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We revisit the optimal heat transport problem for Rayleigh–Bénard convection in
which a rigorous upper bound on the Nusselt number, Nu, is sought as a function
of the Rayleigh number, Ra. Concentrating on the two-dimensional problem with
stress-free boundary conditions, we impose the time-averaged heat equation as a
constraint for the bound using a novel two-dimensional background approach thereby
complementing the ‘wall-to-wall’ approach of Hassanzadeh et al. (J. Fluid Mech.,
vol. 751, 2014, pp. 627–662). Imposing the same symmetry on the problem, we find
correspondence with their maximal result for Ra6Rac := 4468.8 but, beyond that, the
results from the two approaches diverge. The bound produced by the two-dimensional
background field approaches that produced by the one-dimensional background
field from below as the length of computational domain L → ∞. On lifting the
imposed symmetry, the optimal two-dimensional temperature background field reverts
to being one-dimensional, giving the best bound Nu 6 0.055Ra1/2 compared to
Nu 6 0.026Ra1/2 in the non-slip case. We then show via an inductive bifurcation
analysis that introducing two-dimensional temperature and velocity background fields
(in an attempt to impose the time-averaged Boussinesq equations) is also unable to
lower the bound. This then exhausts the background approach for the two-dimensional
(and by extension three-dimensional) Rayleigh–Bénard problem with the bound
remaining stubbornly Ra1/2 while data seem more to scale like Ra1/3 for large Ra.
Finally, we show that adding a velocity background field to the formulation of Wen
et al. (Phys. Rev. E., vol. 92, 2015, 043012), which is able to use an extra vorticity
constraint due to the stress-free condition to lower the bound to Nu6O(Ra5/12), also
fails to further improve the bound.

Key words: Bénard convection, variational methods

1. Introduction
In this paper we consider the fundamental problem of assessing how the heat flux

behaves as a function of the Rayleigh number, Ra, in Rayleigh–Bénard convection
where a layer of fluid is heated from below and cooled from above. This situation is
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ubiquitous in Nature and consequently the focus of a huge body of ongoing research
work (e.g. Ahlers, Grossmann & Lohse 2009). The particular focus here is on the
use of variational methods which seek an upper bound on the heat flux in the hope
that this bound will capture the correct high-Ra scaling for turbulent convection. This
approach involves constructing an optimisation problem constrained by information
gleaned from the governing equations. Inevitably, the constraints actually imposed
form a strict subset of those implied by the governing equations so that any maximum
which emerges is an upper bound on what can actually be realised. This approach
has its roots in the work of Malkus (1954) who hypothesised that the fluid selects
the flow state from all those possible states which maximises the heat transport. The
subsequent mathematical formulation by Howard (1963) and Busse (1969) was as a
maximisation problem (see the early reviews by Howard (1972) and Busse (1978)).
In the 1990s, an alternative complementary approach – the background method –
was introduced by Doering & Constantin (1992, 1994), Constantin & Doering (1995),
Doering & Constantin (1996) which takes the form of a minimisation problem. This
has the considerable advantage that even a trial solution can yield an upper bound
which, experience seems to indicate, yields the same scaling as the proper optimal
(e.g. in shear flow and convection see Doering & Constantin (1992, 1996) respectively
compared to Plasting & Kerswell (2003), hereafter PK03).

In both approaches, however, the outstanding challenge has been to add further
dynamical information to improve (lower) the scaling law (e.g. see Ierley & Worthing
(2001) for efforts in the Howard–Busse maximisation problem). The best current
bound on the Nusselt number – the ratio of actual heat flux to the conductive value –
for the case of non-slip boundary conditions on smooth walls is Nu6 0.02634Ra1/2 as
Ra→∞ (PK03) whereas most of the current experimental data suggest Nu∼ Ra0.31

(see the discussion in Waleffe, Boonkasame & Smith 2015) and so are more consistent
with the simple theoretical prediction of Nu ∼ Ra1/3 (Malkus 1954; Priestley 1954)
with some dependence on the Prandtl number also possible (Grossmann & Lohse
2000). A natural way of incorporating further information exists in the background
method through simply extending the definitions of the background fields. To
see this, recall that the Malkus–Howard–Busse (maximisation) approach and the
Doering–Constantin (minimisation) approach are dual problems seeking to find
an appropriate saddle point of a functional of the velocity and temperature fields
(Kerswell 1998, 2001). To explain further we introduce the problem to be considered.

Let a Newtonian fluid be confined between two infinite isothermal plates at z= 0
and z = d with the lower plate maintained at a constant temperature δT hotter than
that of the upper plate. Using the gap width d, d2/κ (κ is the thermal diffusivity) and
δT as units of length, time and temperature together with adopting the Boussinesq
approximation, the governing equations are

(N ) :=
∂u
∂t
+ u · ∇u+∇p− σ∇2u− σRaT ẑ= 0, (1.1)

(H) :=
∂T
∂t
+∇ · (uT −∇T)= 0, (1.2)

with ∇ · u= 0 where

σ := ν/κ and Ra := gβδTd3/νκ, (1.3a,b)

are the Prandtl and Rayleigh numbers, respectively (ν is the kinematic viscosity, β
is the thermal expansion coefficient and −gẑ is the acceleration due to gravity). The
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Bounding heat transfer in RB convection 889 A33-3

background method starts by writing down the functional

L := 〈|∇T|2〉 − 〈aν · (N )〉 − 〈bθ(H)〉, (1.4)

where the first term on the right is the long-time-averaged Nusselt number Nu, ν(x, t)
and θ(x, t) are Lagrange multipliers imposing the momentum and heat equations as
constraints respectively (the seemingly redundant extra scalars a and b play a key role
later) and

〈 (. . .) 〉 := lim
T→∞

1
T

∫ T

0

1
V

∫
(. . .) dV dt, (1.5)

is a spatial-temporal average. The crucial next step is to choose steady ‘background’
fields

φ(x) := u(x, t)− ν(x, t), τ (x) := T(x, t)− θ(x, t), (1.6a,b)

which connect the Lagrange multipliers with the physical fields and such that they
carry any inhomogeneous boundary conditions (so here just those on the temperature
field). In principle, time dependence can be retained in the background fields but
this leads to a substantially more complex problem beyond the scope of the current
investigation (also it is not clear that this helps – see Souza & Doering (2015a,b) for
calculations in reduced models). Changing variables from (u, T, ν, θ) to (u, T, φ, τ ),

L = 〈|∇T|2〉 − 〈a(u− φ) · (N )〉 − 〈b(T − τ)(H)〉,

= 〈|∇T|2〉 − a〈u · (N )〉 +
a
V

∫
φ · (N )

t
dV − b〈T(H)〉 +

b
V

∫
τ(H)t dV, (1.7)

(where

( )
t
:= lim

T→∞
sup

1
T

∫ T

0
( ) dt (1.8)

is a long-time average) makes it clear that choosing the largest stationary value of L
finds the largest long-time-averaged Nusselt number subject to the long-time-averaged
power and entropy balances (Lagrange multipliers a and b respectively) and projected
information from momentum and heat flux balances (Lagrange multipliers φ and
τ respectively). Since it can be shown that all the time derivative terms in these
constraints vanish under long-time averaging, the variational problem can be couched
in terms of steady fields only. In particular, the goal is to evaluate the largest
stationary value of the functional

Ls := 〈|∇T|2〉 − a〈u · (N )s〉 + a〈φ · (N )s〉 − b〈T(H)s〉 + b〈τ(H)s〉, (1.9)

where the subscript s indicates the steady version of the unsubscripted quantity. So far
only the minimal choice (τ , φ)= (τ (z), 0) has been explored (Doering & Constantin
1996) which leads to the simplified expression

Ls := 〈|∇T|2〉 − a〈u · (N )s〉 − b〈T(H)s〉 + b
∫ 1

0
τ(z)

[
lim

L→∞

1
L2

∫ L/2

−L/2

∫ L/2

−L/2
(H)s dx dy

]
dz.

(1.10)
This choice turns out to give the dual problem to the Howard–Busse approach
(Howard 1963; Busse 1969) and produces the same Nusselt number bound (Kerswell
2001, PK03). However, here, beyond the total power and entropy balances and
insisting that the fluid is incompressible and the boundary conditions are satisfied, only
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the horizontally averaged steady heat equation is imposed as a constraint. It seems
reasonable to suppose that imposing further constraints from the governing equations
by extending the definitions of the background fields should lower this current best
bound for Boussinesq convection. Probing this hypothesis is the motivation for this
paper.

The need to improve a bound so that it captures the observed scaling of a key
flow quantity is quite general. Bounds developed on the energy dissipation rate for
shear flows such as plane Couette flow (Doering & Constantin 1992), channel
flow (Doering & Constantin 1994) and pipe flow (Plasting & Kerswell 2005)
all seem to be too conservative by a factor 1/(log Re)2 (Re being the Reynolds
number). There are special cases where the scaling is correctly captured – shear
flow with suction (Doering, Spiegel & Worthing 2000), porous medium convection
(Doering & Constantin 1998)) and precessing flows (Kerswell 1996) – but generally
some simplifying limit has to be taken to access further constraints (e.g. the
momentum equation in infinite-Prandtl-number convection; Doering & Constantin
2001). Finite-Prandtl-number Rayleigh–Bénard with non-slip smooth walls, however,
is most studied partly because of its wide application and partly because the current
best bound appears to have the wrong exponent and therefore calls for the most
improvement. Of particular interest in recent efforts to lower the bound has been
the introduction of the ‘wall-to-wall’ approach by Hassanzadeh, Chini & Doering
(2014) (see also Souza (2016) and Souza, Tobasco & Doering (2019)). Here, the
steady heat equation has been imposed as a constraint with some incompressible
boundary-compliant flow field which, apart from an overall amplitude, is otherwise
unconstrained and a maximisation problem is solved. This appears to give a much
improved (reduced) estimate of maximal flux with Nu∼Ra5/12 for stress-free boundary
conditions in two-dimensional (2-D) convection with Souza (2016) finding a yet
stronger (reduced) bound of Nu ∼ Ra0.371 for non-slip boundary conditions. Later
work by Tobasco & Doering (2017) (see also Doering & Tobasco 2019), however, has
demonstrated, through designing a sophisticated trial function, that the upper bound
must be at least Nu∼Ra1/2 up to logarithms for both stress-free and non-slip boundary
conditions. This suggests that the non-slip maximal flux results of Souza (2016) and
stress-free maximal results of Hassanzadeh et al. (2014) become only local maxima
as Ra→∞. A good place to start our study is to try to shed some light on this
by tackling the complementary background formulation – (τ , φ)= (τ (x, z), 0) which
also imposes the steady heat equation in 2-D convection and builds a minimisation
problem.

