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ELEMENTS OF SPECTRAL THEORY FOR 
GENERALIZED DERIVATIONS II : THE SEMI-

FREDHOLM DOMAIN 

LAWRENCE A. FIALKOW 

1. Introduction. Let J^i and Ĵ f2 denote infinite dimensional Hilbert 
spaces and let «if ( J ^ 2 , ^ i ) denote the space of all bounded linear 
operators fromJ^2 t o J^ i . For A in«if (J^i) and B in«if ( J^ 2 ) , let rAB 

denote the operator on J£(^2,^1) defined by rAB(X) = AX — XB. 
The purpose of this note is to characterize the semi-Fredholm domain of 
TAB (Corollary 3.16). Section 3 also contains formulas for ind(rAB — X). 
These results depend in part on a decomposition theorem for Hilbert 
space operators corresponding to certain "singular points" of the semi-
Fredholm domain (Theorem 2.2). Section 4 contains a particularly 
simple formula for md{rAB — X) (in terms of spectral and algebraic 
invariants of A and B) for the case when TAB — X is Fredholm (Theorem 
4.2). This result is used to prove that mà{rBA) = — ind(rAB) (Corollary 
4.3). We also prove that when A and B are bi-quasi-triangular, then the 
semi-Fredholm domain of rAB contains no points corresponding to non
zero indices. 

Note that if rAB is semi-Fredholm, then so is the operator T = rAB + 
S -\- K, where K £ «if («if ( ^ 2 , ^ 1 ) ) is any compact operator and 
S Ç «if (oSf ( J ^ 2 , ^ i ) ) is any operator of sufficiently small norm; more
over, in this case, ind(T) = md(rAB) (see [17, Theorems 5.17, 5.26, 
Chapter IV]). Our results thus yield data that is pertinent to the study 
of the operator equation AX - XB + S(X) + K(X) = Y (cf. [18] 
[24]). (An example of such a compact operator K is provided by C. K. 
Fong and A. Sourour [14]: if {^}i^^w and {B i}i^^w denote sequences of 
compact operators on Jtifi and J^2 respectively, then K (X) = ]>^=i A iXB t 

defines a compact operator o n y ( J f 2 , J f i ) [14, Theorem 2].) 
Before stating our principal result in detail, we recall some terminology. 

Let 3f denote an infinite dimensional complex Banach space and let 
Jzf C5T) denote the algebra of all bounded linear operators on «3T. For 
T £ «if (<5T), let a(T), <TI(T), (Tr(T) denote, respectively, the spectrum, 
left spectrum, and right spectrum of T. Let p{T) = C\a(T), pi(T) = 
C\<ri(T), and pr(T) = C\ar(T) denote, respectively, the resolvent, left 
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resolvent, and right resolvent sets of T. For 2£ = o£f ( ^ 2 , ^ i ) and 
T = TAB, Rosenblum's Theorem states that 

V(TAB) = a (A) - a(B) = {a - 0: a G <r(A),P G a(B)}; 

thus TAB is invertible if and only HA and 5 have disjoint spectra [24]. 
Various results in the literature show that the fine structure of <T(TAB) 

depends on separation properties of a (A) and a(B). Let av(T) and 
(75(T) denote, respectively, the approximate point spectrum and the 
approximate defect spectrum of T £ ££(&), i.e., 

(TsiT) = {X £ ^ ( r ) : T — X is not surjective} [7]. 

(For T i n i ^ ( j T ) (Jf7 a Hilbert space), al{T) = ^ ( r ) and * r ( r ) = 
<TB(T).) In [7], C. Davis and P. Rosenthal proved that 

VTT(TAB) = *i(A) - <jr(B) and ab{rAB) = ar(A) - <rt(B). 

Thus TAB is bounded below (resp. surjective) if and only if at(A) Pi 
ar{B) = 0 (resp. ar(A) Pi c z(^) = 0); additionally, O-S(TAB) = <rT(rAB) 
and <JIT(TAB) = O-Z(TAZ?) [10]. Moreover, for the case JÉ î = J^2 , the range 
of TAB is dense in«if (J^ i ) if and only if are(A) P <TU(B) = 0 and there 
exists no nonzero trace class operator X £ J£ {3f\) such that J3X = X^4 
[11] (see below for notation). 

We next recall some results on semi-Fredholm operators and essential 
spectra. For a Banach space operator T £ <££(&), let ker(T) and &(T) 
denote the kernel and range of T. Let 

nul ( r ) = dim (ker(r)) and dei(T) = dim(3T/^(T)~) 

(where &(T)~ denotes the norm closure of the range of T in 3£) [17]. 
An operator T is semi-Fredholm if 0$ (T) is closed and either nul(jf) < oo 
or def(T) <oo ; in this case the index of T is defined by ind(T) = 
nu l ( r ) — def(T). If nul(T) and def(T) are both finite, then T is Fred-
holm. Let (Te{T) denote the Fredholm essential spectrum of T, i.e., 

<je{T) = {À G C: T — X is not Fredholm}. 

In [12] it was-proved that 

*e(TAB) = (ae(A) - a(B)) U (a(A) - ae(B)); 

thus TAB is Fredholm if and only if 

ae(A) P a(B) = a(A) P ae(B) = 0. 

L e t J ^ be a Hilbert space and let J^(J4?) denote the ideal of all com
pact operators i n i f (Jf7). Let <€ = <£(3tf)JX(Jtif) denote the Calkin 
algebra and let TT\J£{^) —> ^ denote the canonical projection; we 
denote w(T) by T. Thus, for T g ^ ( J f 7 ) , ae(T) = a(T). Let ale(T) = 
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<r,(f) and are(T) = ar(T). If Ple(T) = C\<rle(T), then 

Ple(T) 

= {\ £ C: T — X is semi-Fredholm and ind(T) < + oo } 

= {X e C: ^ ( r - X) is closed and n u l ( r - X) < oo } 

[20, Proposition 1.20]. Similarly, if pre{T) = C \< r r e ( r ) , then 

Pre(T) 

= {À G C: T - Xis semi-Fredholm and i n d ( T — X) > — oo } 

= {X G C: gt(T - X) is closed and d e f ( r - X) < oo } 

[20, Proposition 1.20]. Let 

PSF(T) = {X Ç C: T — X is semi-Fredholm}, 

the semi-Fredholm domain of T; thus 

PSF(T) = Ple(T)UpTe(T). 

A hole H in <re(T) is a bounded component of G\ae(T) [20, page 2 ] ; 
if X G Hr\a(T) and X is not isolated in a(T)f then H C <r(r). If 
\ £ Hn a(T) and X is isolated in cr ( r ) , then i n d ( r - X) = 0 (see [20, 
page 4]). A pseudohole H in ae(T) is a component of ae(T)\<rie(T) or 
ae(T)\are(T) [20, page 2] ; thus i n d ( r - X) = - oo for all X 6 £T or 
i n d ( T — X) = + oo for all X Ç if, respectively; in particular, i 7 C o-(T). 
Note t ha t if X is an isolated point of a(T) and T — X is semi-Fredholm, 
then T — X is Fredholm and i n d ( T — X) = 0. 

Let PSF{TAB) denote the semi-Fredholm domain of TAB, i.e., 

PSF(TAB) = {X £ C: r^B — X is semi-Fredholm}. 

Our principal result is t ha t 

<TSF(TAB) — C\PSF(TAB) 

= [(ale(A) - ar(B)) U (al(A) - aTe(B))} 

H [(are(A) - al(B)) U (ar(A) - er I a(S))] 

(Corollary 3.16). T h u s TAB is semi-Fredholm if and only if 

are(A) r\ <n(B) = ar(A) H ale(B) = 0 

or 

ale{A) C\ ar(B) = <Tt(A) r\ are(B) = 0 

(Corollary 3.15). 
We conclude this section by recording several results from [12] t h a t 

will be cited frequently in the sequel. For T £ Jf(J^), let 

q/(T) = {U*TU: UU* = U*U = 1}, 
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the uni ta ry orbit of T. T h e first result is essentially due to C. Apostol 
[2, Lemma 2.2]. 

LEMMA 1.1. [12, Lemma 2.10] i) If T £ i f (Jf?) and 0 G a^T), then 
either nu l (T) > 0 or 0 G ate(T); if 0 € <rie(T), then there exists S Ç ^ ( T ) -

swcfe /fca£ nul (5) = oo. ii) / / 0 G o>(^) , /feew e^fcer nu l (T*) > 0 or 
0 Ç <ire{T); if 0 G <rre(T), then there exists S G °lt{T)~ such that nul(5*) 
= oo . 

For 5 , T Ç .if ( ^ ) , 5 and T are approximately similar (S ~a T) if 
there exists a sequence of invertible operators {Xw} C <& {^f) such t h a t 

sup n | |Z n | | < oo.supJI-Y»-1!! < oo, and X n - i T X n - > S [15]. 

