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Abstract

Let L be a commutative subspace lattice and A= Alg L. It is shown that every Jordan higher derivation
from A into itself is a higher derivation. We say that D = (δi )i∈N is a higher derivable linear mapping
at G if δn(AB)=

∑
i+ j=n δi (A)δ j (B) for all n ∈ N and A, B ∈A with AB = G. We also prove that if

D = (δi )i∈N is a bounded higher derivable linear mapping at 0 from A into itself and δn(I )= 0 for all
n ≥ 1, or D = (δi )i∈N is a higher derivable linear mapping at I from A into itself, then D = (δi )i∈N is a
higher derivation.
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1. Introduction

Let H be a separable complex Hilbert space and let B(H) be the set of all bounded
linear operators on H . By a subspace lattice on H , we mean a collection L of closed
subspaces of H with 0 and H in L such that for every family {Mr } of elements of L,
both ∩Mr and ∨Mr belong to L. For a subspace lattice L of H , let Alg L denote
the algebra of all operators in B(H) that leave members of L invariant; and for a
subalgebra A of B(H), let Lat A denote the lattice of all closed subspaces of H
that are invariant under all operators in A. We disregard the distinction between a
subspace and the orthogonal projection onto it. It is not difficult to show that Alg L is
closed in the weak operator topology, and is a unital Banach algebra. An algebra A
is called reflexive if Alg Lat A=A; and dually, a subspace lattice is called reflexive
if Lat Alg L= L. Every reflexive algebra is of the form Alg L for some subspace
lattice L and every reflexive lattice is of the form Lat A for some weakly-closed unital
algebra A. A subspace lattice L on a Hilbert space H is called a commutative subspace
lattice (CSL), if all projections in L commute pairwise. If L is a CSL, then Alg L is
called a CSL algebra. By [5], we know that if L is a CSL, then L is reflexive.
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[2] Higher derivation and Jordan higher derivation 487

Let R be a commutative ring with identity and A be a unital associative algebra
over R. Let D = (δi )i∈N be a family of linear mappings on A such that δ0 = idA. D is
called a higher derivation if δn(xy)=

∑
i+ j=n δi (x)δ j (y) for all n ∈ N and x, y ∈A;

D is called a Jordan higher derivation if δn(x2)=
∑

i+ j=n δi (x)δ j (x) for all n ∈ N
and x ∈A. Note that δ1 is a Jordan derivation if D = (δi )i∈N is a Jordan higher
derivation. It is well known that every derivation is a Jordan derivation and that the
converse in general is not true. In [7], Herstein showed that every Jordan derivation
from a 2-torsion-free prime ring into itself is a derivation. In [2], Brešar generalized
Herstein’s result to 2-torsion-free semiprime rings. Likewise, every higher derivation
is a Jordan higher derivation and the converse in general is not true. In [6], Ferrero and
Haetinger generalized Brešar’s result to the Jordan higher derivations, showing that
every Jordan higher derivation of a 2-torsion-free semiprime ring is a higher derivation.
For other results, see [14, 15]. In [13], Lu proved that each Jordan derivation from a
CSL algebra into itself is a derivation. In Section 2, we generalize Lu’s result to the
case of Jordan higher derivations.

In general, there are two directions in the study of the local actions of derivations
of operator algebras. One is the local derivation problem (for example, see [4, 9, 10]).
The other is to examine the conditions under which derivations of operator algebras
can be completely determined by the action on some sets of operators (for example,
see [1, 3, 8, 11]). In Section 3 we study the local actions of higher derivations.
We show that if the family of bounded linear mappings D = (δi )i∈N on a CSL
algebra A satisfies

∑
i+ j=n δi (A)δ j (B)= 0 for all n ∈ N and A, B ∈A with AB = 0

and δn(I )= 0 for all n ≥ 1, then D = (δi )i∈N is a higher derivation. We also prove that
if
∑

i+ j=n δi (A)δ j (B)= 0 for all n ≥ 1 and A, B ∈A with AB = I , then D = (δi )i∈N
is a Jordan higher derivation.

2. Jordan higher derivations on CSL algebras

The following lemma, due to Ferrero and Haetinger [6], will be used repeatedly.