Concurrent work by Souza et al. (2019) has considered how the background
method is connected to the wall-to-wall approach and speculated that there could
be a ‘duality gap’ between them. Coming from a different perspective (the specific
details of solving the variational equations), we share this speculation and confirm it
here beyond a certain Rayleigh number. Motoki, Kawahara & Shimizu (2018) have
also built upon Hassanzadeh et al.’s work by extending the maximisation search to
three dimensions. Interestingly, they find a three-dimensional (3-D) optimal solution
which scales like Ra1/2 with a numerical coefficient just 7.2 % below the bound of
PK03 (see their figure 2). This 3-D result (using non-slip boundary conditions) and
the 2-D work of Tobasco & Doering (2017) (using non-slip boundary conditions)
clearly beg the question whether further information from the momentum equation
can be used to rule out the Ra1/2 scaling which clearly persists despite imposing the
steady heat equation. This also will be addressed here.

A further motivation for exploring the addition of further dynamical constraints
is the hope that, ultimately, the full governing equations can be imposed and then
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Bounding heat transfer in RB convection 889 A33-5

a direct connection forged between the optimal solution of an upper bounding
variational problem and an actual solution of the governing equations. Realistically,
this seems only likely if the optimal solution is indeed steady, in which case only
the time-averaged version of the equations needs to be imposed. The possibility
that steady solutions are close to if not capable of achieving maximal heat flux
has been suggested by the asymptotic roll construction of Chini & Cox (2009) in
2-D stress-free convection, which attains Nu ∼ Ra1/3, and the recent computations
tracking the (simple) 2-D convection roll solution which initially bifurcates from the
conductive state up to very high Rayleigh numbers of O(109) in non-slip convection
(Sondak, Smith & Waleffe 2015; Waleffe et al. 2015). In this latter work, provided
the aspect ratio of the rolls is optimised over, a heat flux relationship of Nu∼ Ra0.31

is found, which is intriguingly close to 3-D turbulent convection measurements and to
Nu∼Ra1/3, the relationship many believe might be the ultimate scaling law, although
not all (e.g. Zhu et al. 2018).

A synopsis of the paper is as follows. Section 2 describes the set-up of 2-D
Boussinesq convection (§ 2.1), explains how a bound can be found using the
background approach (§ 2.2) and then discusses the convexity of the optimisation
problem for a general temperature background field which ensures a unique optimal
(§ 2.3). Section 2.4 explains how the numerical computations are performed with a
choice having to be made between a branch continuation approach (PK03) and a time
stepping method (Wen et al. 2013, 2015). Section 3 describes the results of tackling
the upper bounding problem with the steady heat equation imposed in the presence
of the same symmetry as used in Hassanzadeh et al. (2014). The appearance of a
second fluctuation mode becoming ‘spectrally unstable’ at Ra= Rac := 4468.8 means:
(a) that there is a gap between Hassanzadeh et al.’s result and the background upper
bound for Ra> Rac; and (b) a new formulation for how the optimal is tracked needs
to be introduced compared to previous work (e.g. PK03).

Section 4 discusses this new formulation, which is significant because the various
background and fluctuation optimal fields can no longer be used to define a set of
physical temperature and velocity fields. In particular, the optimal fields do not satisfy
the steady heat equation even though this is explicitly imposed as a constraint. Using
this reformulation, section 5 shows how the optimal bound behaves for Ra>Rac. The
size of the computational domain becomes important in the 2-D background problem
and it is found that the highest bound is only achieved in the infinite domain limit
when the background field becomes increasingly one-dimensional (1-D). Removing
the symmetry used by Hassanzadeh et al. restores the translational invariance of the
problem in which case the optimal has to be one-dimensional and a bound of Ra 6
0.055Ra1/2 is found compared to the well-known result of 0.026Ra1/2 for non-slip
walls (PK03).

Having found that imposing the steady heat equation does not improve the
bound, we then consider adding extra information from the momentum equation
by introducing a background velocity field φ(x, z). Now the optimisation problem is
no longer convex and so we are unable to invoke uniqueness to dismiss non-vanishing
φ. Instead, we use an inductive bifurcation analysis to show that if φ = 0 before a
bifurcation then it remains 0 after it too, meaning that the continuous branch of
optimals found by branch tracking out of the energy stability point always has φ= 0.
Noting the one caveat that it is not impossible that there is an unconnected branch
of optimals with φ 6= 0, this strongly suggests the surprising result that imposing the
steady Boussinesq equations does not improve the bound over that obtained using the
horizontally and time-averaged heat equation and a global energy constraint from the
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889 A33-6 Z. Ding and R. R. Kerswell

momentum equation. Finally, section 7 observes that adding a velocity background
temperature field to the formulation of Wen et al. (2015), which has an additional
vorticity constraint, also fails to improve matters. A discussion follows in § 8.

2. Mathematical formulation
2.1. Set-up

We consider the two-dimensional version of the Boussinesq equations (1.1) and (1.2)
where u= ux̂+ wẑ over a box (x, z) ∈ [− 1

2 L, 1
2 L] × [0, 1] together with the following

stress-free and isothermal boundary conditions

∂u
∂z
=w= 0, T = 1, at z= 0, (2.1)

∂u
∂z
=w= 0, T = 0, at z= 1, (2.2)

following Hassanzadeh et al. (2014). Applying the background method, we decompose
the temperature field as

T = τ(x, z)+ θ(x, z, t), (2.3)
where the (steady) background temperature τ carries the boundary conditions of T
(i.e. τ |z=0 = 1 and τ |z=1 = 0) so that the perturbation field θ vanishes at z= 0, 1. The
time-averaged heat transport is characterised by the time-averaged Nusselt number Nu

Nu := lim
T→∞

1
T

∫ T

0

1
L

∫ L/2

−L/2

∂T
∂z

∣∣∣∣
z=1

dx dt= 〈|∇T|2〉 = 1+ 〈wT〉, (2.4)

where the spatial-temporal average defined in (1.5) becomes specifically

〈 (. . .) 〉 := lim
T→∞

1
T

∫ T

0

∫ 1

0

1
L

∫ L/2

−L/2
(. . .) dx dz dt.

To find the maximum heat transport possible over all solutions to the Boussinesq
equations, we construct the Lagrangian

L = 〈|∇T|2〉 −
a
σRa
〈u ·N 〉 − b〈θ H〉, (2.5)

= 〈|∇T|2〉 −
a
σRa
〈u ·N 〉 − b〈T H〉 + b〈τ H〉, (2.6)

where a/σRa is the Lagrange multiplier imposing the global constraint 〈u ·N 〉= 0, b
is a Lagrange multiplier imposing the global constraint 〈T H〉 = 0 and bτ(x, z) is the
Lagrange multiplier field imposing the time-averaged heat equation pointwise in the
domain. The inclusion of b is actually redundant given the constraint imposed by τ
implies 〈T H〉 = 0 so the value of b is chosen for convenience. Expression (2.6) can
be rewritten using integration by parts and the fact that 〈wT〉 =L − 1 (see (2.4)) for
solutions of the Boussinesq equations as

L =
1

1− a
[〈|∇τ |2〉 − a] −

1
1− a

G , (2.7)

where setting b= 2 makes

G :=
〈 a

Ra
|∇u|2 + |∇θ |2 + 2θu · ∇τ

〉
, (2.8)

a purely quadratic form in θ and u.
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2.2. Bounds on Nu
The key realisation is that if G > 0 for all (u, θ) ∈ Π (the set of incompressible
velocity and temperature fields which satisfy homogeneous versions of the boundary
conditions (2.1) and (2.2)), which is a spectral constraint on τ , and a∈ (0, 1), we then
have the bound

Nu 6
1

1− a
[〈|∇τ |2〉 − a]. (2.9)

The challenge is then to find the lowest such bound by minimising over all (τ , a)
which satisfy this spectral constraint, i.e.

(τ , a) ∈Ω := {(τ , a) |G (u, θ; τ , a)> 0∀(u, θ) ∈Π}. (2.10)

After introducing a streamfunction, (u,w)= (∂ψ/∂z,−∂ψ/∂x), the constraint that

G =
〈 a

Ra
|∇

2ψ |2 + |∇θ |2 + 2θJ(τ , ψ)
〉
> 0, (2.11)

where
J(A, B) :=

∂A
∂x
∂B
∂z
−
∂A
∂z
∂B
∂x

(2.12)

is equivalent to requiring that all of the eigenvalues λ of the linear problem

λθ =∇2θ − J(τ , ψ), (2.13)

λ∇2ψ =
a

Ra
∇

4ψ − J(τ , θ), (2.14)

(with boundary conditions ψ = d2ψ/dz2
= θ = 0 for z = {0, 1}) are negative semi-

definite.