LEMMA 1.2. [12, Proposition 2.8] / / A' ~aA and B' ~aB} then rAB 

is semi-Fredholm if and only if TA>B> is semi-Fredholm, and in this case 

nul (TAB) = nul ( T ^ / B O , 

def(rA2?) = def( r A / f i / ) , and 

i n d ( r A S ) = i n d ( r A / B 0 -

L E M M A 1.3. [12, Lemma 2.9] nu\(rAB) = nu l ( r 5 * A *) , deî(rAB) = 
def(rB*A*). TAB is semi-Fredholm if and only if TB*A* is, in which case 
ind(TAB) = md(rB*A*). 

2. Spectra l d e c o m p o s i t i o n . In this section we obtain a decomposi
tion for Hilbert space operators corresponding to certain isolated points 
of the left or r ight spectrum. We begin by recalling the Riesz Decomposi
tion Theorem [22, Theorem, p . 421]. For T in oSf (Jf 7 ) , suppose a(T) = 
cri U (72, where <n and a2 are disjoint nonempty closed subsets of <r(T). 
Then there exist nontrivial complementary closed 7"-invariant sub-
spaces ^ i and ^2 such t h a t 

<r(T\<JV\) = en and G(T\^2) = <r2. 

Moreover, T is similar to an operator of the form 7 \ © T2f where 
<r(T\) = <j\ and (T(T2) = a2 [12, Lemma 2.14]. For the case when ai = 
{X} (X G C) and T — X is Fredholm, we have the following result. 

LEMMA 2.1. Let T be in J£ (Jtif) and let X 6 C be an isolated point of 
a(T) such that T — X is Fredholm. Then there exists an orthogonal decom
position ^ = ^ i © ^é2 and operators Tt £ ££\^K't) (i = 1, 2) such 
that: 

1) d i m ^ i < oo; 
2) a(,T0 = {X}; 
3) X <2 c r ( r 2 ) ; 
4) T Î5 similar to Ti ® T2. 
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Proof. The existence o f ^ i , ^ # 2 , 7\, and T2 satisfying properties 2), 
3), and 4) follows directly from the preceding discussion. If ~£i is in
finite dimensional, then 

X G <re(7\) C cre(7\ 0 r 2 ) = cre(r), 

which contradicts the assumption that 2" — X is Fredholm. Thus *Jé\ 
is finite dimensional and the proof is complete. 

Le t J^ i denote a finite dimensional Hilbert space and l e t J^ 2 denote 
an arbitrary infinite dimensional Hilbert space. Let N £ Jzf (J^i) be 
nilpotent and let 5 £ Jzf (<^2) be left invertible. (Note that 5 — X is 
left invertible for |X| sufficiently small.) Let ffl = J^ i © ^ 2 and let 
T = N ® S m^ (MP) ; T clearly satisfies the following properties: 1) T 
is left invertible, i.e., & (T) is closed and nul(T) < oo ; 2) 0 is an isolated 
point of (Ti{T). We next prove that (up to similarity) each operator 
satisfying 1) and 2) may be decomposed as just described; thus the 
following result is the analogue of Lemma 2.1 for left spectra. 

At the conclusion of the section we give an alternate proof of this 
result using a decomposition theorem of C. Apostol [1]. The proof given 
below is considerably simpler than the proof of Apostol's more general 
result. 

In the remainder of this section, J ^ denotes an arbitrary infinite 
dimensional Hilbert space. 

THEOREM 2.2. Let T be in^£\^f) and let X £ C be an isolated point of 
<Ji{T) such that T — X is left invertible {i.e., T — X is semi-Fredholm and 
ind(J" — X) < + oo ). Then there exists an orthogonal decomposition 
3f = <Jt1 © ^ 2 and operators Tt £ S£\*dt't) (i = 1,2) such that: 

1) d i m ( ^ i ) < co ; 
2) c{T,) = {X}; 
3) X d <r;(r2); 
4) T is similar to 7\ © T2. 

Before proving Theorem 2.2 we introduce some additional notation. 
For r in i f ( ^ ) , let 

Jé{T) = {x G je:\\Tnx\\1/n ->0}. 

^(T) is a (not necessarily closed) linear submanifold of $? that is 
invariant for T\ moreover, T is quasinilpotent (i.e., a(T) = {0}) if and 
only if <J?(T) = Jf? [6, Lemma, page 28]. Suppose that X is an isolated 
point of <r(T) such that T — X is Fredholm. Then ^ \ =^{T — X) 
coincides with the Riesz subspace for T corresponding to {X} [22, Theorem 
ff., page 424]. In particular,*Jt\ is closed, and since T — X is Fredholm, 
then dim(^#x) < oo. It follows that (T — X)| M\ is nilpotent, so for 
some n > 0, 

Jt(T - X) = {x 6 JT: (T - \)nx = 0}. 
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Proof of Theorem 2.2. Without loss of generality we may assume that 
X = 0. If 0 is an isolated point of <r{T), then since T is semi-Fredholm, it 
follows that T is Fredholm (with ind(T) = 0 ) . In this case the result 
follows from Lemma 2.1. 

We may thus assume that 0 is not isolated in <r(T). Thus, since 
0 (? <7ie(T), it follows that there exists a hole or pseudohole H in ae(T) 
such that 0 6 H C <r(T). Moreover, since 0 is isolated in ai(T), there 
exists <5 > 0 such that T — a is left invertible but not invertible for 
0 < \a\ < <5. (Thus i n d ( r - a) < 0 for each a £ H.) 

Let ^ # =^(T)~. <Jif is T-invariant, and since 0 £ ai(T)\aie(T), 
then nul(T) > 0 and so^# D ker(T) ^ {0}. We seek to prove t h a t ^ # 
is finite dimensional (from which it will also follow that <Jt ?^ffl). 
Assume to the contrary t h a t ^ # is infinite dimensional. Relative to the 
decomposition $? = *Jt © e^-1, the operator matrix of T is of the form 

\n <?)' w n e r e N (z J£(*Jt). (At this point in the proof we allow the 

possibility tha t^- 1 - = {0}, in which case T = AT; in the sequel we will 
conclude that this case cannot actually arise.) Since *JÏ(T) Ç_^é, a 
matrix calculation shows that *Jif(N) = ^(T). Thus^#(iV)~ = ^# , and 
it follows that ii^V is a reducing subspace for N, t h e n ^ \ N \ j V ) ~ = JV. 

For 0 < \a\ < <5, T — a has a left inverse La, and an operator matrix 
calculation of La(T — a) = 1 readily implies that N — a has a left 
inverse in J£(<Jiï). Suppose there exists a, 0 < \a\ < <5, such that 
a G <J (A). Thus a £ cr (TV) \cr z(iV) and so there exists x0 £ ^# , x0 ^ 0, such 
that (A — a)*x0 = 0. Let^K denote the closed reducing subspace for 
AT generated by \p{N, N*)XQ: p(t, s) is a noncommutative polynomial in 
t and 5 with complex coefficients wrhich have rational real and imaginary 
parts} ; let N\ = N\^V. Then^#(A r i)~ = J/, and since JV is separable, 
it follows from [3, Theorem] that there exists a (compact) quasinilpotent 
operator K G i£ (JV) and a quasiaffinity X G S£ (JV) such that iViX = 
XK. Now (iVi - a)AT = X(K - a), and thus 

( # - a)*X*x0 = X*(Ar
1 - a )% 0 = 0. 

Since K is quasinilpotent, (K — a)* is invertible, and since X* is infec
tive, it follows that x0 = 0, which is a contradiction. 

Thus {a e C: 0 < |a| < 6} C p(iV); since nul (A) = nul(T) > 0, it 
follows that 0 is an isolated point of cr(N). Since T is left invertible, a 
matrix calculation implies that A is left invertible, and since 0 is isolated 
in <r(AT), it follows that A is Fredholm (with ind(A0 = 0). Now^#(A) 
is the (closed) Riesz subspace for N corresponding to {0} C <r(N), and 
thus 

Jt =Jt(T)~ =<Jf(N)~ =JV(N) =JK(T). 

Since^# is infinite dimensional, so \§^(N), and since <r(N\<y$(N)) — 
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{0}, it follows that 0 G <re(N). Thus N is not Fredholm, which is a con
tradiction. We therefore conclude t h a t ^ # is finite dimensional and, in 
par t icu lar ,^- 1 ^ {0}. Since d i m ( ^ ) < oo , and <r(N) = {0}, it also 
follows that N is nilpotent. 

We next prove that S is left invertible in ££ (^#-L). Since T is semi-
Fredholm a n d ^ # is finite dimensional, it follows that 0M © 5 is semi-
Fredholm, whence & (S) is closed. It thus suffices to prove that nul (S) = 
0. If ker(S) ^ {0}, l e t ^ , = ker(S) a n d ^ 2 = Jt1- 0 ^ i . With respect 
to the decomposition 

the operator of T is of the form 

(N A, AA 
0 0 7 1. 