LEMMA 2.1. Let A be an algebra over a 2-torsion-free commutative ring and D =
(δi )i∈N be a Jordan higher derivation from A into itself. Then for all x, y ∈A and
each n ∈ N:

(a) δn(xy + yx)=
∑

i+ j=n(δi (x)δ j (y)+ δi (y)δ j (x));
(b) δn(xyx)=

∑
i+ j+k=n δi (x)δ j (y)δk(x).

To show one of our main results, we need the following lemmas.

LEMMA 2.2. Let L be a CSL on H and D = (δi )i∈N be a Jordan higher derivation
from Alg L into itself. Then for any E ∈ L and n ≥ 1:

(a) δn(E)= Eδn(E)(I − E);
(b) δn(I − E)= Eδn(I − E)(I − E).

PROOF. When n = 1, it is easy to show that δ(E)= Eδ(E)(I − E). Now we assume
that δm(E)= Eδm(E)(I − E) for all 1≤ m < n. According to the definition of Jordan

https://doi.org/10.1017/S0004972710002029 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710002029


488 J. Li and J. Guo [3]

higher derivation,

δn(E)= Eδn(E)+ δn(E)E +
∑

i+ j=n
i, j≥1

δi (E)δ j (E).

By assumption δn(E)= Eδn(E)+ δn(E)E and so Eδn(E)E = (I − E)δn(E)
(I − E)= 0. This means that

δn(E)= Eδn(E)(I − E)

for all n ≥ 1 and (a) is proved. By (a), δn(I )= 0 for all n ≥ 1. Thus we have

δn(E)=−δn(I − E)

and
δn(I − E)=−Eδn(E)(I − E)= Eδn(I − E)(I − E)

for all n ≥ 1. This proves (b). 2

LEMMA 2.3. Let L and D be as in Lemma 2.2. Then, for all n ∈ N, A ∈ Alg L and
E ∈ L:

(a) δn(AE)=
∑

i+ j=n δi (A)δ j (E);

(b) δn(A(I − E))=
∑

i+ j=n δi (A)δ j (I − E);

(c) δn(E A)=
∑

i+ j=n δi (E)δ j (A);

(d) δn((I − E)A)=
∑

i+ j=n δi (I − E)δ j (A).

PROOF. We prove only (a) and (b). The proofs of (c) and (d) are similar.
By Lemmas 2.1 and 2.2,

δn(AE) = δn(E AE)=
∑

i+ j+k=n

δi (E)δ j (A)δk(E)

=

∑
i+ j+k=n

i≥1

δi (E)δ j (A)δk(E)+
∑

i+ j=n

Eδi (A)δ j (E)

=

∑
i+ j=n

δi (A)δ j (E)

and

δn(A(I − E)) = δn(A)− δn(AE)= δn(A)−
∑

i+ j=n

δi (A)δ j (E)

= δn(A)(I − E)+
∑

i+ j=n
j≥1

δi (A)δ j (I − E)

=

∑
i+ j=n

δi (A)δ j (I − E).

This concludes the proof. 2
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LEMMA 2.4. Let L and D be as in Lemma 2.2. Then for all n ∈ N, S, T ∈ Alg L and
E ∈ L:

(a) δn(SET (I − E))=
∑

i+ j=n δi (S)δ j (ET (I − E));

(b) δn(E S(I − E)T )=
∑

i+ j=n δi (E S(I − E))δ j (T ).

PROOF. By Lemma 2.1, for every T ∈ Alg L and E ∈ L,

δn(ET (I − E)) = δn(E ET (I − E)+ ET (I − E)E)

=

∑
i+ j=n

(δi (E)δ j (ET (I − E))+ δi (ET (I − E))δ j (E))

= Eδn(ET (I − E))+
∑

i+ j=n
i≥1

δi (E)δ j (ET (I − E))

+ δn(ET (I − E))E +
∑

i+ j=n
j≥1

δi (ET (I − E))δ j (E).

By Lemma 2.2, we know that, for any E ∈ L and n ≥ 1, δn(E)= Eδn(E)(I − E) and
δn(I − E)= Eδn(I − E)(I − E). Thus by the equations above, we obtain

Eδn(ET (I − E))E = (I − E)δn(ET (I − E))(I − E)= 0.

This implies that

δn(ET (I − E))= Eδn(ET (I − E))(I − E).