2.3. Convexity and uniqueness
The Euler–Lagrange equations for making the Lagrangian L in (2.7) stationary are

0=∇2θ − J(τ , ψ), (2.15)

0=
a

Ra
∇

4ψ − J(τ , θ), (2.16)

0=∇2τ − J(θ, ψ), (2.17)

〈|∇τ |2〉 − 1=
(1− a)

Ra
〈|∇

2ψ |2〉 (2.18)

and, as a nonlinear set of equations, can have many solutions. However, only solutions
with (τ , a)∈Ω yield a bound through the value of L generated. Due to the convexity
of Ω (i.e. if (τ1, a1) and (τ2, a2) are in Ω then so is µ(τ1, a1)+ (1− µ)(τ2, a2) for
µ ∈ (0, 1)), and the fact that the objective functional

f (τ , a) :=
1

1− a
[〈|∇τ |2〉 − a], (2.19)

to be minimised is a strictly convex functional (the terms second order in δτ and δa
in the difference f (τ + δτ , a+ δa)− f (τ , a), specifically

1
(1− a)2

〈∇|(1− a)δτ + (τ + z− 1)δa|2〉, (2.20)

are positive definite), there is in fact at most one solution which satisfies the spectral
constraint. This solution, hereafter referred to as the optimal solution, is what is
sought.
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889 A33-8 Z. Ding and R. R. Kerswell

2.4. Numerical approach
Recently, Wen et al. (2015) have proved that when τ is one-dimensional, i.e. τ = τ(z),
appropriately augmenting the (steady) Euler–Lagrange equations with time derivatives
leads to a system where the optimal solution is a unique attracting steady state.
This proof carries over to two-dimensional background fields τ = τ(x, z) in the
three-dimensional Rayleigh–Bénard problem but not in the two-dimensional problem
(see appendix A for details) where the dimensionality of the background field then
matches that of the physical fields. This means that any steady attractor which
emerges from time stepping using τ(x, z) in the 2-D problem is not guaranteed to
be the required optimal solution. The time stepping approach can still be used if it
is married with a spectral constraint check but then there is always the prospect of
rerunning with different initial conditions until the optimal solution is found. Given
this, we chose instead to use the branch continuation approach – Newton’s method
with parametric continuation – starting from the energy stability bifurcation point
as performed in PK03. While very robust, this has the general disadvantage of only
being able to continuously trace optimal solutions from the energy stability bifurcation
as Ra varies meaning that any new unconnected optimals cannot be found at a given
Ra. This is not a problem here as the aforementioned uniqueness of the optimal
solution means that no other optimal solution branches exist.

We consider periodic boundary conditions in x and, exactly as in Hassanzadeh et al.
(2014), assume that the streamfunction ψ is odd (or antisymmetric), while θ and τ
are even (or symmetric) about x = 0 by seeking the solution of (2.15)–(2.18) in the
following form:

ψ =

M∑
m=1

ψm(z) sin(mαx), θ =

M∑
m=0

θm(z) cos(mαx), τ =

M∑
m=0

τm(z) cos(mαx).

(2.21a−c)
We will find that this choice prevents a 1-D background optimal even though this is
allowed by the boundary conditions and imposed symmetry. Here α := 2π/L and ψm,
θm, τm are expanded in Chebyshev polynomials, Tn,

[ψm(z), θm(z), τm(z)] =
N∑

n=0

[ψmn, θmn, τmn]Tn(z), (2.22)

where Tn(z) := cos(n cos−1(2z− 1)). Resolution varies from (N,M)= (30, 30) to (80,
80) to ensure numerical accuracy as Ra increases and L changes.

3. Connecting to Hassanzadeh et al. (2014)
The conductive temperature profile τ = 1− z is a spectrally stable background field

until Ra = 27π4/4 in a domain of size L = 2
√

2 when energy instability first starts.
Ensuring that the marginal fluctuation fields (θ,ψ) – hereafter a mode – stay marginal
(called pinning as was done in PK03), the optimal solution was then tracked up to
Ra = 107 with the domain size L = L∗(Ra) simultaneously optimised to yield the
highest heat flux at a given Ra (see figure 1). The calculated Nu values correspond
exactly with those found by Hassanzadeh et al. (2014) (as do flow fields computed at
Ra= 105 and 106; see the inset of figure 1). This indicates that Hassanzadeh et al.’s
(2014) wall-to-wall transport approach is equivalent to the background method when
a single mode is considered.
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5/12
(a)
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27π4

4

FIGURE 1. (a) The Nusselt number versus the Rayleigh number tracked from the
energy stability bifurcation point. The solution to the background upper bounding problem
is optimised over the domain length and the data are in excellent agreement with
Hassanzadeh et al. (2014) (their data courtesy of Dr A. Souza). Insets show the flow
streamfunctions at Ra= 105 and 106. (b) The optimal domain size L∗ versus the Rayleigh
number. The bullet is the energy stability bifurcation point.

In their wall-to-wall optimal control approach, however, Hassanzadeh et al. (2014)
had no way of identifying whether their local optimal was in fact the global optimal.
It should be sufficiently close to the energy stability point but experience in other
related problems (e.g. PK03) suggests that further modes in the spectral constraint
eventually become marginal as Ra increases. The optimal solution should subsequently
modify itself to keep these new modes marginal with concomitant adjustments in the
Nu-scaling. Fortunately, in the background approach, the spectral constraint provides
a check on whether a given Euler–Lagrange solution is the optimal solution. Solving
the eigenvalue problem (2.13)–(2.14) for disturbances which are also periodic over
[0, L∗(Ra)] demonstrates that the eigenvalue (λ1 in figure 2) of the first mode is
pinned at 0, while a second mode becomes marginal at Ra = 4468.8 for an aspect
ratio L∗ = 2.234. This suggests that Hassanzadeh et al.’s (2014) result is either not
a bound for Ra > 4468.8 or that the background bound has started to overestimate
the actual maximal flux or, perhaps least likely, both. This divergence in results
is apparently not because any further 2-D bifurcations have been missed in the
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FIGURE 2. The first (λ1) and second (λ2) largest eigenvalues of the spectral constraint
for Ra< 4468.8. At Ra= 4468.8, where they cross, the aspect ratio is L∗ = 2.234.

-1.0 -0.5 0 0.5 1.0
x

-1.0 -0.5 0 0.5 1.0

-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0

x

1.0
0.8
0.6
0.4
0.2

0

1.0
0.8
0.6
0.4
0.2

0

1.0
0.8
0.6
0.4
0.2

0

1.0
0.8
0.6
0.4
0.2

0

z

z

(a) (b)

(c) (d)

FIGURE 3. At Ra= 4468.8, the first mode (a) ψ1 and (b) θ1 and the new second mode
(c) ψ2 and (d) θ2.

wall-to-wall calculations (G. Chini, private communication 2019) but more a reflection
of the ‘duality gap’ suggested by Souza et al. (2019) being realised. Figure 3(a,b)
shows the first mode (ψ1, θ1) with wavenumber α1 := 2π/L∗ so the flow field contains
one pair of convection cells. The second mode (ψ2, θ2) with α2 = 2α1 illustrated
in figure 3(c,d) has two pairs of convection cells. The optimal background field
at Ra = 2000 is shown in figure 4(a) and the now non-optimal 1-mode solution at
Ra= 20 000 is shown in figure 4(b). In both cases the field is weakly two-dimensional,
indicating that the first mode consists of non-monochromatic (i.e. non-single α)
velocity and temperature fields. The emergence of the second mode at Ra = 4468.8
indicates that the background profile is now degenerate in a way which has important
implications for solving the Euler–Lagrange equations for higher Ra while respecting
the spectral constraint. We discuss this issue in the following section.
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FIGURE 4. (a) The optimal background field τ plotted at Ra= 2000 and (b) the
non-optimal 1-mode solution at Ra= 20 000.

4. Multi-modal optimals

When a new mode becomes marginal in the spectral constraint as the background
field τ evolves with Ra, a further ‘pinning’ constraint needs to be added to keep the
new mode marginal in the spectral constraint as Ra increases further. This procedure is
thoroughly discussed in Doering & Constantin (1996) and implemented in PK03 for a
background field of lower dimensionality than the fluctuation field. In this situation, an
example of which is using a 1-D case τ = τ(z) in the 2-D Rayleigh–Bénard problem,
the fluctuation field can be Fourier transformed over the spatial dimension(s) across
which τ is invariant and then considered parameterised by the Fourier wavenumber k.
Different spectrally marginal fluctuation fields have different k and are then naturally
orthogonal under averaging over this spatial dimension. This means that the Euler–
Lagrange equations (2.15)–(2.18),

0=∇2θj − J(τ , ψj), j= 1, . . . ,N (4.1)

0=
a

Ra
∇

4ψi − J(τ , θi), j= 1, . . . ,N (4.2)

0= τzz −

N∑
j=1

J(θj, ψj), (4.3)

〈|τz|
2
〉 − 1=

(1− a)
Ra

N∑
j=1

〈|∇
2ψj|

2
〉, (4.4)

(the overbar represents averaging over x) can simply be extended to include the new
marginal mode

(θN+1, ψN+1)(x, z)= (θ̂N+1, ψ̂N+1)(z)eikN+1x (4.5)

when it appears. Equivalently, the Lagrangian is just

L =
1

1− a
[〈τz

2
〉 − a] −

1
1− a

G , (4.6)
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where G naturally partitions into the contributions from the various marginal modes
as follows:

G =
〈 a

Ra
|∇

2ψ |2 + |∇θ |2 + 2θJ(τ , ψ)
〉
=

N+1∑
j=1

Gj, (4.7)

where
Gj :=

〈 a
Ra
|∇

2ψj|
2
+ |∇θj|

2
+ 2θJ(τ , ψj)

〉
. (4.8)

The appearance of a new spectrally marginal mode merely extends the set of
wavenumbers contributing to the definition of the fluctuation field by one,

(ψ, θ)(x, z) :=
N+1∑
j=1

(ψj, θj)=

N+1∑
j=1

(ψ̂j, θ̂j)(z)eikjx. (4.9)

Importantly, this means it is possible to talk about the unique optimal solution of the
variational problem which satisfies the imposed physical constraints as being

(ψ, T)(x, z)= (0, τ )(z)+
N∑

j=1

(ψ̂j, θ̂j)(z)eikjx, (4.10)

i.e. the spectral constraint is satisfied at a saddle point of L .
This pleasing situation in which the marginal fluctuation fields have a physical

interpretation changes, however, when the dimensionality of the background field
equals the dimensionality of the problem (the case here), or, pathologically, there is
more than one marginal mode for a given wavenumber (see chap. 3 of Fantuzzi 2018).
In these scenarios, the natural orthogonality property of different marginal fluctuation
fields disappears with the result that the physical meaning of the fluctuation fields is
lost. To see this, the key is to realise that pinning the marginal fluctuation fields is
done (Doering & Constantin 1996) as before by writing the Lagrangian as

L =
1

1− a
(〈|∇τ |2〉 − a)−

1
1− a

∑
j=1

Gj. (4.11)

The constraint that each Gj vanishes pins the jth mode to be marginal (the Lagrange
multiplier imposing this is absorbed into the amplitude of the jth marginal fluctuation
field) while G > 0 for all other fluctuation fields. However, since the modes (ψj, θj)
are not now orthogonal,

N∑
j=1

Gj 6= G :=

〈
b

Ra
|∇

2ψ |2 + |∇θ |2 + 2θJ(τ , ψ)
〉
, (4.12)

for N > 2 where

(ψ, θ)(x, z)=
N∑

j=1

(ψj, θj)(x, z) (4.13)

is taken as the total optimal fluctuation field. In fact, G > 0 and so this total optimal
field is not a solution of the heat equation. The clear implication is that the spectral
constraint is not satisfied for N > 2 at any saddle point of the Lagrangian (2.7) where
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the steady heat equation is imposed. Consequently, the optimisation procedure is
forced to find an optimal away from the saddle points of the Lagrangian (2.7) where
the spectral constraint is satisfied to deliver a bound.