\ 0 0 17/ 

Let k > 0 be such that TV* = 0; then 

0, IN AA*+I 

\0 0/ 

and thus the matrix of Tk+l is of the form 

If x f <Jé\, x 9e 0, then Tk+1x = 0, whence 

x (z<Jtir\Jt = {0}, 

and this contradiction implies that 5 is left invertible. 
Since a(N) = {0} and 0 g erz(S), then ar(N) D (7,(5) - 0. It follows 

from [7, Theorem 5] that there exists X £ ^é'^M1-,^/,) such that 
iVX — XS = — ̂ 4. Let / denote the operator o n ^ = <Jt © ^#-L whose 

matrix is I I. Then J~l = I I and a calculation shows that 

J~lTJ — N ® S. The proof is now complete (with^#i = ^ , Mi = ^ x , 

z\ = N,T2 = s). 
COROLLARY 2.3. Le£ T be inJ^ (J4?) and let Xi, . . . , Xw fo distinct points 

in ai(T)\aie(T) such that X* w isolated in cri(T), i = 1, . . . , n. Then there 
exists an orthogonal decomposition Jrff = <Jt\ © . . . © ^n+\ and opera
tors Ti £ «if ( - ^ 0 (1 ^ i ^ w + 1) swcfe / t o : 

1) *Jti is finite dimensional (1 ^ i ^ n); 
2) er(7\) = {X,} (1 £i £ n); 
3) c r j ^ + O n f X x , . . . ^ } = 0; 
4) T is similar to 7\ © . . . © rw+1. 
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Proof. Theorem 2.2 implies the result for n = 1. Assuming the result 
for n — 1, there exists an orthogonal decomposition 

3tf = JtX © . . . 0 J(n-l © ^n 

and operators Tt G i f ( ^ , ) (1 g i g » - 1) and T G i f (^C/) such 
that^#i is finite dimensional (1 ^ i ^ n — 1), 

a(Tt) = {X,} (1 £i ûn-1), 

al{T)C\ {Xi X»_i} = 0, 

and r is similar to 7\ © . . . © Tw_i © T'. 
Since Xn £ a i(T)\a le(T) and Xn ^ X* for i ^ n, it follows that 

A» G ( 7 , ( r ) V , e ( F ) . 

Moreover, since <Ji(T') C (?i(T), then Xw is isolated in a^V). Theorem 2.2 
implies that there exists an orthogonal decomposition*^/ = ^ n ®*JKn+i, 
and operators 7\- 6 i ^ ( ^ * ) , i = w, « + 1, such t h a t ^ w is finite dimen
sional, v{Tn) = {Xw}, Xw (? 0-j(7V|-i), and J1' is similar to 7"w © 7"w+i-
Since <r,(rn+i) C vi(Tf)y then 

{ X i , . . . , ^ - ! } n c r , ( r n + 1 ) = 0; 

moreover, 2" is similar to Tx © . . . © 7^+1, so the proof is complete. 

COROLLARY 2.4. Let T be in££\3tif) and let Xi, . . . , \n be distinct points of 
ar(T)\orre(T) such that Xi is isolated in <rr(T) (1 ^ i ^ n). Then there 
exists an orthogonal decomposition ffl = ̂ # i © . . . © *JPn+i and operators 
T{ e c&ÇJfi) (1 ^ i ^ n + 1) such that: 

1) <Jt\ is finite dimensional (1 ^ i ^ n); 
2) cr(7\) = {X,} ( U i g ») ; 
3) ( r r ( r w + 1 ) n {Xi X„} = 0; 
4) r w similar to 7\ © . . . © 7^+1. 

Proof. Apply Corollary 2.3 to T* and Xi, . . ., Xn, and then take adjoints. 

COROLLARY 2.5. Le/ 2" fre inS£\3f) and let «i, . . ., an eg distinct points 
in ar(T)\are(T) such that at is isolated in <rr(T) (1 S i ^ n); moreover, 
let jSi, . . ., 0m &e distinct points in ai(T)\aU{T) such that (3j is isolated in 
<TI(T) (1 ^ 7 ^ m). Assume that ai 9e /3j, 1 S i ^ n, 1 ^ j ^ m. Then 
there exists an orthogonal decomposition J^f = <Jt\ © . . . © <y$n+m+i and 
operators Ti £ ^£\Jt'*) (1 ^ i ^ n + w + 1) such that: 

\)^\ is finite dimensional (1 ^ i ^ n -\- m); 
2) ff(7\) = {«,} ( l g i i » ) ; <rr(r„+m+1) H {ai <*„} = 0; 
3) <r(7\) = {0,} ( M + 1 £ j £ » + m) ;e r l ( r B + B + 1 )n{ |8 l l . . . I | 8 m } = 0/ 
4) r is similar to 7\ © . . . © r„+ m + i . 

Proof. Apply Corollary 2.3 and Corollary 2.4 successively. 
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We conclude this section by presenting another proof of Theorem 2.2 
based on results of [1]. 

Let T be in J^ (<#?). A complex number p. is said to be a T-singular point 
if the function X —» Pkercr-x) is discontinuous at p.; p is said to be T-regular 
if ju is not T-singular. Let 

PSFS(T) = {p G PSF(T) : M is T-singular} 

and let 

PSFT(T) = PSF(T)\PSFS(T) = {M G PSF(T) : MIS T-regular}. 

For M G PSF(T), p G PSFT(T) if and only if the function 

X -> min {nul (T - X), nul ((T - X)*)} 

is continuous at p [1, Proposition 2.6]. In [1], C. Apostol proved the 
following result. 

THEOREM 2.6. ([1, Theorem 3.3]) Let T be in &(tif) and let a = 
{Xi, . . ., \n) be a finite subset of pSF

S(T). Then there exist complementary 
closed T-invariant sub spaces JVX andJVi such that: 

l ) d i m ( ^ ) = Z l = i d i m ÇÀf(T - X<)) ( < « > ) ; 
2) aiTl^) = a; 
3) dim (U?((r - XOI^i ) ) = dim {4K{T - X,)) (1 ^ i g n); 
4) ps/^C^V^) = PSFT{T) \J a; in particular, \ly . . ., \n are regular 

points of PSF(T\JS2). 

To prove Theorem 2.2, suppose that X G C is an isolated point of <TI(T) 

and T — X is left invertible; clearly X £ pSF
S(T). From Theorem 2.6, 

there exist complementary closed ^-invariant subspaces JV^ and «yf̂  such 
that 

dim {J/^ = dim (Jé{T - X)) < 00, 

c r ( r | ^ ) = {X}, 

and X is regular for T\JV 1. Since X is isolated in ai(T), it follows that 
T\jVi is left invertible. Let / denote the (bounded) idempotent whose 
range is JVX and null space is ^¥ 2. There exists an invertible operator X 
and an orthogonal projection P such that / = X~lPX. Since T\^Y\ is 
similar to Si = XTX~l\P^ and T\^V2 is similar to 52 = XTX~l\ 
(1 — P)ffl, the result follows. 

3. The semi-Fredholm domain of TAB. In this section we charac
terize the semi-Fredholm domain of TAB and give formulas for ind 
{TAB — X) (X G PSF(TAB)). Unless otherwise noted, J4?i and Jt?2 are 
arbitrary infinite dimensional Hilbert spaces, A £ »Sf (^1) , and 5 G 
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i f ( ^ 2 ) . The first two lemmas are essentially excerpts from the proof of 
[12, Theorem 3.1], which we include for the sake of completeness. 

LEMMA 3.1. / / (ale(A) C\ ar(B)) U {<n(A) C\ <rre(B)) ^ 0 and rAB is 
semi-Fredholm, then nul (rAB) = °o. 

Proof. Suppose X G (ale(A) Pi aT(B)) U (<n(A) C\ are(B)); since 
TAB — TA-\,B-\, we may assume that X = 0. Lemma 1.1 implies that 
there exist A' £ <%(A)~ and W Ç <%(B)~ such that nul (A') > 0, 
nul (B'*) > 0, and nul {A') = 00 or nul (5'*) = 00. Since r ^ 5 is semi-
Fredholm, then TA>B' is semi-Fredholm and nul (T^ 'BO = nul ( r ^ ) 
(Lemma 1.2). Relative to the decomposition 

J f i = ker (4 ' ) © (ker (A'))1- and JT2 = ker (£'*) 0 @(B')-, 

the operator matrices of A', B', and X Ç «^(J^f2,^fi) are of the form 

A matrix calculation shows that if Xu, X2i, and X22 are zero operators, 
then A'X - XB' = 0. Thus 

nul (rAjB) = nul irA>B>) ^ dim (i^(ker (£'*), ker (4 ' ) ) ) . 

