UMBILICAL POINTS ON SURFACES IN $\boldsymbol{R}^{\boldsymbol{N}}$

KAZUYUKI ENOMOTO

Let $\varphi: M \rightarrow \boldsymbol{R}^{N}$ be an isometric imbedding of a compact, connected surface M into a Euclidean space \boldsymbol{R}^{N}. ψ is said to be umbilical at a point p of M if all principal curvatures are equal for any normal direction. It is known that if the Euler characteristic of M is not zero and $N=3$, then ψ is umbilical at some point on M. In this paper we study umbilical points of surfaces of higher codimension. In Theorem 1, we show that if M is homeomorphic to either a 2 -sphere or a 2 -dimensional projective space and if the normal connection of ψ is flat, then ψ is umbilical at some point on M. In Section 2, we consider a surface M whose Gaussian curvature is positive constant. If the surface is compact and $N=3$, Liebmann's theorem says that it must be a round sphere. However, if $N \geq 4$, the surface is not rigid: For any isometric imbedding Φ of R^{3} into $\boldsymbol{R}^{4} \Phi\left(S^{2}(r)\right)$ is a compact surface of constant positive Gaussian curvature $1 / r^{2}$. We use Theorem 1 to show that if the normal connection of ψ is flat and the length of the mean curvature vector of ψ is constant, then $\psi(M)$ is a round sphere in some $R^{3} \subset R^{N}$. When $N=4$, our conditions on ψ is satisfied if the mean curvature vector is parallel with respect to the normal connection. Our theorem fails if the surface is not compact, while the corresponding theorem holds locally for a surface with parallel mean curvature vector (See Remark (i) in Section 3).

The author wishes to thank Professor Hung-Hsi Wu for his constant encouragement and valuable suggestions.

§ 1. Preliminaries

Let M be a connected n-dimensional C^{∞} Riemannian manifold and let $\psi: M \rightarrow \boldsymbol{R}^{N}$ be an isometric immersion of M into an N-dimensional Euclidean space \boldsymbol{R}^{N}. Let D and \bar{D} denote the covariant differentiations of M and R^{N} respectively. Let X, Y be tangent vector fields on M. Then

[^0]\[

$$
\begin{equation*}
\bar{D}_{X} Y=D_{X} Y+B(X, Y) \tag{1.1}
\end{equation*}
$$

\]

where $B(X, Y)$ is the normal component of $\bar{D}_{X} Y$.
Let ξ be a normal vector field on M. We write

$$
\begin{equation*}
\bar{D}_{X} \xi=-A_{\xi} X+D_{X}^{\frac{1}{X} \xi} \tag{1.2}
\end{equation*}
$$

where $A_{\xi} X$ and $D_{\bar{X}}^{\frac{1}{X} \xi}$ are the tangential and normal components of $\bar{D}_{X} \xi$. Then we have

$$
\begin{equation*}
\left\langle A_{\xi} X, Y\right\rangle=\langle B(X, Y), \xi\rangle \tag{1.3}
\end{equation*}
$$

where \langle,$\rangle denotes the inner product of R^{N}$. The linear transformation A_{ξ} on the tangent bundle $T M$ is called the shape operator of M with respect to ξ. Since A_{ξ} is symmetric, i.e.

$$
\begin{equation*}
\left\langle A_{\xi} X, Y\right\rangle=\left\langle X, A_{\xi} Y\right\rangle \tag{1.4}
\end{equation*}
$$

all eigenvalues of A_{ξ} are real. An eigenvalue of A_{ξ} is called a principal curvature with respect to ξ. An eigenvector of A_{ξ} is called a principal vector with respect to ξ. The mean curvature vector H is defined by

$$
\begin{equation*}
H=\frac{1}{n} \operatorname{trace}(B) \tag{1.5}
\end{equation*}
$$

The length of H is called the mean curvature.
Let R and R^{\perp} be the curvature tensors associated with D and D^{\perp} respectively, i.e.