The fact that the form of the Lagrangian in (4.11) is different from that in (2.7)
warrants further explanation. The Lagrangian in (2.7) is constructed in the usual way
from the functional to be maximised (the heat flux) and the constraints to be applied
with the highest stationary point being the maximal heat flux under the imposed
constraints. The background method adds a further constraint by restricting the set
of fields over which the Lagrangian is made stationary. Specifically, the allowed set
(2.10) guarantees that any (τ , a) ∈ Ω will give a value of the Lagrangian greater
or equal to that at the highest stationary point: see the discussion in § 2.2. When
the background temperature field is of lower dimension than the physical problem –
specifically here τ = τ(z) in 2-D Rayleigh–Bénard convection, this extra requirement
emerges naturally from the Lagrangian (2.7) since

G =
N∑

j=1

Gj (4.14)

as the contributions to G from the various critical wavenumbers naturally separate. Put
another way, the Lagrangians (4.11) and (2.7) are one and the same in this situation.
There is, however, a further check that all other wavenumbers give G > 0, which gets
added onto the process of making the Lagrangian (2.7) stationary. Now, if τ has the
same dimension as the physical problem, then the spectral problem also has the same
dimension as the physical problem and (4.14) no longer holds (unless, trivially, N= 1).
In this case the Lagrangian (2.7) has to be modified to that in (4.11) and the optimal
solution no longer corresponds with the highest stationary point of (2.7). Instead, the
highest stationary point of (4.11) will overestimate the highest stationary point of (2.7)
as soon as N > 2 and in particular, the constraints imposed directly in (2.7) will not
be satisfied.

From a different perspective, Souza et al. (2019) have also recently argued that
this should happen when exploring the connection between the wall-to-wall approach
(a max–min problem) with the associated background method (a min–max problem).
A duality gap means that

(wall-to-wall) sup
θ,u

inf
τ

L < inf
τ

sup
θ,u

L (background), (4.15)

(making the connection η = τ − (1− z) and ζ = θ with the variables used by Souza
et al. (2019)) where the optimal solution to the wall-to-wall problem is achieved
at a stationary point of L , thereby implying that to the background method is not.
They also supply a simple quadratic polynomial in five variables to illustrate the
phenomenon. The calculations described in the next section confirm that this gap
starts to exist as soon as N = 2.

5. Extending Hassanzedah et al. with a symmetric 2-D background field τ(x, z)

To explore multi-modal bounding solutions, a first series of computations was done
in the fixed domain L= 2

√
2. In this geometry, the first mode appears at Ra= 27π4/4

(the energy stability threshold), the second mode at Ra= 3, 075 and the third mode
at Ra = 24 650. The 1-mode and 2-mode optimal solution branches could be easily
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FIGURE 5. (a) The Nusselt number Nu versus the Rayleigh number Ra at fixed aspect
ratio L= 2

√
2. (b) Nu versus α = 2π/L.

continued up to Ra = 105 whereas the 3-mode solution branch proved difficult to
continue much beyond Ra > 40 000 due to numerical issues: see figure 5(a). The
3-mode solution, which provides an upper bound in this geometry over at least the
range 24 6506Ra6 40 000, presents only a modest correction to the 2-mode optimal
solution which is no longer a bound for these Ra.

A second series of computations were then carried out to investigate the dependence
of the Nu-bound on the aspect ratio L. Three different Ra values were chosen to
explore the dependence of the bound on L: Ra= 5000 and 10 000 where the bound is
given by a 2-mode solution, and Ra= 25 000 where the bound is given by a 3-mode
solution. In all three cases, the largest bound is achieved as the aspect ratio L→∞;
see figure 5(b). This is very different from the optimal control results of Hassanzadeh
et al. (2014), where the optimal aspect ratio scales like Ra−1/4 and so vanishes as
Ra→∞.

Figure 6 shows the structure of the two modes at Ra= 104. The fluctuation fields ψi

and θi for both i=1 and 2 have a convection roll structure and increasing L just means
that more of the rolls fit into the domain. On closer inspection it is clear that the rolls
are slightly different near to x=0 and x=± 1

2 L where they are forced to have a certain
symmetry (symmetry around x = 0 and periodicity over a length L force symmetry
about x=± 1

2 L as well). When the domain is short, e.g. L=π, the background field
is clearly two-dimensional as seen in figure 7. However, as L increases to L = 8π,
the background field become predominantly one-dimensional away from the imposed
lines of symmetry at x= 0 and x=± 1

2 L (the ends of the domain shown). Plotting the
streamfunctions ψ1 and ψ2 over this long domain – see figure 8 – confirms that the
convection cells are similar away from the symmetry lines (‘zone 1’ in figure 8) where
τ is predominantly one-dimensional but are quite different close to the symmetry lines
(‘zone 2’) where τ is clearly two-dimensional.

The structure of the optimal fields (both background and fluctuation) and the fact
that the bound is maximised as L→∞ indicate that the optimal solution is trying
to minimise the effect of the imposed symmetry requirements at x= 0 and x=± 1

2 L.
Without this imposed symmetry, the problem becomes translationally invariant and the
optimal solution must be one-dimensional by the convexity result in § 2.3 (Doering
& Constantin 1996). There is another simple way to see this. Since the bounding
functional f (τ ,a) (see (2.19)) is strictly convex in both τ(x, z) and a, any 2-D solution
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FIGURE 6. (a) The first mode (ψ1, θ1); (b) the second mode (ψ2, θ2) at Ra= 104 (only
two critical modes are present for this Ra).
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FIGURE 7. The background field plotted at different aspect ratios at Ra= 104.

(τ2D(x, z), a) ∈Ω satisfies

f

(
1
N

N∑
j=1

τ2D

(
x+

jL
N
, z
)
, a

)
<

1
N

N∑
j=1

f
(
τ2D

(
x+

jL
N
, z
)
, a
)

(5.1)

by Jensen’s inequality. Taking the limit N → ∞ on the left-hand side and using
translational invariance of the problem on the right-hand side leads to

f
(
τ1D(z) :=

1
L

∫ L

0
τ2D(x, z) dx, a

)
< f (τ2D(x, z), a), (5.2)

so that a 1-D background field always produces a better bound than a 2-D field. The
results in figure 7 indicate that this is what the optimal solution to the background
problem is trying to achieve.
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FIGURE 8. The two critical flow fields at Ra= 104 and L= 8π: (a) ψ1 and (b) ψ2.

5.1. Lifting the symmetry: 1-D background field
Calculation of the optimal solution assuming from the onset that the background field
is one-dimensional simplifies the computation since the fluctuation fields can then be
parametrised by their single wavenumber in x (as in (4.5)). In this case, rather than
setting a domain periodicity and insisting the fluctuation wavenumbers be consistent
with this, the wavenumbers themselves can be optimised over as real continuous
variables meaning, in effect, that L is infinite. For example, the Euler–Lagrange
equation corresponding to the mth wavenumber km is

δL /δkm :=−2
∫ 1

0
akm(u2

m +w2
m)+ kmθ

2
m dz+

∫ 1

0
pmum dz= 0. (5.3)

With this formulation, Newton’s method with branch continuation proved much faster
than the time stepping approach. It took approximately 4 h CPU time on a 2.8 GHz
laptop using Newton’s method to obtain the optimal solution from Ra= 27π4/4 up to
Ra= 5× 108 while the time stepping approach took at least a day to generate a single
point at Ra= 5× 108. However, when the domain is fixed, Newton’s method becomes
very inefficient as the critical wavenumbers km are discrete and cannot be tracked
using a (continuous) continuation method: in this case, time stepping is the better
choice. The numerical solution of the one-dimensional background problem gives the
upper bound of Nu 6 0.055Ra1/2, as shown in figure 9(a) with five critical modes
present by Ra = 109 (see figure 9(b)). This result has the same scaling exponent as
the non-slip result Nu 6 0.026Ra1/2 of PK03 but with a larger numerical coefficient
as should be expected for stress-free boundary conditions. The prior work of Wen
et al. (2015) indicates that adding a further enstrophy constraint (possible only in
stress-free 2-D convection) significantly improves the bound obtained here down to
Nu 6 0.106Ra5/12.

It is worth briefly discussing how the critical wavenumbers which appear in the
1-D and 2-D background field calculations are related. Figure 9(b) indicates that at
Ra = 104 there is only one critical wavenumber k1 = 3.284 for the 1-D background
problem. However, for the 2-D (symmetric) background problem, there are two
critical modes, as seen in figure 6 and figure 8, with both having an approximate
wavenumber ≈3.3. Both these modes are forced to be antisymmetric (and so in
phase) about x = 0 and x = ±L/2 (zone 2 in figure 8) but away from these points
endeavour to be approximately π/2 out of phase (zone 1 in figure 8). With this phase
difference together with matching amplitudes so

ψ1 = f (z) sin(k1x), θ1 = g(z) cos(k1x), (5.4a,b)

ψ2 = f (z) sin(k1x+π/2), θ2 = g(z) cos(k1x+π/2), (5.5a,b)
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FIGURE 9. (a) The upper bound of Nu versus the Rayleigh number Ra with Nu 6
0.055Ra1/2 in the asymptotic regime. (b) The bifurcation diagram of critical wavenumber
km versus the Rayleigh number.

the nonlinear term in (2.17)

2∑
i=1

[
∂ψi

∂z
∂θi

∂x
−
∂ψi

∂x
∂θi

∂z

]
=−k1

[
df
dz

g+
dg
dz

f
]

(5.6)

is x independent and therefore can only drive a 1-D background field. From another
perspective, the 1-D background field problem really has two modes with k = 3.284
but only one needs to be tracked as the nonlinear term is horizontally averaged (e.g.
see (4.3)) ensuring that the background field stays one-dimensional.

