A CONDITION FOR EXISTENCE OF MOMENTS OF INFINITELY DIVISIBLE DISTRIBUTIONS

J. M. SHAPIRO

Let $F(x)$ be an infinitely divisible distribution and let $\phi(t)$ be its characteristic function. As is well known according to the formula of Lévy and Khintchine, $\phi(t)$ has the following representation:

$$
\begin{equation*}
\phi(t)=\exp \left\{i \gamma t+\int_{-\infty}^{\infty}\left(e^{i t u}-1-\frac{i t u}{1+u^{2}}\right) \frac{1+u^{2}}{u^{2}} d G(u)\right\} \tag{1}
\end{equation*}
$$

where γ is a real constant and $G(u)$ is a bounded nondecreasing function. A simple necessary and sufficient condition for the moments of $F(x)$ to exist is contained in the following Theorem.

Theorem. A necessary and sufflcient condition for the ($2 k$) th moment of $F(x)$ to be finite is that the $(2 k)$ th moment of $G(u)$ be finite where k is any positive integer.

Proof. To prove sufficiency we assume

$$
\int_{-\infty}^{\infty} u^{2 k} d G(u)<\infty
$$

and note that this implies that

$$
\alpha(t) \equiv \int_{-\infty}^{\infty}\left(e^{i t u}-1-\frac{i t u}{1+u^{2}}\right) \frac{1+u^{2}}{u^{2}} d G(u)
$$

may be differentiated under the integral sign $2 k$ times. Hence using (1) it follows that $d^{2 k} \phi(t) / d t^{2 k}$ exists and is finite. This implies that

$$
\int_{-\infty}^{\infty} x^{2 k} d F(x)<\infty
$$

(1, p. 90), which proves sufficiency.
Now assuming that

$$
\int_{-\infty}^{\infty} x^{2 k} d F(x)<\infty
$$

it follows that $\phi(t)$ has a finite derivative of order $2 k$ and thus from (1) we see that $\alpha(t)$ has a finite $(2 k)$ th derivative. Now

$$
\alpha^{\prime \prime}(t)=\lim _{h \rightarrow 0} \frac{\alpha(t+2 h)-2 \alpha(t)+\alpha(t-2 h)}{4 h^{2}}
$$

so that

$$
\begin{aligned}
\alpha^{\prime \prime}(0) & =\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}\left(e^{2 i t u}-2+e^{-2 i t u}\right) \frac{1+u^{2}}{4 t^{2} u^{2}} d G(u) \\
& =\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}\left[\left(e^{i t u}-e^{-i t u}\right) / 2 t\right]^{2} \frac{1+u^{2}}{u^{2}} d G(u) \\
& =-\lim _{t \rightarrow 0} \int_{-\infty}^{\infty}\left(\frac{\sin t u}{t}\right)^{2} \frac{1+u^{2}}{u^{2}} d G(u) .
\end{aligned}
$$

But by Fatou's Theorem

$$
\int_{-\infty}^{\infty}\left(1+u^{2}\right) d G(u) \leqslant \lim _{t \rightarrow 0} \int_{-\infty}^{\infty}\left(\frac{\sin t u}{t}\right)^{2} \frac{1+u^{2}}{u^{2}} d G(u)
$$

and hence

$$
\int_{-\infty}^{\infty} u^{2} d G(u)<\infty
$$

But as in the sufficiency proof this implies that we may differentiate $\alpha(t)$ under the integral sign twice and we see

$$
\alpha^{\prime \prime}(t)=-\int_{-\infty}^{\infty}\left(1+u^{2}\right) e^{i t u} d G(u) \equiv \beta(t)
$$

Now $\beta(t)$ has a finite derivative of order $2 k-2$ so that using an argument identical to that of (1, p. 90) we see that

$$
\int_{-\infty}^{\infty} u^{2 k} d G(u)<\infty
$$

This proves the Theorem.
It is not difficult to find the relation between the moments of $F(x)$ and those of $G(u)$. In fact if we assume that the (2k)th moment of $F(x)$ (or of $G(u)$) is finite it follows that the semi-invariants of $F(x)$ (which are expressible in terms of the moments of $F(x)$)

$$
\chi_{\tau}=i^{-r}\left[d^{r} \log \phi(t) / d t^{r}\right]_{t=0}
$$

exist for $1 \leqslant r \leqslant 2 k$. But

$$
\log \phi(t)=i \gamma t+\int_{-\infty}^{\infty}\left(e^{i t u}-1-\frac{i t u}{1+u^{2}}\right) \frac{1+u^{2}}{u^{2}} d G(u)
$$

and differentiating under the integral sign, since

$$
\int_{-\infty}^{\infty} u^{2 k} d G(u)<\infty
$$

we see that

$$
\begin{aligned}
& \chi_{1}=\gamma+\int_{-\infty}^{\infty} u d G(u) \\
& \chi_{r}=\quad \int_{-\infty}^{\infty}\left(u^{r-2}+u^{r}\right) d G(u), \quad 2 \leqslant r \leqslant 2 k
\end{aligned}
$$

Reference

1. Harald Cramér, Mathematical methods of statistics (Princeton University Press, 1946).

Ohio State University