$$
\begin{align*}
& R(X, Y) Z=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z \tag{1.6}\\
& R^{\perp}(X, Y) \xi=D_{X}^{\perp} D_{\frac{1}{Y}}^{\perp} \xi-D_{Y}^{\perp} D_{X}^{\perp} \xi-D_{[X, Y]}^{\perp} \xi \tag{1.7}
\end{align*}
$$

where X, Y, Z are tangent to M and ξ is normal to M.
Then for any tangent vector fields X, Y, Z, W and normal vector fields ξ, η, we have the following equations:

$$
\begin{align*}
&\langle R(X, Y) Z, W\rangle=-\langle B(X, Z), B(Y, W)\rangle+\langle B(Y, Z), B(X, W)\rangle \tag{1.8}\\
& \text { (Gauss equation) } \\
&\left\langle R^{\perp}(X, Y) \xi, \eta\right\rangle=\left\langle\left(A_{\xi} A_{\eta}-A_{\eta} A_{\xi}\right) X, Y\right\rangle \text { (Ricci equation) } \tag{1.9}
\end{align*}
$$

The normal connection D^{\perp} is said to be flat if $R^{\perp}=0$. (1.9) implies that D^{\perp} is flat at $p \in M$ if and only if

$$
\begin{equation*}
A_{\xi} A_{\eta}=A_{\eta} A_{\xi} \tag{1.10}
\end{equation*}
$$

for any two normal vectors ξ and η at p. Thus if D^{\perp} is flat at $p \in M$, there exists an orthonormal base e_{1}, \cdots, e_{n} of $T_{p} M$ such that each e_{i} ($i=1, \cdots, n$) is a principal vector with respect to any normal vector at p.

A point p is said to be umbilical with respect to ξ if A_{ξ} is proportional to the identity transformation of $T_{p} M . \psi$ is said to be umbilical at p if p is umbilical with respect to A_{ξ} for all normal vectors ξ at p. ψ is called totally umbilical if ψ is umbilical at every point of M. It is well known that if ψ is totally umbilical, then $\psi(M)$ is an open subset of either an n-dimensional affine subspace or an n-dimensional round sphere. (See, for instance, [3] for proof.)

§ 2. Umbilical points of surfaces in R^{N}

In this section we prove the following theorem.
Theorem 1. Let M be a compact surface which is homeomorphic to a 2-sphere or a 2-dimensional projective space and let $\psi: M \rightarrow \boldsymbol{R}^{N}$ be an isometric imbedding. Suppose that the normal connection of ψ is flat. Then ψ is umbilical at some point $p_{0} \in M$.

Proof. Suppose that ψ does not have any umbilical point. Then at each point p of M there exists a neighborhood U_{p} of p and a normal vector field ξ on U_{p} such that A_{ξ} is not proportional to the identity transformation. We choose each U_{p} in such a way that U_{p} is simply connected and for any p and $q U_{p} \cap U_{q}$ is either empty or connected. Since M is compact, there exist a finite number of points p_{1}, \cdots, p_{k} such that $M=U_{p_{1}} \cup \cdots \cup U_{p_{k}}$. We simply denote $U_{p_{i}}$ by U_{i}. Let ξ_{i} be a normal vector field defined on U_{i} such that $A_{\hat{s} i}$ is not proportional to the identity at each point of U_{i}. At each point of U_{i}, the eigenvectors of $A_{\hat{s}_{i}}$ form a pair of lines (i.e. 1-dimensional linear subspaces) in the tangent plane. Since U_{i} is simply connected, there exist continuous line fields L_{1}^{i} and L_{2}^{i} on U_{i} such that at each q in $U_{i} L_{1}^{i}(q)$ and $L_{2}^{i}(q)$ contain all eigenvectors of $A_{\xi_{i}(q)}$.