At Ra=25 000 there is even a third mode in the 2-D background problem compared
to still only 1 mode in the 1-D background problem (the second wavenumber k2
appears at Ra≈ 26 450). Figure 10 shows that in fact ψ3 is only significant in zone
2 where the imposed symmetries dominate. In zone 1, where the background field is
essentially a 1-D profile, ψ3 vanishes.

The conclusion of the computations so far is that using a 2-D background
temperature field does not improve the upper bound produced by a 1-D background
temperature field, a realisation also reached independently in Doering & Tobasco
(2019) (see their lemma 6.1). The next obvious question is whether adding a
background velocity field helps either and we now turn our attention to this.

6. Imposing the steady momentum equation: φ 6= 0

In this section, we attempt to improve the bound by using a background temperature
field and a background velocity field of the same dimension as the physical problem,
which means that the full, albeit steady, momentum and heat equations are imposed
as constraints. Importantly, the optimisation problem is no longer convex and so
permitting φ 6= 0 could produce a better (reduced) upper bound. However, numerical
calculations suggest otherwise with φ remaining zero after every bifurcation. To
attempt to explain this, we use an inductive bifurcation analysis to show that if φ= 0
before a bifurcation then it remains 0 after it too, implying that the continuous branch
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FIGURE 10. (a–c) The profiles of the three critical flow fields ψ1, ψ2, ψ3 at
Ra= 25 000, L= 4π. (d) The profile of the two-dimensional optimal background field.

of optimals found by branch tracking out of the energy stability point always has
φ = 0.

The analysis begins by constructing the following Lagrangian:

L = 〈|∇T|2〉 −
a
σRa
〈v ·N 〉 − 2〈θH〉, (6.1)

which, after introducing the extended background decomposition

u= φ + v, T = τ + θ (6.2a,b)

(now both φ and v vanish on the boundaries z= 0, 1), can be rewritten as

L =
〈|∇τ |2〉 − a

1− a
−

a
1− a

〈φzτ 〉 −
1

1− a
G , (6.3)

(φz := φ · ẑ), where

G (v, θ) := 〈2θ(φ + v) · ∇τ + |∇θ |2〉 + a〈φzθ〉

+

〈 a
σRa

v · v · ∇φ +
a
σRa

v · φ · ∇φ +
a

Ra
|∇v|2 −

a
Ra

v ·∇2φ
〉

(note G depends parametrically on τ , φ, a, σ and Ra but this is suppressed for clarity).
If infv,θ G exists (and necessarily 0< a< 1), a bound is then given by

Nu 6
〈|∇τ |2〉 − a

1− a
−

a
1− a

〈φzτ 〉 −
1

1− a
inf
v,θ

G (τ , φ). (6.4)
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Minimisation of G with respect to incompressible v and θ requires

−
2a
Ra
∇

2v +
a
σRa

v · (∇φ +∇φT)+
a
σRa

φ · ∇φ −
a
σRa
∇

2φ + 2θ∇τ +∇p= 0, (6.5)

∇ · v = 0, (6.6)
−2∇2θ + aφz + 2(v + φ) · ∇τ = 0, (6.7)

the solution of which is denoted as (v0, θ0). The Lagrangian can then be written as

L =
〈|∇τ |2〉 − a

1− a
−

a
1− a

〈φzτ 〉 −
1

1− a

{
G (v0, θ0; τ , φ)+

N∑
i=1

H (vi, θi)

}
, (6.8)

where v0, vi (i= 1 . . .N) and φ are incompressible fields and

H (v, θ) :=
〈

2θv · ∇τ + |∇θ |2 +
a
σRa

v · v · ∇φ +
a

Ra
|∇v|2

〉
(6.9)

is a purely quadratic functional of (v, θ) which must be positive semi-definite –
the spectral constraint – for inf G to exist. The fields (vi, θi) are marginal in that
H (vi, θi) = 0 and their number N increases with Ra. The aim is to minimise the
upper bound over τ , φ and a at fixed σ and Ra subject to this spectral constraint.
The Euler–Lagrange equations are as follows: the spectral constraint equations for vi
and θi

− (1− a)Ra
δL

δvi
:= −2a∇2vi +

a
σ

vi · (∇φ +∇φ
T)

+ 2Raθi∇τ +∇pi = 0, i= 1 . . .N, (6.10)

− (1− a)
δL

δθi
:=−2∇2θi + 2vi · ∇τ = 0, i= 1 . . .N; (6.11)

the forced field equations for v0 and θ0

− (1− a)Ra
δL

δv0
:= −2a∇2v0 +

a
σ

v0 · (∇φ +∇φ
T)

+ 2Raθ0∇τ +∇p0 +
a
σ
φ · ∇φ − a∇2φ = 0; (6.12)

− (1− a)
δL

δθ0
:=−2∇2θ0 + 2v0 · ∇τ + 2φ · ∇τ + aφz = 0; (6.13)

the background field equations

(1− a)Ra
δL

δφ
:= a∇2v0 − aRa(τ + θ0)ez − 2Raθ0∇τ +∇q+

a
σ

v0 · ∇v0

−
a
σ
(v0 · ∇φ

T
− φ · ∇v0)+

a
σ

N∑
i=1

vi · ∇vi = 0, (6.14)

(1− a)
δL

δτ
:=−2∇2τ − aφz + 2(v0 + φ) · ∇θ0 + 2

N∑
i=1

vi · ∇θi = 0; (6.15)
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889 A33-20 Z. Ding and R. R. Kerswell

and finally the balance parameter equation

(1− a)
δL

δa
:=L − 1− 〈φzτ 〉 −

{∑
i=1

〈
1
σRa

vi · vi · ∇φ +
1

Ra
|∇vi|

2

〉

+

〈
φzθ0 +

1
Ra
|∇v0|

2
+

1
σRa

v0 · v0 · ∇φ +
1
σRa

v0 · φ · ∇φ −
1

Ra
v0 ·∇

2φ

〉}
.

(6.16)

The pressure-like quantities have been rescaled as follows: Ra pi→ pi, Ra p0→ p0 and
(1 − a)Ra q→ q) and incompressibility conditions on v0, vi and φ are left implicit.
A key point here is that the forced field pair (v0, θ0) is not marginal in the spectral
constraint (otherwise equations (6.12) and (6.13) could not be satisfied) and, since H
is positive semi-definite, H (v0, θ0) > 0.

6.1. The first bifurcation point

The solution at the first critical point Rac= 27π4/4 is τ = 1− z and φ= 0, (v0, θ0)=

(0, 0) and a= 1. At Ra= Rac, the spectral constraint becomes marginal for the first
time, i.e. there is a non-trivial solution to the spectral problem

−2∇2vi + 2Raθi∇τ +∇pi = 0, (6.17)

∇ · vi = 0, (6.18)

−∇
2θi + vi · ∇τ = 0. (6.19)

There are two different modes (using symmetries),

(v1, θ1)= A1(U(z) sin(kx)ex +W(z) cos(kx)ez, Θ(z) cos(kx)), (6.20)

(v2, θ2)= A2(U(z) cos(kx)ex −W(z) sin(kx)ez,−.Θ(z) sin(kx)). (6.21)

Since dτ/dz=−1, the structure in z is simple: U :=π cos(πz), W := −k sin(πz) and
Θ :=−

√
2

3π
sin(πz) where k=π/

√
2. Slightly away from the critical point, Ra=Rac+ ε,

the fields need to be expanded as follows:

τ = τ0 + ετ1 + ε
2τ2 + . . . ,

φ = εφ1 + ε
2φ2 + ε

3φ3 . . . ,

v0 = εv
1
0 + ε

2v2
0 + · · · ,

θ0 = εθ
1
0 + ε

2θ 2
0 + · · · ,

vi = ε
1/2v0

i + ε
3/2v1

i + ε
5/2v2

i + · · · ,

θi = ε
1/2θ 0

i + ε
3/2θ 1

i + ε
5/2θ 2

i + · · · ,

a= a0 + εa1 + ε
2a2 + · · · ,

where τ0 := 1− z and a0 := 1.
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6.1.1. Leading order (e.g. the problem for v0
i and θ 0

i )
To leading order, the spectral constraint is satisfied by (v0

i , θ
0
i ) defined in (6.20–6.21)

and these fields force the other leading-order equations for the background fields

2∇2τ1 + φ1z = 2
∑
i=1,2

v0
i · ∇θ

0
i , (6.22)

∇
2v1

0 − Rac(τ1 + a1τ0 − θ
1
0 )ez − τ0ez +∇q=−

1
σ

∑
i=1,2

v0
i · ∇v0

i︸ ︷︷ ︸
balanced by pressure

, (6.23)

(φ1z := φ1 · ẑ), which are coupled with the forced field equations

−2∇2v1
0 + 2Racθ

1
0∇τ0 +∇p=∇2φ1, (6.24)

−2∇2θ 1
0 + 2v1

0 · ∇τ0 = φ1z. (6.25)

The forcing term in (6.22) is

2∑
i=1

v0
i · ∇θ

0
i =

π(A2
1 + A2

2)

6
sin(2πz), (6.26)

and in (6.23),

2∑
i=1

v0
i · ∇v0

i =
kπ2

2
(A2

1 − A2
2) sin(2kx)ex +

k2π

2
(A2

1 + A2
2) sin(2πz)ez (6.27)

(recall k=π/
√

2), so that simply

φ1 = v1
0 = 0, θ 1

0 = 0, q= c1(A2
1 − A2

2) cos(2kx)+ c2(A2
1 + A2

2) cos(2πz), (6.28a−c)

and τ1 = c3(A2
1 + A2

2) sin(2πz), (6.29)

where c1, c2 and c3 are specific constants. Finally, the leading-order balance (which is
at O(ε)) in the balance parameter equation (6.16) is

−
1
a1
〈|∇τ |2〉 −

1
Rac

∑
i=1,2

〈|∇v0
i |

2
〉 = 0, (6.30)

which relates A2
1 + A2

2 and a1.

