonzero morphism ωX/C →OX(D). This shows

that there exists an effective divisor ∆ on X such that KX/C + ∆ =D. �

As an application of Theorem 4.1, we derive a special property about

foliations defined by an ample subsheaf of TX . A similar result was

established for Fano foliations with mild singularities in the work of Araujo

and Druel (see [4, Proposition 5.3]), and we follow the same strategy.

Proposition 4.3. Let X be a projective manifold. If F ⊂ TX is an

ample subsheaf of rank r < n= dim(X), then there is a common point in

the closure of general leaves of F .

Proof. Since F is torsion-free and X is smooth, F is locally free over an

open subset X ′ ⊂X such that codim(X \X ′)> 2. In particular, OX(−KF )

is ample over X ′. By Theorem 2.1, there exist an open subset X0 ⊂X and

a Pd+1-bundle ϕ0 : X0→ T0. Moreover, from the proof of Theorem 3.9, the

saturation F defines an algebraically integrable foliation on X, and we may

assume that F is locally free overX0. In particular, we haveX0 ⊂X ′. In view

of Lemma 3.7, we denote by W the subvariety of Chow(X) parametrizing

the general leaves of F , and by V the normalization of the universal cycle

over W . Let p : V →X and π : V →W be the natural projections. Note that

there exists an open subset W0 of W such that p(π−1(W0))⊂X0.

To prove our proposition, we assume to the contrary that there is no

common point in the general leaves of F .

First, we show that there exists a smooth curve C with a finite morphism

n : C→ n(C)⊂W such that we have the following.

(i) Let U be the normalization of the fiber product V ×W C with projec-

tion π : U → C. Then the induced morphism p̃ : U →X is finite onto

its image.

(ii) There exists an open subset C0 of C such that the image of U0 under p

is contained in X0. In particular, U0 = π−1(C0) is a Pr-bundle over C0.
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(iii) For any point c ∈ C, the image of the fiber π−1(c) under p̃ is not

contained in X \X ′.
(iv) All of the fibers of π are reduced.

Note that we have X \X ′ = Sing (F) and codim(Sing (F))> 2. We

consider the subset

Z = {w ∈W | π−1(w)⊂ p−1(Sing(F))}.

Since π is equidimensional, it is a surjective universally open morphism

(see [16, Théorème 14.4.4]). Therefore, the subset Z is closed. Note that the

general fiber of π is disjoint from p−1(Sing(F)), so codim(Z)> 1. Moreover,

by the definition of Z, we have p(π−1(Z))⊂ Sing(F) and codim(Sing(F))>
2. Hence, we can choose some very ample divisors Hi (16 i6 n) on X such

that the curve B defined by the complete intersection p̃∗H1 ∩ · · · ∩ p̃∗Hn

satisfies the following conditions.

(i′) There is no common point in the closure of the general fibers of π over

π(B).

(ii′) π(B) ∩W0 6= ∅.
(iii′) π(B)⊂W \ Z.

Let B′→B be the normalization, and let VB′ be the normalization of the

fiber product V ×B B′. The induced morphism VB′ → V is denoted by µ.

Then it is easy to check thatB′ satisfies (i), (ii) and (iii). By [9, Theorem 2.1],

there exists a finite morphism C→B′ such that all of the fibers of U → C

are reduced, where U is the normalization of U ×B′ C. Then we see at once

that C is the desired curve.

The next step is to get a contradiction by applying Theorem 4.1. From

Remark 3.8, we see that the Pfaff field Ωr
X →OX(KF ) extends to a

Pfaff field Ωr
VB′/B

′ → µ∗p∗OX(KF ), and it induces a Pfaff field Ωr
U/C →

p̃∗OX(KF ). The natural inclusion F ↪→F induces a morphism OX(KF )→
OX(KF ). This implies that we have a Pfaff field Ωr

U/C → p̃∗OX(KF ).

By Lemma 4.2, there exists an effective Weil divisor ∆ on U such that

KU/C + ∆ = p̃∗KF .

Let ∆hor be the π-horizontal part of ∆. After shrinking C0, we may

assume that ∆|U0 = ∆hor|U0 . According to the proof of Theorem 3.9, for any

fiber F ∼= Pr over C0, we have (p̃∗KF )|F −KF = 0 or H, where H ∈ |OPr(1)|.
This shows that either ∆hor is zero or ∆hor is a prime divisor such that

∆|U0 = ∆hor|U0 ∈ |OU0(1)|. In particular, the pair (U,∆hor) is snc over U0
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and ∆hor is reduced. Note that p̃ : U → p̃(U) is a finite morphism, so the

invertible sheaf p̃∗OX(−KF ) is ample over U ′ = U ∩ p̃−1(X ′). That is, the

sheaf OU (−KU/C −∆) is ample over U ′, which contradicts Theorem 4.1.�

Now, our main result immediately follows.

Proof of Theorem 1.1. Theorem 2.1 implies that there exist an open

subset X0 ⊂X and a normal variety T0 such that X0→ T0 is a Pd+1-bundle

and d+ 1> r. Without loss of generality, we may assume that r < dim(X).

By Theorem 3.9 followed by Proposition 4.3, F defines an algebraically

integrable foliation over X such that there is a common point in the closure

of general leaves of F . However, this cannot happen if dim(T0)> 1. Hence,

we have dim T0 = 0 and X ∼= Pn. �

§5. Pr-bundles as ample divisors

As an application of Theorem 1.1, we classify projective manifolds X

containing Pr-bundles as ample divisors. This was originally conjectured by

Beltrametti and Sommese (see [8, Conjecture 5.5.1]). In the remainder of

this section, we follow the same notation and assumptions as in Theorem 1.3.

The case r > 2 follows from Sommese’s extension theorem [26, Propo-

sition III] (see also [8, Theorem 5.5.2]). For r = 1 and b= 1, it is due to

Bădescu [6, Theorem D] (see also [8, Theorem 5.5.3]). For r = 1 and b= 2,

it is due to the work of several authors (see [7, Theorem 7.4]). As mentioned

in the introduction, Litt proved the following result, by which we can deduce

Theorem 1.3 from Corollary 1.2.

Proposition 5.1. [23, Lemma 4] Let X be a projective manifold of

dimension > 3, and let A be an ample divisor. Assume that p : A→B is

a P1-bundle, then either p extends to a morphism p̂ : X →B, or there exists

an ample vector bundle E on B and a nonzero map E→ TB.

For the reader’s convenience, we outline the argument of Litt that reduces

Theorem 1.3 to Corollary 1.2.

Proof of Theorem 1.3. Since the case r > 2 is already known, we can

assume that r = 1; that is, p : A→B is a P1-bundle.

If p extends to a morphism p̂ : X →B, then the result follows from

[7, Theorem 5.5] and we are in case (i) of the theorem.

If p does not extend to a morphism X →B, by Proposition 5.1, there

exists an ample vector bundle E over B with a nonzero map E→ TB. Due

to Corollary 1.2, we have B ∼= Pb. As the case b6 2 is also known, we may
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assume that b> 3. In this case, by [13, Theorem 2.1], we conclude that X

is a Pn−1-bundle over P1 and we are in case (ii) of the theorem. �
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