Suppose $U_{\imath} \cap U_{j} \neq \phi$. Let $q \in U_{i} \cap U_{j}$. Since $A_{\xi_{i}(q)}$ and $A_{\bar{\xi}_{j(q)}}$ are not proportional to the identity transformation and the normal connection is flat, all eigenvectors of $A_{\xi_{i(q)}}$ and $A_{\xi_{j}(q)}$ coincide. This implies that either (i) $L_{1}^{i}(q)=L_{1}^{j}(q)$ and $L_{2}^{i}(q)=L_{2}^{j}(q)$ or (ii) $L_{1}^{i}(q)=L_{2}^{j}(q)$ and $L_{2}^{i}(q)=L_{1}^{j}(q)$. Since $U_{i} \cap U_{j}$ is simply connected, it follows from the continuity of the
line fields that if (i) (or (ii)) occurs at one point of $U_{i} \cap U_{j}$, it must hold for all points of $U_{i} \cap U_{j}$. By renaming the line fields if necessary, we may assume that $L_{1}^{i} \equiv L_{1}^{j}$ and $L_{2}^{i} \equiv L_{2}^{j}$ on $U_{i} \cap U_{j}$. Let $\left\{U_{i_{1}}, \cdots, U_{i_{s}}\right\}$ be a chain of the elements of $\left\{U_{i}: i=1, \cdots, k\right\}$, i.e. a subset of $\left\{U_{i}: i=1, \cdots, k\right\}$ which satisfies $U_{i_{t}} \cap U_{i_{t+1}} \neq \phi$ for all $t=1, \cdots, s-1$. Suppose that we obtain a line field $L_{1}^{i_{s}}$ on $U_{i_{s}}$ by the continuation of $L_{1}^{i_{1}}$ along the chain. If $U_{i_{s}} \cap U_{i_{1}} \neq \phi$, it may well happen that $L_{1}^{i_{s}}$ coincides with $L_{2}^{i_{1}}$ rather than $L_{1}^{i_{1}}$ on $U_{i_{s}} \cap U_{i_{1}}$. But in the case when M is simply connected (i.e. homeomorphic to a 2 -sphere), it follows from the standard monodromy argument that $L_{1}^{i_{s}}$ always coincides with $L_{1}^{i_{1}}$. This implies that a global continuous line field L_{1} can be defined on M. This is a contradiction because there is no global continuous line field on a 2 -sphere. Thus if M is homeomorphic to a 2 -sphere, there exists at least one point on M where ψ is umbilical.

Now we consider the case when M is homeomorphic to a 2 -dimensional projective space. Suppose that ψ does not have any umbilical point. Then, as we see in the above argument, there exists an open covering $\left\{U_{i}: i=1, \cdots, k\right\}$ of M and continuous line fields L_{1}^{i} and L_{2}^{i} defined on U_{i} such that if $U_{i} \cap U_{j} \neq \phi$, either $L_{1}^{i} \equiv L_{2}^{j}$ or $L_{1}^{i} \equiv L_{2}^{j}$ on $U_{i} \cap U_{j}$. Let \tilde{M} be the standard double covering of M which is homeomorphic to a 2 -sphere and let $\pi: \tilde{M} \rightarrow M$ be the projection. Let $U_{i 1}$ and $U_{i 2}$ be the connected components of $\pi^{-1}\left(U_{i}\right)$. Let $L_{1}^{i \lambda}(i=1, \cdots, k, \lambda=1,2)$ be the unique line field on $U_{i \lambda}$ which satisfies $d \pi\left(L_{1}^{i \lambda}\right)=L_{1}^{i}$. In a similar way, a continuous line field $L_{2}^{i \lambda}$ is defined. Now we have an open covering of \tilde{M}, $\left\{U_{i \lambda}\right\}$, and continuous line fields $L_{1}^{i \lambda}$ and $L_{2}^{i \lambda}$ on $U_{i \lambda}$. Moreover, if $U_{i \lambda} \cap U_{j \mu} \neq \phi$, we have either $L_{1}^{i \lambda} \equiv L_{1}^{j \mu}$ or $L_{1}^{i \lambda} \equiv L_{2}^{j \mu}$ on $U_{i \lambda} \cap U_{j \mu}$. Thus, using the standard monodromy argument again, we obtain a global continuous line field on \tilde{M}, which is a contradiction. Therefore, if M is homeomorphic to a 2 dimensional projective space, there exists at least one point of M where ψ is umbilical. This completes the proof of Theorem 1.