6.1.2. Next order (e.g. the problem for v1
i and θ 1

i )
A further piece of information to identify the leading-order fields comes from a

solvability condition on the spectral constraint equations at next order ((O(ε3/2)) which
is

−2∇2v1
i + 2Racθ

1
i ∇τ0 +∇p= 2a1∇

2v0
i − 2Racθ

0
i ∇τ1 − 2θ 0

i ∇τ0, (6.31)
−2∇2θ 1

i + 2v1
i · ∇τ0 =−2v0

i · ∇τ1. (6.32)
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889 A33-22 Z. Ding and R. R. Kerswell

Formally, this has two solvability conditions,

〈v0
i · (2a1∇

2v0
i − 2Racθ

0
i ∇τ1 − 2θ 0

i ∇τ0)− 2θ 0
i v0

i · ∇τ1〉 = 0, i= 1, 2, (6.33)

but they are equivalent since τ1 is one-dimensional (i.e. solely a function of z) with the
resulting condition providing a second equation linking a1 and A2

1+A2
2. These ((6.30)

and (6.33)) can then be solved to give

A2
1 + A2

2 = 24, a1 =−
9
4 (6.34a,b)

and as a consequence τ1=−
1
π

sin(2πz). The fields (v1
i , θ

1
i ) depend linearly on v0

i , θ 0
i

and so can be written as

(v1
1, θ

1
1 )= A1(U(z) sin(kx)ex +W(z) cos(kx)ez, T (z) cos(kx)), (6.35)

(v1
2, θ

1
2 )= A2(U(z) cos(kx)ex −W(z) sin(kx)ez,−T (z) sin(kx)), (6.36)

where U 6= U, W 6= W. These fields, along with (v0
i , θ

0
i ), drive the higher-order

equations governing further corrections to the background fields and the forced fields.
These are

2∇2τ2 + φ2z = 2
∑
i=1,2

v0
i · ∇θ

1
i + v1

i · ∇θ
0
i︸ ︷︷ ︸

driving term

, (6.37)

∇
2v2

0 − Rac(a0τ2 + a2τ0 − θ
2
0 )ez +∇q

= ([a1Rac + 1]τ1 + a1τ0)ez −
a1

σ

2∑
i=1

v0
i · ∇v0

i︸ ︷︷ ︸
balanced by pressure

−
1
σ

2∑
i=1

v0
i · ∇v1

i + v1
i · ∇v0

i︸ ︷︷ ︸
driving term

= 0,

(6.38)

−2∇2v2
0 + 2Racθ

2
0∇τ0 +∇pi =∇

2φ2, (6.39)
−2∇2θ 2

0 + 2v2
0 · ∇τ0 = φ2z, (6.40)

where φ2z := φ2 · ẑ. The apparent driving term −a1/σ
∑2

i=1 v0
i · ∇v0

i can be balanced
by the pressure term (see (6.27)) as can ([a1Rac+ 1]τ1+ a1τ0)ez. Also, importantly for
what follows, Raca2τ0ez in (6.38) can also be absorbed into the pressure term, which
means that τ2 and φ2 do not depend on a2 (this is crucial for the argument surrounding
(6.50) below). This leaves the driving term for the 2-D background temperature field

∑
i=1,2

v0
i · ∇θ

1
i + v1

i · ∇θ
0
i = 12

(
−kUT − kUΘ +W

dT
dz
+W

dΘ
dz

)
+

1
2
(A2

1 − A2
2)

(
kUT + kUΘ +W

dT
dz
+W

dΘ
dz

)
cos(2kx), (6.41)
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and the driving term in (6.38) for v2
0:

2∑
i=1

v0
i · ∇v1

i + v1
i · ∇v0

i = 12
(
−kUW − kUW +

d(WW)

dz

)
ez︸ ︷︷ ︸

balanced by pressure

+
1
2
(A2

1 − A2
2)

(
2kUU +W

dU
dz
+W

dU
dz

)
sin(2kx)ex. (6.42)

Given the form of these driving terms, τ2 can be split into two parts: a 1-D part which
depends only on z and a 2-D part proportional to A2

1 − A2
2 which has both x and z

dependences, whereas the remaining corrections φ2, v2
0 and θ 2

0 only have a 2-D part
proportional to A2

1 − A2
2, i.e.

τ2 = τ
1D
2 (z)+ τ 2D

2 (x, z) := P1(z)+ (A2
1 − A2

2)P2(z) cos(2kx), (6.43)
φ2 = (A2

1 − A2
2)[G1(z) sin(2kx)ex +G2(z) cos(2kx)ez] (6.44)

(the expressions for v2
0 and θ 2

0 are not needed in what follows and hence suppressed).
At this point φ2 is now known as a function of A2

1−A2
2. Further information about A1

and A2 comes from solvability conditions at the next order of the spectral constraint
(O(ε5/2)).

Before pursuing this, we remark that the next order (O(ε2)) of the balance (6.16)
involves the higher-order unknown φ3 and so at this order a2 is unspecified. In fact
a2 is also set by solvability conditions at O(ε5/2) of the spectral constraint to which
we now turn.

6.1.3. Solvability at O(ε5/2) in the problem for v2
i and θ 2

i

The spectral constraint equations at O(ε5/2) are

−2∇2v2
i + 2Racθ

2
i ∇τ0 +∇pi = 2a1∇

2v1
i + 2a2∇

2v0
i − 2Rac(θ

0
i ∇τ2 + θ

1
i ∇τ1)

− 2(θ 0
i ∇τ1 + θ

1
i ∇τ0)−

1
σ
(∇φ2 +∇φ

T
2 ) · v

0
i , (6.45)

− 2∇2θ 2
i + 2v2

i · ∇τ0 =−2v0
i · ∇τ2 − 2v1

i · ∇τ1. (6.46)

The operator on the left-hand side of (6.45)–(6.46) is self-adjoint and annihilates the
leading-order fields (v0

j , θ
0
j ) j = 1, 2. As a result, there are solvability conditions for

(v2
0, θ

2
0 ) of the form〈

v0
j ·

[
2a1∇

2v1
i + 2a2∇

2v0
i − 2Rac(θ

0
i ∇τ2 + θ

1
i ∇τ1)− 2(θ 0

i ∇τ1 + θ
1
i ∇τ0)

−
1
σ
(∇φ2 +∇φ

T
2 ) · v

0
i

]
− 2θ 0

j (v
0
i · ∇τ2 + v1

i · ∇τ1)

〉
= 0. (6.47)

Taking i= j (the i 6= j conditions vanish trivially), this can be rearranged to

Term1(i)+ (A2
1 − A2

2)Term2(i)= 0, i= 1, 2, (6.48)

where

(A2
1 − A2

2)Term2(i) :=−
1
A2

i

〈
2
σ

v0
i · ∇φ2 · v

0
i + 2(Rac + 1)θ 0

i v0
i · ∇τ

2D
2

〉
. (6.49)
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Crucially, Term1(1)= Term1(2) whereas Term2(1)=−Term2(2) so that (6.48) implies
that

Term1(1)= (A2
1 − A2

2)Term2(1)= 0. (6.50)

The unspecified coefficient a2 only enters Term1 and so is set by the condition this
vanishes. In contrast, there are no free constants in Term2 which is non-zero in our
computations (although we have been unable to prove this is always the case). In
this situation, A2

1 − A2
2 = 0 is forced instead, which eliminates at a stroke all two-

dimensional fields in the bifurcation analysis. Consequently, the background flow field
remains zero and the background temperature field stays one-dimensional after the first
bifurcation.

6.2. Subsequent bifurcations
Now, we consider subsequent bifurcations to establish that if τ = τ(z), φ = 0 exists
before then that situation persists after the bifurcation. The approach is inductive:
assume τ = τ(z), φ = 0 after m bifurcations and consider the (m+ 1)th bifurcation at
Ra = Ra(m+1)

c where two new neutral modes appear so that there are now 2(m + 1)
critical modes in the spectral constraint. Defining ε := Ra− Ra(m+1)

c we expand

(τ , φ)= (τ0(z)+ ετ1(x, z)+ · · · , εφ0(x, z)+ · · ·), (6.51)
(v0, θ0)= (εv

0
0 + · · · , εθ

0
0 + · · · ), (6.52)

a= a0 + εa1 + · · · , (6.53)

(vi, θi)=

{
(v0

i + εv
1
i + · · · , θ 0

i + εθ
1
i + · · ·), i= 1, 2, . . . , 2m,

(ε1/2v0
i + ε

3/2v1
i + · · · , ε1/2θ 0

i + ε
3/2θ 1

i + · · ·), i= 2m+ 1, 2m+ 2,
(6.54)

where the leading fields τ0(z), (v0
i , θ

0
i ) (i= 1, . . . , 2m+ 2) and a0 are all known. In

particular, the ith wavenumber ki (i=1,2, . . . ,m), is associated with two modes which,
to leading order, are

(v0
2i−1, θ

0
2i−1)= Ai(Ui(z) sin(kix)ex +Wi(z) cos(kix)ez, Θi(z) cos(kix)) (6.55)

and

(v0
2i, θ

0
2i)= Bi(Ui(z) cos(kix)ex −Wi(z) sin(kix)ez,−Θi(z) sin(kix)), (6.56)

where A2
i = B2

i for i = 1, 2, . . . , m. The two new modes emerging at the (m + 1)th
bifurcation point can be assumed to have the following general 3-D forms:

v0
2m+1 = Am+1

Um+1(z) sin(km+1 · x)
Vm+1(z) sin(km+1 · x)
Wm+1(z) cos(km+1 · x)

 , (6.57)

θ 0
2m+1 = Am+1Θm+1(z) cos(km+1 · x) (6.58)

and

v0
2m+2 = Bm+1

 Um+1(z) cos(km+1 · x)
Vm+1(z) cos(km+1 · x)
−Wm+1(z) sin(km+1 · x)

 , (6.59)
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θ 0
2m+2 =−Bm+1Θm+1(z) sin(km+1 · x), (6.60)

where km+1 = (kx, ky, 0). The objective in what follows is to show that A2
m+1 = B2

m+1
after the bifurcation so that the optimisation problem remains one-dimensional.