Since ker (A') and ker (,£>'*) are nontrivial and at least one is infinité 
dimensional, then J^ (ker (B'*), ker {A')) is infinite dimensional and the 
result follows. 

LEMMA 3.2. / / (are(A) H <n(B)) \J (ar(A) H o-Ze(£)) ^ 0 and 
rA# is semi-Fredholm, then def (rAB) = 00 . 

Proof. As in the proof of Lemma 3.1, and by virtue of Lemma 1.1 and 
Lemma 1.2, we may assume 0 G (<rre(A) C\ ai(B)) \J (ar(A) P\ aîe(B))f 

nul (A*) > 0, nul (B) > 0, and nul (A*) = 00 or nul (B) = 00. With 
respect to the decomposi t ions^! = ker (̂ 4*) © &(A)~ and JÏ?2 = 
ker (B) © (ker (B))^, the matrices of 4 , B, and X 6 i f p f 2 > «# \ ) are 
of the form 

/ 0 0' W O J3i2\ H ( i n X12\ 
U a i ^22/ ' \ 0 5 2 2 / ' Vf 21 ^22 / ' 

/o *\ 
The matrix of AX — XB is of the form . Thus 

\* */ 
def (TAB) ^ dim (if (ker (5) , ker (4*))) = 00. 

COROLLARY 3.3. If 

(ale(A) r\ ar(B)) W (al(A) H , „ ( £ ) ) ^ 0 
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and 

(aTe(A) r\ al(B)) U (ar(A) r\ ale(B)) ^ 0, 

then TAB is not semi-Fredholm. 

Proof. The result follows from Lemma 3.1 and Lemma 3.2. 

COROLLARY 3.4. 

a = [(ale(A) - ar{B)) \J (al(A) - are(B))] H [(are(A) ~ *i(B)) 

U (ar(A) - ale(B))] C<TSF(TAB). 

Proof. If z is in a, then z = a — (3, where a Ç ale(A), /3 £ o-r(5) or 
a 6 <n(A),p 6 cr r e(5). Now 

TAB - 2 = TA-a,B-& and 

0 G (erIe(,4 - a ) H (7,(5 - 0)) U (al(A - a) H <7re(5 - 0 ) ) . 

T h u s if T^B — z is semi-Fredholm, it follows from Lemma 3.1 tha t 

nul (rAB — z) = oo. 

Similarly, z = y — X, where y £ (7 re(/l), X £ <?i{B) or 7 Ç o>(/l), 
X Ç aie(B). Since 

r ^ 5 — 2 = r^_7)B_x and 

0 e (crre(^ - 7) n (7,(5 - x)) u ((7,(̂ 1 - 7) n trIe(B - x)), 
Lemma 3.2 implies tha t if rAB — z is semi-Fredholm, then 

def ( r ^ B — z) = 00. 

T h u s if TAB — z is semi-Fredholm, then 

nul ( r A B — z) = def ( r^ B — z) = 00 , 

a contradiction which implies tha t z G c s F ( T A B ) . 

In the sequel we will prove the converse of Corollary 3.4, thereby 
characterizing <r SF(TAB). We require several preliminary results, the first 
of which will prove useful in calculating ind (rAB — z). 

LEMMA 3.5. Let^fi be a finite dimensional Hilbert space and letJtif be 
an infinite dimensional Hilbert space. For A G ££ (^f) define rA G 
££ (££ {ffl\, *&?)) by TA(X) = AX. If A is semi-Fredholm, then sois TA, and 

nul (TA) = dim ffli) nul (^4), 

def (TA) = dim ( ^ ) def (A), and 

ind (rA) = dim p ^ ) ind (A). 

Proof. Since A has closed range, so does rA [12, Lemma 3.6]. Note t ha t 

ker(TA) = \Xe^(^u^):&(X)Cker(A)}^(3>?1,ker(A)), 
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and thus 

nul (rA) = dim (&(#?u ker (A))) = dim ( ^ ) nul (A). 

We next show that 

St(rA) = ( F G <£(3tfutf) :0?(Y) dSt(A)\ ^^(^U^(A)). 

Indeed, if Y = rA(X) = AX, then clearly St (Y) = St (AX) C St {A). 
Conversely, suppose Y t ^ (J^i, ^) and St ( Y) C «^ (4 ) ; by a straight
forward modification of a factorization theorem of R. G. Douglas [8, 
Theorem 1], there exists X £ i f p f i, tf ) such that 7 = ^ 1 ^ ( 7 , ) . 

T h u s ^ ( r ^ ) 9*if (?fi, «^(4)) and we claim that 

si =sewu je)/^(peu^t(A)) ^ <eyr^gt(A)*-). 
Let P denote the orthogonal projection of ffl onto 01(A). For X £ 
i f ( ^ i , ^ ) , let [X] denote the image of X in â ; thus 

[X] = [(1 - P)X] + [PX] = [(1 - P ) Z ] . 

Define / : 2 - » i f (JTi, ^(yl)-1-) by / ( P Q = (1 - P )X. It follows 
readily t h a t / is a well defined linear isomorphism onto i f (J^i, St (A)1-), 
and thus 

def (TA) = dim(j2) = dim (if p ^ ^ U ) - 1 - ) ) = dim p f 0 def (.4). 

Finally, 

ind (TM) = nul (rA) ~ def (rA) = dim ( ^ ) ind (A). 

Let J^f denote an infinite dimensional Hilbert space. A theorem of 
[21, Theorem 1] implies that if T £ i f ( ^ ) , X £ bdry (o-(P)), and X is 
not an isolated point of a(T), then X G crie(T) P are(T). We next obtain 
an analogue of this result for boundary points of the left or right spectrum. 

LEMMA 3.6. i) If T Ç i f ( ^ ) , X G bdry (ar(T)), and X w wo/ an isolated 
point of <jr(T) j then\ Ç <rie(T) P are(T); 

ii) 7/ T G i?7($f), X d bdry (<r/(?")), awa7 X w wo/ aw isolated point of 
(rt(T), then X G o-Ze(r) Pi are(T). 

Proof, i) Suppose X £ bdry (ar(T)), X is not isolated in ar(T), but 
r — X is left or right invertible, i.e., T — X is semi-Fredholm. Then 
[17, Theorem 5.31, Chapter IV] implies that there exists ô > 0 such that 
S!(T — (3) is closed and nul (T — fi), def (T — ft) are constant for 
0 < \(3 ~ \\ < Ô. Since X £ bdry 0 r ( T ) ) , there exists /30 G C, 0 < 
|/30 — X| < <5, such that P — /30 is right invertible, and thus def (T — /So) 
= 0. It follows that def ( r - 0) = 0 for all 0 such that 0 < \p - X| < 5, 
i.e., 

{0 € C : 0 < \p - X| < 0} C p r ( r ) . 
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Since X is not isolated in <jr(T), we have a contradiction and the proof is 
complete. 

ii) Apply i) to T*. 

Remark. Let U denote a unilateral shift of multiplicity one, let K 
denote a compact operator with infinite spectrum, and let T — U* ® K. 
I t follows readily t ha t 0 G bdry (ar(T)) and 0 is not isolated in <rT(T). 
Since 0 G int (a(T))y the conclusion tha t 0 G <rie(T) H aTe(T) does not 
follow from [21, Theorem 1]. 

PROPOSITION 3.7. If are(A) H ^(B) = aT(A) H ale(B) = 0, then 
K = ar(A) H <TI(B) is finite (or empty), and if X G K, then X is isolated 
inar(A) or <TI(B). 

Proof. We first show tha t K is finite. Suppose to the contrary t ha t K is 
infinite, let X be a nonisolated point of bdry (K), and note t ha t 

bdry (K) C bdry (ar(A)) KJ bdry M S ) ) . 

Suppose X G bdry (ar(A)) ; since X is not isolated in K, X is not isolated 
in (Tr(A) and thus Lemma 3.6 i) implies t ha t X Ç are(A). T h u s 

X e KHare(A) C<ri(B)Hare(A), 

which is a contradiction. If X G bdry (ai(B)), then since X is not isolated 
in K ( C <TI(B)), Lemma 3.6 ii) implies t ha t 

X G KHale{B) C<Tr(A)Hale(B), 

which is also a contradiction. T h u s K is finite. 
Note t ha t 

K = ar(A) H al(B) = (ar(A)\are(A)) H M ^ V ^ S ) ) . 