$\S 3$. Surfaces in R^{N} with positive constant curvature and constant mean curvature

In this section we use Theorem 1 to prove the following theorem.
Theorem 2. Let M be a compact surface with constant Gaussian curvature $c^{2}>0$ and let $\psi: M \rightarrow \boldsymbol{R}^{N}$ be an isometric imbedding. Suppose that the mean curvature of ψ is constant, i.e. $|H|$ is constant, and the normal
connection is flat. Then $\psi(M)$ is a round 2-sphere in a 3-dimensional affine space $R^{3} \subset R^{N}$.

Proof. First we define a function on M by

$$
\begin{equation*}
F(p)=|H(p)|^{2}-K(p) \quad(p \in M) \tag{3.1}
\end{equation*}
$$

where $H(p)$ is the mean curvature vector at p and $K(p)$ is the Gaussian curvature of M at p. We prove the following lemma:

Lemma 3.1. $\quad F(p)=0$ if and only if ψ is umbilical at p.
Proof. Let $\left(\xi_{1}, \xi_{2}, \cdots, \xi_{v-2}\right)$ be an orthonormal frame of $T_{p}^{\perp} M$, the normal space of M at p. Using (1.8), we obtain

$$
\begin{equation*}
K(p)=\sum_{\alpha=1}^{N-2} \operatorname{det} A_{\xi_{\alpha}} . \tag{3.2}
\end{equation*}
$$

From (1.5) we have

$$
\begin{equation*}
H(p)=\frac{1}{2} \sum_{\alpha=1}^{N-2}\left(\operatorname{trace} A_{\xi_{\alpha}}\right) \xi_{\alpha} \tag{3.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
|H(p)|^{2}=\frac{1}{4} \sum_{\alpha=1}^{N-2}\left(\operatorname{trace} A_{\xi_{\alpha}}\right)^{2} . \tag{3.4}
\end{equation*}
$$

It follows from (3.2) and (3.4) that

$$
\begin{equation*}
F(p)=\frac{1}{4} \sum_{\alpha=1}^{N-2}\left\{\left(\operatorname{trace} A_{\xi_{\alpha}}\right)^{2}-4 \operatorname{det} A_{\xi_{\alpha}}\right\} . \tag{3.5}
\end{equation*}
$$

Using elementary linear algebra, we can see that

$$
\begin{equation*}
\left(\operatorname{trace} A_{\xi_{\alpha}}\right)^{2}-4 \operatorname{det} A_{\xi_{\alpha}} \geq 0 \tag{3.6}
\end{equation*}
$$

and the equality holds if and only if every $A_{\xi_{\alpha}}$ is proportional to the identity transformation. The lemma follows immediately.

Now we return to the proof of Theorem 2. Since M is compact, and the Gaussian curvature is positive, M is homeomorphic to either a 2 sphere or a 2-dimensional projective space. Hence, by Theorem 1, ψ is umbilical at some point p_{0}. By Lemma 3.1, $F\left(p_{0}\right)=0$. On the other hand, since both $|H|$ and K are constant on M, F is a constant function on M. Thus $F=0$ at every point of M. By Lemma 3.1 again, this implies that ψ is umbilical at every point of M. Since M is compact, $\psi(M)$ is
a round sphere in some 3 -dimensional affine space. This completes the proof of Theorem 2.

Remark. (i) If the mean curvature vector is parallel in the normal bundle, i.e. $D^{\perp} H=0$, then $|H|$ is constant and the normal connection D^{\perp} is fiat unless M is either a minimal surface in R^{4} or a minimal surface in S^{N-1} ([2]). In [1], Chen and Ludden proved that if the Gaussian curvature of a surface in R^{4} is positive constant and the mean curvature vector is parallel in the normal bundle, it is an open piece of a round sphere. As we see in the following example, our theorem fails if M is not compact, while the Chen-Ludden theorem holds without global assumptions.