At leading order (O(ε)) in the forced field and background field equations

−2a0∇
2v0

0 + 2Ram+1
c θ 0

0∇τ0 +∇p− a0∇
2φ0 = 0, (6.61)

−2∇2θ 0
0 + 2v0

0 · ∇τ0 + 2φ0 · ∇τ0 + a0φ0z = 0, (6.62)

where φ0z := φ0 · ẑ,

a0∇
2v0

0 − Ram+1
c (a0τ1 + a1τ0 + a0θ

0
0 )ez − a0τ0ez − 2Ram+1

c θ 0
0∇τ0 +∇q

+
a0

σ

2m∑
i=1

(
v0

i · ∇v1
i + v1

i · ∇v0
i

)
=−

a1

σ

2m∑
i=1

v0
i · ∇v0

i︸ ︷︷ ︸
one-dimensional

−
a0

σ

2m+2∑
i=2m+1

v0
i · ∇v0

i︸ ︷︷ ︸
driving term

, (6.63)

− 2∇2τ1 − a0φ0z + 2
2m∑
i=1

(
v0

i · ∇θ
1
i + v1

i · ∇θ
0
i

)
=− 2

2m+2∑
i=2m+1

v0
i · ∇θ

0
i︸ ︷︷ ︸

driving term

(6.64)

and again it is implicit that v0, vi and φ are incompressible fields. The spectral
constraint for modes i= 1, 2, . . . , 2m at O(ε) and for modes i= 2m+ 1, 2m+ 2 at
O(ε3/2) is

− 2a0∇
2v1

i + 2Ram+1
c θ 1

i ∇τ0 +∇p = 2a1∇
2v0

i −
a0

σ
v0

i · (∇φ0 +∇φ
T
0 )

− 2Ram+1
c θ 0

i ∇τ1 − 2θ 0
i ∇τ0, (6.65)

− 2∇2θ 1
i + 2v1

i · ∇τ0 =−2v0
i · ∇τ1. (6.66)

The system of (6.61)–(6.66) is linear in v0
0, θ 0

0 , φ0, v1
i and θ 1

i (i= 1, 2, . . . , 2m+ 2).
The emergent critical modes at Ram+1

c give rise to the new driving terms in (6.63) and
(6.64)

2m+2∑
i=2m+1

v0
i · ∇v0

i =
1
2
(A2

m+1 + B2
m+1)∇[W

2
m+1(z)]

+
1
2
(A2

m+1 − B2
m+1)


−Um+1

dWm+1

dz
+

dUm+1

dz
Wm+1

−Vm+1
dWm+1

dz
+

dVm+1

dz
Wm+1

0

 sin(2km+1 · x), (6.67)

2m+2∑
i=2m+1

v0
i · ∇θ

0
i =

1
2
(A2

m+1 + B2
m+1)

d(Wm+1Θm+1)

dz

+
1
2
(A2

m+1 − B2
m+1)

(
Wm+1

dΘm+1

dz
−

dWm+1

dz
Θm+1

)
cos(2km+1 · x), (6.68)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.41


889 A33-26 Z. Ding and R. R. Kerswell

which have a 1-D part proportional to A2
m+1 + B2

m+1 and a non-1-D part proportional
to A2

m+1−B2
m+1. If A2

m+1=B2
m+1 then τ1= τ1(z) and φ= 0 using the arguments of § 6.1.

Hence, for A2
m+1 6= B2

m+1 and using (6.64), we can assume a solution structure of the
form

τ1 =

m+1∑
i=1

(A2
i + B2

i )Pi(z)︸ ︷︷ ︸
τ 1D

1

+ (A2
m+1 − B2

m+1)(Q(z) cos(2km+1 · x)︸ ︷︷ ︸
τ 2D

1

+τ ∗1 (x, z)), (6.69)

φ0 = (A2
m+1 − B2

m+1)

G1(z) sin(2km+1 · x)
G2(z) sin(2km+1 · x)
G3(z) cos(2km+1 · x)

+Φ∗(x, z)

 , (6.70)

where τ ∗1 (x, z) and Φ∗(x, z) collect all the other wavenumber dependences on x in τ1
and φ0 respectively (this is unimportant in what follows). The key is then examining
the solvability conditions〈
v0

j ·

(
2a1∇

2v0
i −

a0

σ
v0

i · (∇φ0 +∇φ
T
0 )− 2Ram+1

c θ 0
i ∇τ1 − 2θ 0

i ∇τ0

)
− 2θ 0

i v0
j · ∇τ1

〉
= 0

(6.71)

(i, j,= 1, . . .m+ 1) on the corrections v1
i to all the critical modes v0

i of the spectral
constraint. These set the amplitudes A2

i (= B2
i ) (i = 1, . . . m) and (Am+1, Bm+1) (a1 is

determined by the balance parameter equation at O(ε)).
To establish that the background fields stay one-dimensional, it is sufficient to focus

on the solvability conditions for the new critical modes (i= 2m+ 1 and 2m+ 2). Here,
the solvability condition is explicitly

−a1

∫ 1

0
k2

m+1(U
2
m+1 + V2

m+1 +W2
m+1)+

(
dUm+1

dz

)2

+

(
dVm+1

dz

)2

+

(
dWm+1

dz

)2

dz

−

∫ 1

0
Wm+1Θm+1

dτ0

dz
dz+

m+1∑
j=1

[
(A2

j + B2
j )(Ram+1

c + 1)
∫ 1

0
WjΘj

dPj

dz
dz
]

+ (A2
m+1 − B2

m+1)Term(i)= 0, (6.72)

where

(A2
m+1 − B2

m+1)Term(i) :=−
2
c

〈a0

σ
v0

i∇φ0 · v
0
i + (Ram+1

c + 1)θ 0
i v0

i · ∇τ
2D
1

〉
, (6.73)

with c := A2
m+1 for i= 2m+ 1 or B2

m+1 for i= 2m+ 2. Crucially, it is straightforward
to show that

Term(2m+ 1)=−Term(2m+ 2), (6.74)

so that, as in § 6.1, we must have

(A2
m+1 − B2

m+1)Term(i)= 0 (6.75)

leaving equation (6.72) to determine the value of A2
m+1 + B2

m+1. Our computations
indicate Term(2m+ 1) 6= 0 (although, as in § 6.1, we have been unable to prove this
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in general) implying that A2
m+1 = B2

m+1. This forces τ1 = τ1(z) and φ0 = 0 so that the
optimal solution stays one-dimensional after the (m+ 1)th (m > 0) bifurcation if it is
of this form before.

Taken together with the first bifurcation analysis in § 6.1, the result of this section
means that the optimal solution is one-dimensional for all Ra and so, surprisingly,
there is no benefit in imposing the full steady momentum and heat balances in the
upper bound problem.

7. Adding a background velocity field to Wen et al. (2015)

Following the success of adding an enstrophy constraint in 2-D stress-free
convection (Wen et al. 2015), an interesting question is whether adding a 1-D
background velocity field by using the decomposition

u(x, z)= φ(z)ex + v(x, z), T(x, z)= τ(z)+ θ(x, z) (7.1a,b)

would improve the bound further, since this imposes additional information from the
Navier–Stokes equations (this question is not covered by the conclusion in § 6 since
the extra enstrophy constraint was not included there). To maximise the heat flux, the
Lagrangian

Nu= 〈|∇T|2〉 −
a
σRa
〈v ·N 〉 −

b
σRa
〈ω · ∇×N 〉 − 2〈θ H〉 (7.2)

is constructed where ω = ω(x, z)ey := (∇ × v). After some integration by parts,
judicious use of boundary conditions and building in the fact that Nu= 1+〈wT〉, this
leads to the expression

(1− a)Nu+ a = 〈|τ ′|2〉 −
〈
|∇θ |2 + 2θvzτ

′
+

a
σRa

vxvzφ
′
+

b
σRa

vzωφ
′′
− bω

∂θ

∂x

+
a

Ra
(|∇v|2 − vxφ

′′)+
b

Ra
(|∇ω|2 −ωφ′′′)

〉
, (7.3)

where v= vx x̂+ vzẑ. The two linear terms in the second line of this expression – vxφ
′′

and ωφ′′′ – mean that optimisation over the fluctuation fields v and θ will give rise
to a non-zero contribution to be added to 〈|τ ′|2〉. This complication can be avoided
(or rather made more explicit) by defining a shifted variable

v̂ := v + 1
2φ(z)ex, (7.4)

which is possible if v and φ are both assumed to satisfy (natural) homogeneous
boundary conditions and allows both linear terms to be absorbed into perfect squares.
As a result of this, the expression becomes

Nu =
1

1− a
(〈|τ ′|2〉 − a)+

a
4(1− a)Ra

〈|φ′|2〉 +
b

4(1− a)Ra
〈|φ′′|2〉

−
1

1− a
G (v̂, ω, θ; τ , φ, a, b, Ra, σ ), (7.5)
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FIGURE 11. (a) The upper bound of Nu versus the Rayleigh number Ra, and Nu 6
0.107a5/12 in the asymptotic ultimate regime. (b) The bifurcation diagram of critical
wavenumbers km versus the Rayleigh number (solid lines found here for L = ∞; dots
from Wen et al. (2015) for fixed L= 2

√
2). The prefactor predicted 0.107 is very slightly

higher than Wen et al.’s (2015) 0.106 as the domain size L is also optimised over here
(data courtesy of B. Wen).

where

G := a
〈

1
Ra
|∇v̂|2 +

1
σRa

v̂xv̂zφ
′

〉
+ b

〈
1
σRa

ωv̂zφ
′′
+

1
Ra
|∇ω̂|2 − ω̂

∂θ

∂x

〉
+〈|∇θ |2 + 2θv̂zτ

′
〉

is a purely quadratic functional of v̂, ω̂ := ey · ∇ × v̂ = ω + 1
2φ
′ and θ . Provided the

background fields τ and φ are chosen such that G > 0 for all permissible v̂, ω̂ and
θ , then a bound follows on Nu. Now, it is clear that: (i) the objective functional is
strictly convex in the background fields and (ii) the set of allowable background fields
is convex (if (τ1, φ1) and (τ2, φ2) ensure G > 0 so does (τ , φ) = µ(τ1, φ1) + (1 −
µ)(τ2, φ2) with 0 6 µ6 1). This implies that the optimiser is unique and is attained
for (τ , φ) = (τ , 0) i.e. the background velocity field vanishes, indicating that the
extra information this folds into the optimisation is, in fact, unimportant. Physically,
a bifurcation analysis shows that the fluctuation fields are always such as to produce
zero Reynolds stress so that no background flow field is generated.