By Lemma 2.3, we can easily obtain

(I − E)δn(ET E)= 0 and δn((I − E)T (I − E))E = 0.

Hence for S, T ∈ Alg L and E ∈ L,

δn(SET (I − E)) = δn(E SE ET (I − E)+ ET (I − E)E SE)

=

∑
i+ j=n

(δi (E SE)δ j (ET (I − E))+ δi (ET (I − E))δ j (E SE))

=

∑
i+ j=n

δi (E SE)δ j (ET (I − E))

=

∑
i+ j=n

∑
e+ f+g=i

δe(E)δ f (S)δg(E)δ j (ET (I − E))

=

∑
i+ j=n

Eδi (S)Eδ j (ET (I − E))

=

∑
i+ j=n

δi (S)δ j (ET (I − E)).
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Similarly, for all S, T ∈ Alg L and E ∈ L,

δn(E S(I − E)T )=
∑

i+ j=n

δi (E S(I − E))δ j (T ).

This concludes the proof. 2

Let L⊥ be the lattice {I − E : E ∈ L} and L′ be the commutant of L. It is
easy to verify that (Alg L)∗ = Alg L⊥ for any lattice L on H and the diagonal
(Alg L) ∩ (Alg L)∗ = L′ is a von Neumann algebra. Given a CSL L on a Hilbert
space H , we define G1(L) and G2(L) to be the projections onto the closures of the
linear spans of

{E A(I − E)x : E ∈ L, A ∈ Alg L, x ∈ H}

and

{(I − E)A∗Ex : E ∈ L, A ∈ Alg L, x ∈ H},

respectively. For simplicity, we write G1 and G2 for G1(L) and G2(L). Since the
CSL is reflexive, it is easy to verify that G1 ∈ L and G2 ∈ L⊥. In [13], Lu showed that
G1 ∨ G2 ∈ L ∩ L⊥ and (Alg L)(I − G1 ∨ G2)⊆ L′.

THEOREM 2.5. Let L be a CSL on H. If D = (δi )i∈N is a Jordan higher derivation
from Alg L into itself, then D = (δi )i∈N is a higher derivation.

PROOF. We divide the proof into two cases.

Case 1. Suppose that G1 ∨ G2 = I .

Let D = (δi )i∈N be a Jordan higher derivation from Alg L into itself. Then δ1
is a Jordan derivation, so by [13, Theorem 3.2], we immediately obtain δ1(AB)=
δ1(A)B + Aδ1(B) for all A, B ∈ Alg L. Now we assume that

δm(AB)=
∑

i+ j=m

δi (A)δ j (B)

for all A, B ∈ Alg L and for all 1≤ m < n.
Let A, B ∈ Alg L. Then by Lemma 2.4, for T ∈ Alg L and E ∈ L,

δn(AB ET (I − E))=
∑

i+ j=n

δi (AB)δ j (ET (I − E))

= δn(AB)ET (I − E)+
∑

i+ j=n
j≥1

δi (AB)δ j (ET (I − E)), (2.1)
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δn(AB ET (I − E))=
∑

i+ j=n

δi (A)δ j (B ET (I − E))

=

∑
i+ j+k=n

δi (A)δ j (B)δk(ET (I − E))

=

∑
i+ j=n

δi (A)δ j (B)ET (I − E)

+

∑
i+ j+k=n

k≥1

δi (A)δ j (B)δk(ET (I − E)).

(2.2)

Combining (2.1) and (2.2) and using the induction hypothesis, we arrive at(
δn(AB)−

∑
i+ j=n

δi (A)δ j (B)

)
ET (I − E)= 0.

Hence by the arbitrariness of E and T , we obtain(
δn(AB)−

∑
i+ j=n

δi (A)δ j (B)

)
G1 = 0. (2.3)

Define δ∗n(A)= (δn(A∗))∗ for all n ∈ N and any A ∈ Alg L⊥. Let D∗ = (δ∗i )i∈N.
If A and B belong to Alg L⊥, then

δ∗n(A
2)= (δn((A

∗)2))∗ =
∑

i+ j=n

(δi (A
∗))∗(δ j (A

∗))∗ =
∑

i+ j=n

δ∗i (A)δ
∗

j (A).