Let X G o>C<4) H (ii(B). If X is not isolated in <JT(A), then there exists a 
sequence of distinct points {\n} C <rr(A) such tha t Xn —> X. If X is not 
isolated in <ii(B), then there exists a sequence of distinct points {l3n} C 
<JI(B) such t ha t pn —•> X. Since i£ is finite, we may assume tha t A — fin is 
right invertible for each w. Since /3n —̂  X, {/3W} C Pr(A), and X G o"r(^4), 
then X G bdry (o>(yl)). Moreover, since {\n} C o-r(^4) and \n —•» X, X is 
not isolated in ar(A). Thus Lemma 3.6 i) implies t ha t 

x G ^e(^)n#c<7re(,4)n^(£), 

which is a contradiction. I t follows tha t X is isolated in ar(A) or ai(B) 
and the proof is complete. 

COROLLARY 3.8. If <ne(A) H ar(B) = at(A) H are(B) = 0, then K = 
<Ti(A) H ar(B) is finite (or empty), and if X G K, then X is isolated in 
<n(A) or ar(B). 
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Proof. Apply Proposition 3.7 to A* and P * and then take adjoints. 

T H E O R E M 3.9. If are(A) H Gl{B) = ar(A) C\ ale(B) = 0, then rAB is 
semi-Fredholm and ind (rAjB) > — GO . 

Proof. Let X = o>(,4) H aL(B); iî K = 0, then r , i 5 is surjective [7, 
Theorem 5], so clearly rAB is semi-Fredholm and 

ind (TAB) = nul (rAJ3) ^ 0 > — oo . 

We may thus assume tha t K ^ 0. Proposition 3.7 implies t ha t iC is 
finite and admits the following decomposition. T h e distinct points of K 
are of the form 

[alt ...,<*»} ^ {^i, . . . , & } 

and satisfy the following properties: 

1) a , Ç ( < r r ( 4 ) V r e ( ^ ) ) H M B ) V , e ( P ) ) 

and « j is isolated in ar(A) (1 ^ i ^ w) ; 

2) 0 , G ( c r r ( ^ ) V r e ( ^ ) ) H M P ) W ( P ) ) , 

/3; is not isolated in ar(A), and yS7- is isolated in ai(B) (1 ^ j ^ p). 
(In the sequel we assume t h a t both a/s and /3/s are present ; if, instead, 
K consists entirely of a / s or entirely of /3/s, then it is necessary to make 
certain obvious modifications in the following argument . ) 

Since at Ç ar(A)\are(A) and at is isolated in ar(A) (1 ^ i ^ « ) , 
Corollary 2.4 implies t ha t there exists an orthogonal decomposition 

Jf7! =Jéx © . . . © ^ n + i and operators At G i ^ ( ^ ) (1 ^ i g w + 1) 
such tha t : 

\)<J%i is finite dimensional (1 ^ / ^ n)\ 
2) <r04f) = {a,} ( l g i ^ » ) ; 
3) <rf(i4n+i) H {ax, . . .,«„} - 0; 
4) .4 is similar to A' = yli 0 . . . © ^4w+i. 
Similarly, since /^ Ç ax(B)\(ju{B) and /^ is isolated in vi(B) (1 ^ 7 

^ p), then Corollary 2.3 implies t h a t there exists an orthogonal decompo
sition r&2 = J f 1 © . . . 0 J f p + i and operators Bj Ç <£ (Ctf f) (1 g 7 
^ £ + 1) such tha t : 

P ) C^j is finite dimensional (1 S j S p)\ 
2f)a(Bj) = {0,} ( U j ^ ) ; 
3') c r z ( ^ + 1 ) n {0lf . . . , & } = 0; 
4') P is similar to P ' = B1 © . . . © P p + 1 . 
From Lemma 1.2 it suffices to prove t ha t TA>B> is semi-Fredholm and 

t h a t ind (TA'B') > ~ °° • Let X *= ( Z ^ ) 

I^Ï^»+I , I^J '^P+I denote the 

operator matr ix of an operator X Ç J ^ ( J ^ 2 , ^ i ) relative to the above 
decompositions of J ^ 2 and J ^ i . A matr ix calculation shows t ha t the row 
i, column j en t ry of the matr ix of A'X — XB' is equal to A {Xtj — XtjBj 
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(1 ^ i ^ w + 1, 1 è j ^ p + 1)', thus the ij entry of TA>B>(X) is equal 

tO TAiBj(Xij). 

A straightforward matrix calculation now shows tha t if each rAiBj is 
semi-Fredholm (as an operator on J ^ ( J ^ , ^ * ) ), and if ind (rAiBj) > — oo , 
then TA'B' is semi-Fredholm and ind {jA>B>) > — oo ; in this case, 

nul (TA>B') = X) Z^nu l ( r ^ B ; ) , d e f (jA>B>) = X) X def (rAt-By), 

and ind (rA/B/) - X Z i n d OA,-*;)• 

If 1 S i è n and 1 ^ j ^ p, then 

c r ^ H ^ ) = {a,} H {5,} = 0, 

so rAvBj- is invertible [24]. Moreover, since 

ar(A
f) C\ al(B

/) = ar(A) H al(B) = K, 

then 3), 4) , 3') and 4') imply tha t 

ar(An+1)nal(Bp+1) = 0, 

and it follows from [7, Theorem 5] t ha t rAn+lBp+1 is surjective. (Hence 
ind (rAn+lBp+l) > —oo.) It thus suffices to consider the operators 
rAtBp+1 (1 è i S n) and rAn+lB] (1 S j S p). 

For l^j^p,Pj€KC aT(A)\are(A), and thus /3;- d <rre(An+i), i.e., 
â? (An+i — 13j) is closed and def (An+i — (3j) < oo . Lemma 3.5 implies 
t ha t 

TAn+i-pj.ojfj £ Jz (~z ÇA j,*Jen+i)) 

is semi-Fredholm and tha t 

ind (rAn+i-jSj.o^.) = dim iX3) ind (^ n + ] — (3j) > - oo . 

T h u s there exists ô > 0 such tha t if 

5 G ̂ ( ^ ( J f , , ^ n + i ) ) and ||S - TAB+lHSy i0 j r . | | < 5, 

then S is semi-Fredholm and 

ind (5) = ind (r^n+1_/3y,oJfi) > — oo 

[17, Theorem 5.17, Chapter IV]. Since <J(BJ) = {fi^/Bj — f$5 is ni lpotent; 

thus there exists an invertible operator X y £ ££ ($^) such t ha t 

!!zrU5, - /9,)*,|| < s. 

I t follows t ha t S = TAn+1-pjtXj-i(Bj-Pj)Xj^ is semi-Fredholm with ind (5) > 
— oo, and Lemma 1.2 implies tha t 

T An+l ,By ~ TAn+l-flj,Bj-Pj 
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is semi-Fredholm with 

i n d (TAn+ltBj) > - o o . 

Finally we consider the operators rAl<Bp+l (1 ^ i rg n). Since at ([_ 
ale(B), ai d <Tie(Bp+i), and thus ât (f_ are(Bp+1*). Lemma 3.5 implies t ha t 

is semi-Fredholm and tha t 

ind (T(Bp+i-al)*,QJîî) = dim (£{) ind ((Bp+l - ai)*) > - oo . 

Since (A t — «*)* is nilpotent, the above a rgument (for TAn+ltBj) implies 
t h a t T(Bp+i-ai)*,Ui-<*i)* ls semi-Fredholm with index not equal to — oo. 
Lemma 1.3 now implies t ha t 

TAiBp+i TAi—ai,Bp+i—ai 

is semi-Fredholm and tha t 

i n d (rAiBp+l) > - o o . 

The proof is now complete. 

COROLLARY 3.10. S%{JAB) is closed and def (TAB) < °o (i.e., rAB is 

semi-Fredholm with ind (rAB) > — oo ) if and only if 

ar(A) P ale(B) = are(A) P al(B) = 0. 

Proof. Suppose ar(A) P ale(B) ^ 0 or are(A) P ai(B) ^ 0. If rAB is 
not semi-Fredholm, then the result is clear. If rAB is semi-Fredholm, then 
Lemma 3.2 implies t h a t def (rAB) = co , and so ind (rAB) = — co . T h e 
converse follows from Theorem 3.9. 

COROLLARY 3.11. Suppose rAB is semi-Fredholm with ind (rAB) > — co . 
Let A, B, | a i i i ^ ^ „ , {PJ\I^J^PJ An+i, Bp+1 be as in Theorem 3.9 and its 
proof. Then 

V 

ind (rAB) = X) dim (Jé(B - 0,)) ind (A - 0,.) 
3=1 

+ 2 > i m (^((A - at)*)) ind {{B - a,)*) + nul (rAn+lBp + l). 