Example 1. Let M be a surface of revolution in R^{3} which is obtained by rotating the curve

$$
\begin{equation*}
(x(s), z(s))=\left(\alpha \cos s, \int_{0}^{s}\left[1-\alpha^{2} \sin ^{2} t\right]^{1 / 2} d t\right) \tag{3.7}
\end{equation*}
$$

around the z-axis where $s \in(-\varepsilon, \varepsilon)$ for some small $\varepsilon>0$ and α is a positive number. Then M is a surface of constant Gaussian curvature 1 and if $\alpha \neq 1, M$ is not totally umbilical. Let h be the mean curvature of M. h is a function of s only, which is given by

$$
h=\frac{1+\alpha^{2} \cos 2 s}{2 \alpha \cos s\left(1-\alpha^{2} \sin s\right)^{1 / 2}}
$$

Now we define an isometric imbedding of \boldsymbol{R}^{3} into R^{4}. First we define a function $\kappa(s)$ by

$$
\begin{equation*}
\kappa(s)=\frac{2\left(\beta^{2}-h^{2}\right)^{1 / 2}}{1-\alpha^{2} \sin ^{2} s} \tag{3.8}
\end{equation*}
$$

where β is any positive constant greater than

$$
\sup h=\frac{1+\alpha^{2} \cos 2 \varepsilon}{2 \alpha \cos \varepsilon\left(1-\alpha^{2} \sin ^{2} \varepsilon\right)^{1 / 2}}
$$

Since $z(s)=z\left(s^{\prime}\right)$ if and only if $s=s^{\prime}, \kappa(s)$ can be regarded as a function of $z . \quad \kappa(z)$ is defined on $(z(-\varepsilon), z(\varepsilon))$ and we may assume, by taking ε small enough, that

$$
\int_{z(-s)}^{z(\varepsilon)} k(z) d z<\frac{\pi}{2} .
$$

We extend $\kappa(z)$ to a non-negative function which is defined on $(-\infty, \infty)$ and satisfies

$$
\begin{equation*}
\int_{-\infty}^{\infty} \kappa(z) d z<\pi \tag{3.9}
\end{equation*}
$$

Then there exists an isometric immersion of R into $\boldsymbol{R}^{2}, \varphi: z \mapsto\left(\varphi_{1}(z), \varphi_{2}(z)\right)$, whose curvature is equal to $\kappa(z)$ at each z. φ does not have any selfintersection (i.e. is an imbedding) due to (3.9). Using φ, we define a map $\Phi: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{4}$ by $\Phi(x, y, z)=\left(x, y, \varphi_{1}(z), \varphi_{2}(z)\right)$. Then Φ is an isometric imbedding of \boldsymbol{R}^{3} into \boldsymbol{R}^{4}. We will show that $\Phi(M)$ is a surface in \boldsymbol{R}^{4} with constant mean curvature and flat normal connection.

Let ξ be a unit normal vector to M in R^{3} and ξ^{\prime} be a unit normal vector to $\Phi\left(\boldsymbol{R}^{3}\right)$ in \boldsymbol{R}^{4}. Let X_{1} be a unit tangent vector to the generating curve $(x(s), z(s))$ and X_{2} be a unit tangent vector to the circle $z=$ const. Then X_{1} and X_{2} are principal vectors of M and hence $d \Phi\left(X_{1}\right)$ and $d \Phi\left(X_{2}\right)$ are principal vectors of $\Phi(M)$ with respect to $d \Phi(\xi) . \quad d \Phi\left(X_{1}\right)$ and $d \Phi\left(X_{2}\right)$ are also principal vectors of $\Phi(M)$ with respect to ξ^{\prime}. Since each normal space of $\Phi(M)$ is spanned by $d \Phi(\xi)$ and $\xi^{\prime}, d \Phi\left(X_{1}\right)$ and $d \Phi\left(X_{2}\right)$ are principal vectors for all normal vectors to $\Phi(M)$ in R^{4}. This implies that the normal connection of $\Phi(M)$ is flat. Let H be the mean curvature vector of $\Phi(M)$. Then