So D∗ = (δ∗i )i∈N is a Jordan higher derivation on Alg L⊥. With the proof similar to
the proof of (2.3), we have, for all A, B ∈ Alg L,

G2

(
δn(AB)−

∑
i+ j=n

δi (A)δ j (B)

)
= 0. (2.4)

Since G1 ∈ L, by Lemma 2.3, we have, for all A, B ∈ Alg L,(
δn(ABG1)−

∑
i+ j=n

δi (A)δ j (BG1)

)
(I − G1)

=

( ∑
i+ j=n

δi (AB)δ j (G1)−
∑

e+ f+ j=n

δe(A)δ f (B)δ j (G1)

)
(I − G1)

=

∑
i+ j=n

(
δi (AB)−

∑
e+ f=i

δe(A)δ f (B)

)
δ j (G1)(I − G1)

=

∑
i+ j=n

j≥1

(
δi (AB)−

∑
e+ f=i

δe(A)δ f (B)

)
δ j (G1)(I − G1)
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and

G1

(
δn((I − G1)AB)−

∑
i+ j=n

δi ((I − G1)A)δ j (B)

)
= G1

( ∑
i+ j=n

δi (I − G1)δ j (AB)−
∑

i+e+ f=n

δi (I − G1)δe(A)δ f (B)

)
= G1

∑
i+ j=n

δi (I − G1)

(
δ j (AB)−

∑
e+ f= j

δe(A)δ f (B)

)
= G1

∑
i+ j=n

i≥1

δi (I − G1)

(
δ j (AB)−

∑
e+ f= j

δe(A)δ f (B)

)
.

By the assumption,(
δn(ABG1)−

∑
i+ j=n

δi (A)δ j (BG1)

)
(I − G1)= 0 (2.5)

and

G1

(
δn((I − G1)AB)−

∑
i+ j=n

δi ((I − G1)A)δ j (B)

)
= 0. (2.6)

So by (2.3)–(2.6) and G1 ∨ G2 = I , we obtain

δn(ABG1)=
∑

i+ j=n

δi (A)δ j (BG1) (2.7)

and

δn((I − G1)AB)=
∑

i+ j=n

δi ((I − G1)A)δ j (B) (2.8)

for all A, B ∈ Alg L.
Note that by Lemma 2.4, we also have

δn(AG1 B(I − G1))=
∑

i+ j=n

δi (A)δ j (G1 B(I − G1)) (2.9)

and

δn(G1 A(I − G1)B)=
∑

i+ j=n

δi (G1 A(I − G1))δ j (B) (2.10)

for all A, B ∈ Alg L.
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Therefore by (2.7)–(2.10) and Lemma 2.3,

δn(AB) = δn(ABG1 + AG1 B(I − G1)+ G1 A(I − G1)B + (I − G1)AB)

=

∑
i+ j=n

δi (A)δ j (BG1)+
∑

i+ j=n

δi (A)δ j (G1 B(I − G1))

+

∑
i+ j=n

δi (G1 A(I − G1))δ j (B)+
∑

i+ j=n

δi ((I − G1)A)δ j (B)

=

∑
i+ j=n

δi (A)δ j (G1 B)+
∑

i+ j=n

δi (A(I − G1))δ j (B)

=

∑
i+ j+k=n

δi (A)δ j (G1)δk(B)+
∑

i+ j=n

δi (A)δ j (B)

−

∑
i+ j+k=n

δi (A)δ j (G1)δk(B)

=

∑
i+ j=n

δi (A)δ j (B)

for all A, B ∈ Alg L. This shows that D = (δi )i∈N is a higher derivation from Alg L
into itself if G1 ∨ G2 = I .

Case 2. Suppose that G1 ∨ G2 < I .

Let G = G1 ∨ G2. Since G ∈ L ∩ L⊥ and Alg L(I − G)⊆ L′, then (I − G)
Alg L(I − G) is a von Neumann algebra. The algebra Alg L can be written as the
direct sum

Alg L= Alg(G LG)⊕ Alg((I − G)L(I − G)).