Proof. Let 1 <, j ^ p\ 3') of Theorem 3.9 implies t h a t /3; £ p z ( i W ) , 
and since a(Bj) = {£,} (2 ' ) , it follows t h a t J f , = « ^ ( 5 ' - 0 , ) . For 
1 <; i ^ «, o:z- G pr(^4re+i), and so ât £ pzO^+i*)- Since or(i4<) = {a*}, 
it follows t ha t 

^ = ^ ( ( 4 ' - a < )*) (1 ^ ^ n). 
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T h u s 

dim (tfj) = dim (Jt(B* - 0,)) = dim (Jt(B - 0,)) 

and 

dim (Jéx) = dim (<Jt((Af - a , )*)) = dim (Jé((A - «<)*))• 

Since *Jt\ (1 ^ ^ ^ w) and Jf^- (1 ^ j ^ />) are finite dimensional, we 
have 

ind (An+1 - 0.) = ind (A' - 0.) = ind ( 4 - 0,) ( U i g £) 

and 

ind (Bp+1 - at) = ind (Bf - at) = ind (B - a,) (1 g i g » ) . 

T h e proof of Theorem 3.9 now shows tha t 

ind ( r 4 B ) = Z ) Z ) i n d OA,-B;) 

= Z i n d ( r^n+i5i) + Z ) i n d O A ^ + I ) + ind (TAn+ltBp+i) 

= Z dim (3f,) ind (^n + i - 0,) 

3=1 

n 

+ X ) d i m (^£t) ind ( (£ p + i — <**)*) + nul (r^n + l f i p + 1) 
i = i 

= £ dim ( ^ ( 5 - 0,)) ind (.4 - 0,) 
3=1 

+ Z d i m ( ^ ( ( ^ - a < ) * ) ) i n d ( ( 5 - « , ) * ) + nul ( r A n + l i B , + 1 ) . 
«=i 

Remark. T h e problem of evaluating nul ( r A n + l B ; j + 1 ) appears to be as 
general as the problem of evaluating nul (TAB) for an arbi t rary pair of 
operators (A, B) satisfying <rr(A) C\ <?i(B) = 0. We know of no method 
of evaluat ing nul (TAB) in this generality. This difficulty in evaluating 
ind (TAB) will disappear in the case when TAB is Fredholm (Theorem 4.2). 

T H E O R E M 3.12. If ale(A) H ar(B) = at(A) H are(B) = 0, then TAB 

is semi-Fredholm and ind (TAB) < + GO . 

Proof. T h e pa t te rn of the proof is similar to t ha t of Theorem 3.9, so 
we will sketch the outline bu t omit certain details. If <ii(A) C\ <rr(B) = 0, 
then TAB is bounded below [7, Theorem 4], so we may assume tha t K = 
<TI(A) r\ <rr(B) 9e 0. Corollary 3.8 implies t ha t K is finite and admits a 
decomposition 

K = { « ! , . . .,«„} U { 0 i , . . . ,0 ,} 
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where the a / s and /3/s are distinct and satisfy the following propert ies: 

1) on G (ai(A)\<rie(A)) H (ar(B)\are(B)) and at is isolated in <TI(A) 
(1 S i û n) ; 

2) 0 , G ( ^ ( i ) V ^ ( i ) ) H (<7r(£) \<7 r e(£)) , 0 , is not isolated in <n(4) , 
and /3j is isolated in ar (B) (1 ^ 7 ^ p). 

Corollary 2.3 implies t ha t there exists an orthogonal decomposition 
Jtifi = <Jtx © . . . © ^ n + i and operators A t (E i f ( ^ ) (1 ^ i ^ « + 1) 
such tha t : 

1 ) ~ ^ is finite dimensional (1 rg i fg w) ; 

3) e r ^ + i ) H {a,, . . . ,an} = 0; 
4) 4 is similar to A' = Ai © . . . © An+1. 
From 1) — 3) it follows t h a t 

Jit =Jt(A! - a ,) = ker {{Af - az-)
w0 

(for a sufficiently large integer n*), and thus, from 4) , 

dim (o#i) = dim (<Jt(Af - at)) = dim ( ^ ( ^ 4 — at)) < GO. 

Similarly, Corollary 2.4 implies t ha t there is an orthogonal decomposi
tion Jif2 = J f i 0 . . . © J f P +i and operators Bj Ç i f p f , - ) (1 g j ^ £ + 1) 
such tha t : 

1/) J^y is finite dimensional (1 ^ j ^ p) ; 

2')<r(S,) = {/3,} ( U i ^ ^ ) ; 
3') c r r ( 5 p + i ) n {/3lf . . ., /3„} = 0; 
4') 5 is similar to B' = Bx © . . . © ^ + 1 . 
I t follows from 1') - 3') t ha t J f ? = Jé((B' - /3y)*), and 4') implies 

t ha t 

dim ( J f , ) = dim (Jé((Bf - 0,)*)) = dim (U^((5 - 0,)*)) < 00. 

As in the proof of Theorem 3.9, it suffices to prove t h a t each rAlBj 

(acting o n i f ( / f j , ^ i ) ) is semi-Fredholm wTith ind (rAiBj) < + °° • 
Clearly, rAiBj is invertible for 1 ^ i ^ n and 1 ^ j ^ p. Moreover, 

<n(An+1) H (T r (^ + 1 ) = 0, 

so TAn+lBp+1 is bounded below [7, Theorem 4]. For 1 ^ j ^ p, it follows 
as in the proof of Theorem 3.9 (using Lemma 3.5) t ha t rAn+lBj is semi-
Fredholm and 

ind (rAn+lBj) = ind (TAn+l^JtBj^:i) = ind (rA„+1-^,0^.) 

= dim (Xj) ind (An+1 - 0,) 

= dim ( ^ ( ( J 5 - /?,)*)) ind ( 4 - 0,) < + 0 0 . 
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Similarly, for 1 ^ i ^ n, TAi>Bp+l is semi-Fredholm and 

i nd (jAiBp+1) = ind (rBp+1*Ai*) = ind (T(Bp+1-aj)*t(Ai-ai)*) 

= ind (r(Bp+i-a.-)*,o^.) = dim (J(x) ind (CBp+i - a<)*) 

= dim ( ^ ( 4 - a , ) ) ind ( ( 5 - a,)*) < + <*>. 

The proof is complete. 

COROLLARY 3.13. ^ ? ( r A B ) is closed and nul ( T A B ) < GO (i.e., r ^ w 
semi-Fredholm with ind ( r A B ) < +co) if and only if 

al{A) C\ are{B) = <rle(A) H ar(B) = 0. 

Proof. The result follows from Lemma 3.1 and Theorem 3.12. 

The proof of the following result (using the calculations in Theorem 
3.12) is similar to tha t of Corollary 3.11 and will be omitted. 

COROLLARY 3.14. With the notation of Theorem 3.12, if rA B is semi-
Fredholm and ind (TAB) < + oo , then 

ind (rAB) = Z d i m (JZ(B - 0,)*)) ind (A - 0,) 
3=1 

n 

+ £ d i m (Jt{A - *t)) ind ((B - af)*) - def (rAn+10p+1). 

We next prove the principal results of this section. 

COROLLARY 3.15. TAB is semi-Fredholm if and only if 

i) are(A) n cn{B) = ar(A) H ale(B) = 0, or 
ii) ale(A) H ar(B) = ax{A) C\ are(B) = 0. 

Proof. If i) or ii) hold, then the conclusion tha t rAB is semi-Fredholm 
follows from Theorem 3.9 or Theorem 3.12 respectively. The converse is 
the contrapositive of Corollary 3.3. 

COROLLARY 3.16. 

<TSF(TAB) = a^ [(ale(A) - ar(B)) U (al(A) ~ are(B))) 

H [(are(A) - *i(B)) W (ar(A) - ale(B))]. 

Proof. Corollary 3.4 states t ha t a C <JSF(TAB). T O prove the reverse 
inclusion, it suffices to let z £ G\a and to show tha t rAB — z — rA-z>B is 
semi-Fredholm. From Corollary 3.15, it suffices to verify t ha t 

are(A - z) C\ <n(B) = ar(A - z) H ale(B) = 0, 

or 

ale(A - z) H ar(B) = <n(A - z) C\ are(B) = id. 
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Assuming the contrary, we will illustrate the case when 

are(A - z) r\ (n(B) ?* 0 and <n(A - z) C\ are(B) ^ 0; 

the other cases are proved similarly and will be omit ted. Let 

0 G <rTe(A - z) n<n(B); 

then 13 = a — z for some a G are(A), and so 

z = a - $ (z <rre(A) - <jl(B). 

Let 7 Ç (Ti(A — z) C\ (Tre(B); then y = a — z for some a ' Ç <ri(A) and 
t h u s s = a ' - 7 Ç (7;(^1) - are(B). Now 

S G ( ^ ( i ) - are(B)) H ((r r e (^) - al(B)) C (T, 

which is a contradiction. 

COROLLARY 3.17. r A 5 is semi-Fredholm if and only if TBA is semi-
Fredholm. 

Proof. The result follows immediately from Corollary 3.15. 