A numerical solution shown in figure 11 using Newton’s method on the Euler–
Lagrange equations in an infinitely long domain confirms that φ = 0, as does a
bifurcation analysis developed in the same way as the previous section (not shown).
The bound compares well with the earlier results of Wen et al. (2015) who considered
a fixed domain of L = 2

√
2, indicating further that the bound is not that sensitive

to the domain size. The fashion in which the necessarily discretised critical modes
found by Wen et al. (2015) cluster around the (continuous) optimal wavenumbers in
our study confirms this conclusion.

8. Discussion
This paper has revisited the optimal heat transport problem in two-dimensional

Rayleigh–Bénard convection with stress-free boundary conditions using an extended
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background method. The key novelty has been to consider background temperature
and velocity fields whose dimensional dependence matches that of the physical
problem (so two-dimensional here). This situation needs a reformulation in the way
the variational equations are solved which has the significant consequence of breaking
any link between the optimal fields which emerge and single physical temperature
and velocity fields. In particular, this means that the optimal fields do not obviously
satisfy the steady heat equation even though that is explicitly imposed when the
background temperature field is allowed to be fully two-dimensional. This is due
to the spectral constraint (that ensures a bound) which means the optimal bound
found does not correspond to the highest stationary point of the Lagrangian (i.e. the
Euler–Lagrange equations are not all satisfied) but is strictly above it. In other words,
there is a gap between the highest heat flux attained by a steady solution of the
governing equations imposed and the best (lowest) bound because of the additional
spectral constraint. Importantly, this means that there is no direct connection between
the optimal solution in the background method built around the steady governing
equations and a steady solution of the governing equations (here the Boussinesq
equations but clearly more generally true). This realisation removes the possibility,
for example, that the simple 2-D roll solution computed by Waleffe et al. (2015)
could actually be the optimal solution to the background bounding problem. It now
seems clear that it would be spectrally unstable.

In revisiting the exact 2-D Rayleigh–Bénard problem treated by Hassanzadeh et al.
(2014), we have shown that their maximal heat flux result is only guaranteed to be a
global maximum up to Ra 6 Rac := 4468.8. Beyond this, a gap develops between the
bound generated by the background method and the wall-to-wall maximal result. If
the spatial domain is extended, the background method optimal becomes increasingly
one-dimensional. Removing the symmetry imposed by Hassanzadeh et al. (2014)
and reinstating translational invariance in the horizontal direction by making the
domain unbounded, the optimal background optimal solution is then provably just
one-dimensional and the classic scaling result of Nu ∼ Ra1/2 is recovered, albeit
with the larger numerical coefficient of 0.055 as opposed to the already known
0.026 (PK03) for non-slip boundary conditions. The conclusion is then that imposing
the steady heat equation in the bounding calculation does not improve (reduce)
the bound over that obtained using the horizontally averaged steady heat equation.
We then considered adding extra information from the momentum equation to the
upper bounding problem by introducing a background velocity field φ(x, z). Now
the optimisation problem is no longer convex and we use an inductive bifurcation
analysis to show that if φ = 0 before a bifurcation then it remains 0 after it too.
This means that the continuous branch of optimals found by branch tracking out
of the energy stability point always has φ = 0. Noting the caveats that (a) it is
not impossible that there is an unconnected branch of optimals with φ 6= 0 and
(b) Term(2m + 1) in (6.75) could serendipitously vanish at a subsequent bifurcation
beyond our calculations, this strongly suggests the surprising result that imposing the
steady Boussinesq equations does not improve the bound over that already obtained
using the horizontally averaged steady heat equation and an energy constraint derived
from the steady momentum equation.

The ‘take-home’ message from this study is that the background method of seeking
an upper bound on heat flux in Rayleigh–Bénard convection has been exhausted (at
least using steady fields) with disappointingly no improvement possible over the
minimal choice of a 1-D background temperature field originally made in 1996 by
Doering and Constantin. It is hard not to imagine this realisation also generalising to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

41
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.41


889 A33-30 Z. Ding and R. R. Kerswell

the analogous background formulations for shear flows too, e.g. plane Couette flow
(Doering & Constantin 1992), channel flow (Constantin & Doering 1995) and pipe
flow (Plasting & Kerswell 2005). Simply extending the definition of the background
fields ostensibly folds in more information from the governing equations but not in
a fruitful way. However, it seems generating extra information by differentiating the
governing equations can help. Whitehead & Doering (2011) (see also Wen et al. 2015)
used an extra vorticity constraint to significantly lower the bound from Nu ∼ Ra1/2

to Nu ∼ Ra5/12 but only in the 2-D situation with stress-free boundary conditions.
Interestingly, this approach can be inverse engineered into the form of a background
method by loosening the connection between the Lagrange multiplier ν(x, t) and the
velocity field u(x, t) from u(x, t)− ν(x, t)= φ(z)x̂ to

u(x, t)− ν(x, t)= φ(z)x̂+ c∇×∇× u(x, t),

where c is a new scalar Lagrange multiplier imposing the global vorticity constraint

〈∇× u · ∇× (N )s〉 = 0.

This clearly extracts something more from the governing equations than just taking
projections. Maybe there is some mileage in exploring this, but a shortage of boundary
conditions is the usual impediment to this approach. It is also worth remarking here
that Nobili & Otto (2017) have demonstrated that the background method has a
fundamental limitation in the infinite-Prandtl-number convection problem in that it
cannot produce the optimal bound established using other techniques.

Looking ahead, a recent generalisation of the background approach – the ‘auxiliary
function method’ (Chernyshenko et al. 2014; Fantuzzi et al. 2016; Tobasco, Goluskin
& Doering 2018; Goluskin & Fantuzzi 2019) – appears to offer greater potential
for progress since it extends the quadratic constraints used here to more general
polynomials, albeit at the expense of a fully numerical approach. Here, the upper
bound problem can be posed as a convex optimisation problem where the optimal
value can provably be attained for a system governed by ordinary differential
equations, at least (Tobasco et al. 2018).
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Appendix. Time stepping for a 2-D background temperature field in two
dimensions

Here we show that the time-marching method of Wen et al. (2015) is not
guaranteed to have the optimal solution as the unique steady attractor when τ = τ(x, z)
has the same spatial dimensionality as the physical temperature field T(x, z, t). Time
stepping would work, however, for a two-dimensional τ(x, z) in a three-dimensional
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problem. To explain this, we revisit the proof of Wen et al. (2015). The time stepping
approach consists of adding time derivatives for θ , ∇2ψ and τ to the left-hand sides
of (2.15)–(2.17) respectively. Small disturbances (θ ′, u′, τ ′, p′) on top of a solution
to the Euler–Lagrange equations, (θ, u, τ , p), then evolve according to the following
equations:

∂θ ′

∂t
=∇

2θ ′ − J(τ ′, ψ)− J(τ , ψ ′), (A 1)

∂∇2ψ ′

∂t
=

a
Ra
∇

4ψ ′ − J(τ ′, θ)− J(τ , θ ′), (A 2)

∂τ ′

∂t
=∇

2τ ′ − J(θ ′, ψ)− J(θ, ψ ′) (A 3)

at fixed balance parameter a. Then 〈θ ′(A1)−ψ ′(A2)+ τ ′(A3)〉 gives

∂

∂t
1
2
〈θ ′

2
+ |∇ψ ′|2 + τ ′

2
〉 =−〈|∇τ ′|2〉 −

〈 a
Ra
|∇

2ψ ′|2 + |∇θ ′|2 + 2θ ′J(τ , ψ ′)
〉

︸ ︷︷ ︸
G

. (A 4)

In the one-dimensional background field case, τ = τ(z), (A 3) becomes

∂τ ′

∂t
−
∂2τ ′

∂z2
=−J(θ ′, ψ)− J(θ, ψ ′) (A 5)

(where the overbar represents averaging over x) and the possible fluctuation fields
can, after a Fourier transform, be assumed to have a specific wavenumber in x. There
are then two types of fluctuation fields: (i) those with wavenumbers which do not
overlap with those in the optimal solution (λ < 0 in the spectral constraint) and
therefore do not generate any concomitant disturbance τ ′; and (ii) those which do
have a non-vanishing τ ′ but necessarily have λ = 0 (the optimal solution is unique
for any given balance parameter a ∈ (0, 1) by the same arguments presented in
the main text and, by construction, includes any fluctuation fields (θ, ψ) which
are neutral in the spectral constraint). In both cases, the fluctuation fields have to
decay, in the former case because λ< 0 and in the latter through the τ ′ component
generated in (A 5). The unique solution is therefore an attractor but the key step is
proving that it is the only such. This follows by realising that if a solution to the
Euler–Lagrange equations does not satisfy the spectral constraint, then there is an
unstable eigenfunction of the linear time stepping operator defined in (A 1)–(A 3)
which consists of the fluctuation field (θ ′, ψ ′) which makes G < 0. This is because a
fluctuation field with λ 6= 0 does not overlap under x-averaging with the underlying
state and so does not generate a τ ′ component via (A 5). This argument can clearly be
extended to two-dimensional τ(x, z) in three-dimensional Rayleigh–Bénard convection
since orthogonality in x is replaced by orthogonality of y but breaks down for
two-dimensional Rayleigh–Bénard convection. In the latter situation, fluctuation fields
which violate the spectral constraint will generate a τ ′ component via (A 3) and may
not then represent a growing eigenfunction for the time stepping procedure. The
implication of this is that some saddles of L may also be local attractors so if the
time stepping procedure leads to a steady state it is not guaranteed to be the optimal
solution. Preliminary numerical tests demonstrated this multistability with the final
steady state depending on the initial condition used.
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