Since G ∈ L ∩ L⊥, by Lemma 2.2, we have δn(G)= 0 for all n ≥ 1 and δn(I − G)= 0
for all n ≥ 1. Hence

δn(G AG)= Gδn(A)G and δn((I − G)A(I − G))= (I − G)δn(A)(I − G)

for every A ∈ Alg L. Therefore D can be written as D(1)
⊕ D(2), where D(1) is

a Jordan higher derivation from Alg(G LG) into itself and D(2) is a Jordan higher
derivation from Alg((I − G)L(I − G)) into itself. It is easy to show that G1(G LG) ∨
G2(G LG)= G. So it follows from Case 1 that D(1) is a higher derivation. Since
every von Neumann algebra is a semiprime ring, D(2) is also a higher derivation
by [6, Theorem 1.2]. Consequently, D = (δi )i∈N is a higher derivation from Alg L
into itself. 2

3. High derivable linear mapping at some points

Let A denote a unital Banach algebra and D = (δi )i∈N :A→A be a family of
linear mappings. We say that D is a higher derivable linear mapping at A if δn(xy)=∑

i+ j=n δi (x)δ j (y) for all n ∈ N and x, y ∈A with xy = A. In the following,
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we study the conditions under which higher derivations of A can be completely
determined by the action on the zero-product elements.

LEMMA 3.1. Let A be a unital Banach algebra and D = (δi )i∈N be a higher derivable
linear mapping at 0 from A into itself with δn(I )= 0 for all n ≥ 1. Then for every
idempotent P ∈A, every A ∈A and each n ∈ N:

(a) δn(P A)=
∑

i+ j=n δi (P)δ j (A);

(b) δn(AP)=
∑

i+ j=n δi (A)δ j (P).

PROOF. (a) From

0= δn(P(I − P)A) =
∑

i+ j=n

δi (P)δ j ((I − P)A)

=

∑
i+ j=n

δi (P)δ j (A)−
∑

i+ j=n

δi (P)δ j (P A)

and

0= δn((I − P)P A) =
∑

i+ j=n

δi (I − P)δ j (P A)

=

∑
i+ j=n

δi (I )δ j (P A)−
∑

i+ j=n

δi (P)δ j (P A)

= δn(P A)−
∑

i+ j=n

δi (P)δ j (P A),

we obtain δn(P A)=
∑

i+ j=n δi (P)δ j (A) for every idempotent P ∈A, every A ∈A
and each n ∈ N. With a proof similar to the proof of (a) we can show that (b) is also
true. 2

COROLLARY 3.2. Let A and D = (δi )i∈N be as in Lemma 3.1 with δn(I )= 0 for all
n ≥ 1. Suppose that B is the subalgebra of A generated by all idempotents in A. Then
for any T1, T2 ∈ B, A ∈A and each n ∈ N:

(a) δn(T1 A)=
∑

i+ j=n δi (T1)δ j (A);

(b) δn(AT1)=
∑

i+ j=n δi (A)δ j (T1);

(c) δn(T1T2)=
∑

i+ j=n δi (T1)δ j (T2).

We call a left (right) ideal I of A a separating left (right) ideal of M, if for every m
in M, mI = 0 (I m = 0) implies m = 0. An ideal I of A is called a separating ideal
of M if I is a separating left ideal and a separating right ideal of M.

THEOREM 3.3. Let A and D = (δi )i∈N be as in Lemma 3.1 with δn(I )= 0 for all
n ≥ 1. If I is a separating left (right) ideal of A and I is contained in the subalgebra
of A generated by all idempotents in A, then D is a higher derivation.
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PROOF. Suppose that I is a separating left ideal of A. When n = 1, it is easy to show
that δ1 is a derivation, that is, δ1(AB)= δ1(A)B + Aδ1(B) for all A, B ∈A. Now we
assume that

δm(AB)=
∑

i+ j=m

δi (A)δ j (B)

for all A, B ∈A and for all 1≤ m < n.
Let A, B ∈A. Then by Corollary 3.2, for S ∈ I ,

δn(ABS)=
∑

i+ j=n

δi (AB)δ j (S)= δn(AB)S +
∑

i+ j=n
j≥1

δi (AB)δ j (S),

δn(ABS) =
∑

i+ j=n

δi (A)δ j (BS)=
∑

i+ j+k=n

δi (A)δ j (B)δk(S)

=

∑
i+ j=n

δi (A)δ j (B)S +
∑

i+ j+k=n
k≥1

δi (A)δ j (B)δk(S).