Remark. In [12] we studied the problem of characterizing the case when 
TAB has closed range. For the case A = B, the characterizat ion is due to 
C. Apostol [2], and [11] and [12] contain diverse part ial results for the 
general case. (Note for the case A = B t h a t while TAA may have closed 
range, it is not semi-Fredholm, since bdry (ae(A)) C vre(A) f~\ <ne(A) 
(Corollary 3.15). The results of the present section characterize when 
& (TAB) is closed under the added hypothesis t ha t nul (TAB) or def (TAB) 
is finite. However, the general problem of range closure remains unsolved. 

4. T h e c a s e w h e n TAB i s F r e d h o l m . In this section we consider the 
case when TAB is Fredholm; we give a formula for the index in this case 
and obtain some applications. As before, ^fi and J ^ 2 denote a rb i t ra ry 
infinite dimensional Hilbert spaces, A £ J??(«^i), and B G <f£(ffl<f). 
Recall the following result of [12]. 

T H E O R E M 4.1 . [12, Theorem 3.1] i) TAB is Fredholm if and only if 
a(A) H ae(B) = ae(A) H a(B) = 0; 

ii) <Te(TAB) = (a(A) - ae(B)) U (ae(A) - a(B)). 

Suppose t ha t TAB is Fredholm bu t not invert ible; then K = a (A) 
r\ a(B) is nonempty [24]. T h e proof of [12, Theorem 3.1] implies t h a t K 
is finite and admits a decomposition 

K = {«lf ...,an} U { 0 i , . . . , f t , } f 

where the a/s and /3/s are distinct and satisfy the following properties: 

(4.1) at G (a(A)\ae(A)) H (a(B)\ae(B)) 
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and at is isolated in a (A) (1 ^ i ^ n) ; 

(4.2) h ç (ff(4)V,U)) n («r(5)ws)), 
joy is not isolated in cr(^4), and /?_, is isolated in a(B) (1 ^ j S p)-

As in the proof of [12, Theorem 3.1], there exists an orthogonal de
composition Jjfi = ^ i 0 . . . 0 ^n+\ and operators ^41 Ç J£ (<JK i) 
(1 ^ i ^ n + 1) such tha t : 

1 ) ^ ^ is finite dimensional (1 è i S n); 
2) O-04 0 = {a,} (1 g i g n ) ; 
3) cr(^n + 1) H {ai, . . .,<*„} = 0; 
4) 4̂ is similar to A' = Ax 0 . . . © An+i. 
Here ^ f i is the (finite dimensional) Riesz subspace for A ' corresponding 

to the isolated point at £ a(A/)\ae(A
/). T h u s 2) and 3) imply t h a t 

^ i = ̂ (Ar — ai); moreover 4) implies t ha t 

dim (£t) = dim (£(Af - af)) = dim (<Jt(A — at)). 

Similarly, there exists an orthogonal decomposition 

and operators Bj Ç i ^ ( J ^ ) (1 S j S P + I) such tha t : 
1') J ^ - is finite dimensional (1 ^ j ^ p); 
2f)a(Bj) = {0,} (l^j^p); 
3') c r ^ + O n {ft, ...,ft,} = 0; 
4') 5 is similar to B' = B± ® . . . ® Bp+1. 
Thus J f , = Jé(B' - £,) and dim ( ^ ) = dim ( ^ ( £ - 0,)) (1 è j 

As in the proofs in Section 3, to calculate ind (TAB), it suffices to prove 
tha t each rAiBj is Fredholm, for then 

ind (TAB) = 2 X) i n d taiBy). 

Clearly v (A t) C\ <J (B j) = 0 for 1 S i ^ w and 1 S j S P\ moreover, 3) , 
3 ') , and the definition of K imply tha t 

a(An+1) H (Bp+1) = 0. 

T h u s TAiBj (1 ^ i ^ w) (1 ^ i ^ £) and r A n + l B p + i are invertible [24]. 
I t follows tha t 

p n 

ind (TAB) = X ) i n d (rAn+lBj) + X) ind ( T A . ^ . J ) . 
J = l i = l 

As in the proof of [12, Theorem 3.1] (or Theorem 3.9 above) , for 
1 ^ j ^ p we have 

ind ( r A n + l B i ) = ind ( T ^ ^ - ^ ,*,-/*,•) = i n d (^n+i-^-.o^.) 

= dim ( J f , ) ind (An+1 - pj) = dim (Jé(B - fij)) ind (A - £ , ) . 
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Similarly, for 1 S i ^ w, 

ind (TAiBp+1) = ind (TAl-ai,Bp+1-ai) = ind (r(Bp+1-ai)*,uz-^)*) 

= ind (r ( B p + 1_ a i )*,o^.) = dim M ' O ind ( ( ^ + i — « 0 * ) 

= dim (JK(A - at)) ind ((B - a , )* ) . 

The preceding discussion yields the following result. 

T H E O R E M 4.2. If rAB is Fredholm, either rAB is invertible (a(A) C\ a(B) 
= 0) or 

a{A)^<j(B) = {au . . ., an} U {ft, . . ., ft} 

where the a/s satisfy (4.1) and //££ ft's satisfy (4.2). (Either the a/s or 
the fi/s may be absent.) In this case, 

ind (rA S) = J2 dim ( ^ ( 5 - ft)) ind (A - ft) 

+ 2 dim ( « ^ ( ^ - at)) ind ( ( 5 - at)*). 
7 = 1 

There are certain formal similarities between ( r ^ ) * and —rBA. Recall 
t ha t a Banach space operator T Ç J£(3?) satisfies a(T*) = (T(T); in 
particular, T is bounded below if and only if T* £ i^ (^T*) is surjective, 
and T is surjective if and only if T* is bounded below [23, Theorems 
4.12-4.15]. Moreover, T is semi-Fredholm if and only if T* is semi-
Fredholm, in which case ind (T*) = —ind (T) [17, Corollary 5.14, 
Chapter IV]. Rosenblum's Theorem [24] implies t ha t a( — TBA) = 
<T((TAB)*), and it follows from [7] t ha t rAB is bounded below (resp. 
surjective) if and only if —rBA is surjective (resp. bounded below). 
Corollary 3.16 and Theorem 4.1 imply t h a t 

VSF(-TBA) = (TSF((TAB)*) and ae(-rBA) = ( r e ( ( r A B )*) . 

We next show t h a t —rBA has the same Fredholm index as (TAB)*. 

COROLLARY 4.3. rAB is Fredholm if and only if rBA is Fredholm, in 
which case ind (rBA) = —ind (TAB). 

Proof. I t follows di rect lyTrom Theorem 4.1 t h a t TAB is Fredholm if 
and only if rA*B* is Fredholm, and clearly rAB is invertible if and only if 
TA*B* is invertible. Assume tha t rAB is Fredholm bu t not invertible and 
let {oLi)\^i^n and {ft-}ig^p be as in (4.1) and (4.2) respectively. Then 

a (A*) r\ <r(B*) = {âu . . ., ân} U {ft, . . ., ft}, 

and (4.1) and (4.2) imply the following properties: 

i) ât e (a(A*)\*e(A*)) n (a(B*)\ae(B*)) 
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and âf is isolated in a (A*) (1 ^ i S n) ; 

ii) /5, G (cr(^*)V6(4*)) H ( * ( £ * ) W 3 * ) ) , 

/3j- is not isolated in a (A*), and j3̂  is isolated in v{B*). 
Theorem 4.2 and i) and ii) imply that 

V 

ind (TA*B*) - £ d i m ( ^ ( 5 * - &)) ind (A* - &) 

+ £ dim ( ^ ( 4 * - at)) ind (5 - a,). 
i=i 

Since a* is isolated in a (A) and 4̂ — at is Fredholm, it follows from 
Lemma 2.1 that 

dim (^(A* - ât)) = dim (*J((A - at))\ 

similarly, 

dim (4f(B* - fa)) = dim (Jt(B - 0,)). 

Thus 

ind (rA***) - X) d i m ( ^ ( ^ - 0,)) ind (4* - 0y) 

+ X dim (J[(A - at)) ind (B - a*) 

= - É d™ (r#(B ~ &)) ind (A ~ PJ) 

- X ) d i m ( ^ U - af)) ind ((B - a,)*) = - ind (TAB). 
i=l 

The result now follows from an application of Lemma 1.3. 

Recall that an operator T mJ£ ffl) {ffl separable) is bi-quasitriangular 
if T and T* are quasitriangular in the sense of [16]. It follows from [5] 
that T is bi-quasitriangular if and only if ind (T — X) = 0 for each 
X £ psF(T) ; in particular, if Tis bi-quasitriangular, then GU(T) = are(T) 
= <re(T) and <Ji(T) = ar(T) = <r(T). Note that each normal operator 
in ^£ {&) is bi-quasitriangular [16], as is each quasitriangular hypo-
normal operator. C. K. Fong [13] proved that if A and B are normal, 
then TAB is normal in the Banach space sense. For the case when A and 
B are bi-quasitriangular, the following results illustrate the resemblance 
of the spectral properties of rAB to those of bi-quasitriangular Hilbert 
space operators. 