So by the induction hypothesis, we obtain(
δn(AB)−

∑
i+ j=n

δi (A)δ j (B)

)
S = 0.

Since I is a separating left ideal of A, it follows that

δn(AB)=
∑

i+ j=n

δi (A)δ j (B).

So D is a higher derivation.
Suppose that I is a separating right ideal of A. We can similarly prove that D is a

higher derivation. 2

LEMMA 3.4. Let L be a CSL on H. If D = (δi )i∈N is a higher derivable linear
mapping at 0 from Alg L into itself and δn(I )= 0 for all n ≥ 1, then for any P ∈ L
and n ≥ 1:

(a) δn(P)= Pδn(P)(I − P);
(b) δn(I − P)= Pδn(I − P)(I − P).

PROOF. When n = 1, we can easily obtain δ1(P)= Pδ1(P)(I − P). Now we assume
that

δm(P)= Pδm(P)(I − P)

for all 1≤ m < n. By Lemma 3.1, it follows that

δn(P) =
∑

i+ j=n

δi (P)δ j (P)

= Pδn(P)+ δn(P)P +
∑

i+ j=n
i, j≥1

δi (P)δ j (P)

= Pδn(P)+ δn(P)P.
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This means that
δn(P)= Pδn(P)(I − P)

and

δn(I − P)=−δn(P)=−Pδn(P)(I − P)= Pδn(I − P)(I − P) for all n ≥ 1.

This concludes the proof. 2

THEOREM 3.5. Let L be a CSL on H. If D = (δi )i∈N is a bounded higher derivable
linear mapping at 0 from Alg L into itself and δn(I )= 0 for all n ≥ 1, then D =
(δi )i∈N is a higher derivation.

PROOF. We divide the proof into two cases.

Case 1. Suppose that G1 ∨ G2 = I .

The proof is similar to the proof of Case 1 in Theorem 2.5.

Case 2. Suppose that G1 ∨ G2 < I .

Let G = G1 ∨ G2. The algebra Alg L can be written as the direct sum

Alg L= Alg(G LG)⊕ Alg((I − G)L(I − G)).

Since G ∈ L ∩ L⊥, by Lemma 3.4, we have δn(G)= 0 and δn(I − G)= 0 for all
n ≥ 1. Hence

δn(G AG)= Gδn(A)G and δn((I − G)A(I − G))= (I − G)δn(A)(I − G)

for every A ∈ Alg L. Therefore D can be written as D(1)
⊕ D(2), where D(1) is a

bounded higher derivable linear mapping at 0 from Alg(G LG) into itself and D(2) is a
bounded higher derivable linear mapping at 0 from Alg((I − G)L(I − G)) into itself.
It is easy to show that G1(G LG) ∨ G2(G LG)= G. So it follows from Case 1 that
D(1) is a higher derivation. Since (I − G) Alg L(I − G) is a von Neumann algebra
and D(2) is continuous, D(2) is a higher derivation by Corollary 3.2. Consequently,
D = (δi )i∈N is a higher derivation. 2

In the following, we study the higher derivable linear mapping at unit-product
elements on Banach algebras.

LEMMA 3.6. Let A be a unital Banach algebra and D = (δi )i∈N :A→A be a family
of linear mappings such that∑

i+ j=n

δi (A)δ j (A
−1)= 0 for all n ≥ 1

and for every invertible element A ∈A. Then D = (δi )i∈N is a Jordan higher
derivation.

https://doi.org/10.1017/S0004972710002029 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710002029


[12] Higher derivation and Jordan higher derivation 497

PROOF. It is easy to show that δn(I )= 0 for all n ≥ 1. When n = 1, δ1(A)A−1
+

Aδ1(A−1)= 0 for every invertible element A ∈A. Then with the similar proof of
[12, Theorem 2.2], we can show that δ1 is a Jordan derivation, that is, δ1(B2)=

δ1(B)B + Bδ1(B) for every B in A. Now we assume that

δm(B
2)=

∑
i+ j=m

δi (B)δ j (B)

for all 1≤ m < n and every B in A. For any T ∈A, let n be a positive integer such
that n ≥ ‖T ‖ + 1 and A = nI + T . We know that A and I − A are invertible in A. So