THEOREM 4.4. Let A and B be bi-quasitriangular operators in<^{ffl). 
The following are equivalent: 
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1) TAB is semi-Fredholm; 
2) rAB is Fredholm with ind (TAB) = 0; 
3) TAB is Fredholm; 
4) ae(A) r\ a(B) = a (A) H (7,(5) = 0. 

Proof. I t follows from Theorem 4.1 t h a t 4) =» 3) => 1). Fur ther , 
since A and B are bi-quasitriangular, then Corollary 3.15 implies t h a t 
1) =» 4) . Assume tha t rAjB is Fredholm. Since 4̂ and 5 are bi-quasi
triangular, then ind (A — z) = 0 for all z G p^F(^4) and ind ( 5 — z) = 0 
for each z G PSF(B). T h u s Theorem 4.2 implies t h a t ind ( r A B ) = 0, and 
so 3) =» 2) ; since the converse is obvious, the proof is complete. 

COROLLARY 4.5. If A and B are bi-quasitriangular, then a sF(TAB) = 

cre(TAB) and ind (rAB — z) = 0 for z G PSF(TAB)-

Proof. Let z G o- e ( r 4 S ) ; thus TA-Z,B = TAB — z is not Fredholm and 
4̂ — s and B are bi-quasitriangular. Theorem 4.4 implies t ha t TAB — z 

is not semi-Fredholm, so it follows t ha t 

&SF(TAB) — VeijAB)' 

Next, suppose TAB — z = TA-Z,B is semi-Fredholm; since A — z and B 
are bi-quasitriangular, Theorem 4.4 implies t ha t ind (TAB ~ Z) = 0. 

We conclude by discussing another similarity between the operators 
TAB and Hilbert space operators . By a theorem of C. Olsen [19, Theorem 
2.4], each polynomially compact operator is a compact per turbat ion of 
an algebraic operator ; in particular, if T G J£ {Jrff), Tk = 0, and Tk~l ^ 0, 
then there exists a compact operator K such t h a t (T -\- K)k = 0 and 
(T + K)k~l ^ 0. An operator T is essentially quasinilpotent if T is 
quasinilpotent, i.e., ae(T) = {0}. I t follows from [25, Theorem 4] t h a t 
if T is essentially quasinilpotent, then there exists a compact operator 
K such t h a t T + K is quasinilpotent . These two results for Hilber t 
space operators have strong analogues for TAB> In [14, Proposition 4] 
it is proved tha t the following conditions are equivalent : i) rABk is 
compact for some k > 0; ii) rAB

k = 0 for some k > 0; iii) there exists 
a scalar a G C such t h a t A — a and B — a are nilpotent . We next give 
a parallel result for the case when TAB is essentially quasinilpotent . 

COROLLARY 4.6. The following are equivalent: 

i) a (A —a) = a(B — a) = {0} for some a G C ; 

ii) <T(TAB) = W; 

iii) TAB is essentially quasinilpotent, i.e., ae(TAB) = {0}. 

Proof. T h e equivalence of i) and ii) is an immediate consequence of 
Rosenblum's Theorem [24]. Clearly ii) => iii), so it suffices to prove 
iii) => i) . If cre(TAB) = {0}, then it follows from Theorem 4.1 ii) t ha t 
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there exist scalars a, 13 G C such tha t a (A) = ae(B) = {a} and ae(A) = 
a(B) = {p}. Thus a = (3, so a(A) = a(B) = {a} and i) follows. 

Remark. Since completing an earlier version of this paper, we learned of 
several additional results t ha t we mention below: 

1) By combining Corollary 3.13 with Theorem 4.1, we obtain the 
following spectral condition for the case when TAB is semi-Fredholm with 
ind (TAB) = — co ; this occurs if and only if 

al(A)r\are(B) = ole(A)r^ar(B) = 0 and 

(ae(A) H a(B)) U (a(A) H ae(B)) * 0. 

Similarly, Corollary 3.10 and Theorem 4.1 give a spectral condition for 
the case when ind (TAB) = + o o . These results, together with Theorem 
4.2, completely describe ind (TAB — z) (z G PSF(TAB)). 

2) In a forthcoming sequel we show tha t if f is any norm ideal in 
i f ( ^ 0 , then PSF(T\</) = PSF(T) and T\J and r have the same index 
functions. In particular, if <f is the ideal of all Hilbert-Schmidt operators 
in S£ (3f), endowed with its Hilbert space structure, and if A and B* 
are quasitriangular, then rAB is a quasitriangular operator o n ^ . 

3) Let T G ̂ (Jtf). No t e t ha t K C C is an isolated subset of at(T)\ 
a ie(T) if and only if K is isolated in <ri(T) and K P\ <rie(T) = 0. Corol
lary 2.3 implies t ha t if i^ is a finite isolated subset of ai(T)\aie(T), then 
r has a left-spectral decomposition relative to K. This result is best 
possible in the sense tha t every isolated subset of ai(T)\au(T) is neces
sarily finite. Indeed, if K is an infinite isolated subset of <ri(T), then there 
exists X G bdry (K) such tha t X is non-isolated in K; Lemma 3.6 ii) im
plies t ha t X G <Jie(T). We note also tha t if K is an isolated subset of 
<TI(T) bu t K r\ aie(T) 5* &, then there need not exist a left-spectral 
decomposition of T corresponding to K. 

Added in proof. In a personal communication to the author," T. Ichinose 
has remarked tha t the description of PSF(T) and of ind (r — X) can also 
be obtained using results from the theory of tensor products and cross 
spaces. Although we have found no account of this approach in the 
l i terature, we believe it may be carried out along the following lines. Let 
2£ ®a & denote the completion of the tensor product of the Banach 
spaces $£ and <%/ with respect to a quasi-uniform reasonable cross norm 
a on & ® &. In [Trans. Amer. Math . Soc. 235 (1978), 75-113] and 
[Trans. Amer. Math . Soc. 237 (1978), 223-254] T. Ichinose characterized 
the semi-Fredholm domain and index function of p(A 0 1,1 ® B), 
where A acts on S£, B acts on ^ , and p(z, w) is in a suitable class of 
polynomials including p(z, w) = z — w and p(z, w) = zw. In the Hilbert 
space case, ^f ®aM^ corresponds to the (minimal) norm ideal J>a = 

https://doi.org/10.4153/CJM-1981-091-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-091-4


1230 LAWRENCE A. FIALKOW 

3f®aJlfoi R. Schat ten [Ann. of Math . Stud. , no. 26, Princeton Univ. 
Press, 1950] (see also R. Schat ten [Norm Ideals of Completely Con
tinuous Operators , Springer-Verlag, 1960, page 73 (footnote)]) . Under 
this correspondence, A 0 1 — 1 ® B corresponds to r (B ', A ')\J a , where 
A' and B' are certain operators closely related to A and B. (For the case 
when a is the Hilbert-Schmidt norm, A ® 1 — 1 ® B is replaced by 
A ® B, and r(A, B) is replaced by S^(X) = AXB, this correspondence 
is described by A. Brown and C. Pearcy [Proc. Amer. Ma th . Soc. 17 
(1966), 162-166], who use it to determine a (A ® B) from results of [18].) 

The resu l t so fT . Ichinose cited above thus characterize p$F(r(Bf, A ')]</ a) 
and ind ((T(B,,A/) — X) |^ / a ) . Apparent ly , the relationships between 
A and A' and B and B' can then be used to determine the semi-Fredholm 
domain and index function of T(A, B)\^/a. If one applies this procedure 
when a is the usual operator norm and J? a = J^ (ffl), one may then 
recover results including Corollary 3.16 and Theorem 4.2 by using the 
duali ty 

T(A,B) = (T(A,B)\X &?))** 

(see [9]). On the other hand, since the ideals J?a are minimal norm 
ideals, it appears t h a t this approach does not yield our results about 

3T\ <f for arb i t rary norm ideals (including the nonseparable norm ideals 
of I. C. Gohberg and M. G. Krein [Introduction to the Theory of Linear 
Nonselfadjoint Operators] Amer. Ma th . S o c , 1969), which are closely 
based on the techniques of the present paper. These results (mentioned 
in ii) above) appear in [Trans. Amer. Math . Soc. 267 (1981), 112-124] 
and in "Spectral properties of elementary opera tors" (prepr int) , as do 
corresponding results for the o p e r a t o r s ^ and 5 ^ 1 ^ . As indicated above, 
the results of T . Ichinose can also be used to derive the semi-Fredholm 
domain and index functions of 5^ and y\f a-
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