δn(A) = −
∑

i+ j=n
j≥1

δi (A)δ j (A
−1)A

= −

∑
i+ j=n

j≥1

δi (A)δ j (A
−1(I − A)2)A +

∑
i+ j=n

j≥1

δi (A)δ j (A)A

=

∑
i+e+ f=n

f≥1

δi (A)δe(A
−1(I − A)2)δ f ((I − A)−2 A)(I − A)2

+

∑
i+ j=n

j≥1

δi (A)δ j (A)A

=

∑
i+e+ f=n

f≥1

δi (A)δe(A
−1
+ A − 2I )δ f ((I − A)−2)(I − A)2

−

∑
i+e+ f=n

f≥1

δi (A)δe(A
−1
+ A − 2I )δ f ((I − A)−1)(I − A)2

+

∑
i+ j=n

j≥1

δi (A)δ j (A)A.

By a simple calculation and the induction hypothesis,∑
i+e+ f=n

f≥1

δi (A)δe(A
−1
+ A − 2I )δ f ((I − A)−2)(I − A)2

=

∑
i+ j=n

j≥1

δi ((I − A)2)δ j ((I − A)−2)(I − A)2

=−δn((I − A)2)= δn(2A)− δn(A
2)
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and

−

∑
i+e+ f=n

f≥1

δi (A)δe(A
−1
+ A − 2I )δ f ((I − A)−1)(I − A)2

=−

∑
i+ j=n

j≥1

δi (I − A)δ j ((I − A)−1)(I − A)2 −
∑

i+ j=n
j≥1

δi (A)δ j (I − A)(I − A)

= δn(I − A)(I − A)+
∑

i+ j=n
j≥1

δi (A)δ j (A)(I − A)

=−δn(A)+ δn(A)A +
∑

i+ j=n
j≥1

δi (A)δ j (A)−
∑

i+ j=n
j≥1

δi (A)δ j (A)A.

So we have

δn(A)= δn(A)− δn(A
2)+ δn(A)A +

∑
i+ j=n

j≥1

δi (A)δ j (A).

Hence we obtain, for every invertible element A ∈A,

δn(A
2)=

∑
i+ j=n

δi (A)δ j (A).

Since δn(I )= 0 for all n ≥ 1, we have, for every T ∈A,

δn(T
2)=

∑
i+ j=n

δi (T )δ j (T ).

This concludes the proof. 2

THEOREM 3.7. Let A be a unital Banach algebra and D = (δi )i∈N be a family of
linear mappings from A into itself. Then D = (δi )i∈N is a higher derivable linear
mapping at I if and only if D = (δi )i∈N is a Jordan higher derivation.

PROOF. Let D = (δi )i∈N be a higher derivable linear mapping at I . Then, by
Lemma 3.6, D = (δi )i∈N is a Jordan higher derivation. Conversely, if D = (δi )i∈N
is a Jordan higher derivation, then δ1 is a Jordan derivation. So δ1 is a derivable linear
mapping at I . Now we assume that

∑
i+ j=m δi (A)δ j (B)= 0 for all A, B ∈A with

AB = I and 1≤ m < n. Thus for all A, B ∈A with AB = I ,

δn(B) = δn(B AB)=
∑

i+ j+k=n

δi (B)δ j (A)δk(B)

= B
∑

i+ j=n

δi (A)δ j (B)+
∑

i+ j+k=n
i≥1

δi (B)δ j (A)δk(B)

= B
∑

i+ j=n

δi (A)δ j (B)+ δn(B).
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So
B
∑

i+ j=n

δi (A)δ j (B)= 0 for all n ≥ 1.

Hence ∑
i+ j=n

δi (A)δ j (B)= AB
∑

i+ j=n

δi (A)δ j (B)= 0

for all n ≥ 1. This means that D = (δi )i∈N is a higher derivable linear mapping at I . 2

In Section 1, we have proved that if D = (δi )i∈N is a Jordan higher derivation on a
CSL algebra, then D = (δi )i∈N is a higher derivation. So by Theorem 3.7, we have the
following corollary.

COROLLARY 3.8. Let L be a CSL on H. If D = (δi )i∈N is a higher derivable linear
mapping at I from Alg L into itself, then D = (δi )i∈N is a higher derivation.
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