$$
H=h d \Phi(\xi)+\frac{1}{2} \kappa\left(\frac{d z}{d s}\right)^{2} \xi^{\prime}
$$

and from (3.7) and (3.8), we have

$$
|H|^{2}=h^{2}+\frac{1}{4} \kappa^{2}\left(\frac{d z}{d s}\right)^{4}=\beta^{2} .
$$

(ii) If a compact surface in \boldsymbol{R}^{4} with positive (not necessarily constant) Gaussisn curvature has parallel mean curvature vector, the surface must be a round sphere ([6]). However, as we see in the following example, there exists a compact surface in \boldsymbol{R}^{4} with positive Gaussian curvature which has constant mean curvature, but is not a round sphere. This contradicts Theorem 5 on p. 361 of [8]. (A possible source of error in the calculations in [8] might be the formula (4.6) on p. 354 of [8] which is used to give the formula (6.2) in the proof of Theorem 5. The formula (4.6) holds for $\alpha_{j}=4$ only when either M is minimal or M has a parallel mean curvature vector). The method of construction of this example is similar to the one in Remark (i).

Example 2. Let M be a surface of revolution defined by

$$
(s, \theta) \longmapsto(x(s) \cos \theta, x(s) \sin \theta, z(s)) \quad(0 \leq \theta \leq 2 \pi)
$$

where, for technical reasons to be explained below, $x(s)$ and $z(s)$ are required to satisfy the following conditions:
(a) $(x(s), z(s))$ is defined on $\left[-\frac{7}{12} \pi, \frac{7}{12} \pi\right]$
(b) $x\left(\frac{7}{12} \pi\right)=x\left(-\frac{7}{12} \pi\right)=0, z\left(-\frac{7}{12} \pi\right)=-z\left(\frac{7}{12} \pi\right)$
(c) the curvature $k(s)$ of $(x(s), z(s))$ satisfies the following conditions:
(c1) $\kappa(s)=\kappa(-s)$
(c2) $0<\kappa(s)<1$ if $|s|<\frac{\pi}{6}$
(c3) $\kappa(s)=1$ if $\frac{\pi}{6} \leq|s| \leq \frac{7}{12} \pi$
(c4) $\int_{0}^{7 \pi / 12} k(s) d s=\frac{\pi}{2}$
By (c1) and (c4), M becomes a compact surface in R^{4}. By (c2) and (c3), M has a positive Gaussian curvature at every point. Let h be the mean curvature of M. Then h is a function of s only and we have $h(s)=1$ if $\pi / 6 \leq|s| \leq(7 / 12) \pi$ and $h(s)<1$ if $|s|<\pi / 6$. We define a function $\kappa(s)$ by

$$
\kappa(s)=\frac{2\left(1-h(s)^{2}\right)^{1 / 2}}{\left(\frac{d z}{d s}\right)^{2}}
$$

We regard κ as a function of z. Since $\kappa=0$ if $z(\pi / 6) \leq|z| \leq z((7 / 12) \pi)$, we can extend $\kappa(z)$ to a continuous function on R by setting $\kappa(z)=0$ for all z such that $|z|>z((7 / 12) \pi)$. Then there exists an isometric imbedding of R into $R^{2}, \varphi: z \mapsto\left(\varphi_{1}(z), \varphi_{2}(z)\right)$ whose curvature is equal to $\kappa(z)$ at each z. We define a $\operatorname{map} \Phi: \boldsymbol{R}^{3} \rightarrow \boldsymbol{R}^{4}$ by $(x, y, z)=\left(x, y, \varphi_{1}(z), \varphi_{2}(z)\right)$. By a similar argument to Remark (i), we can show that the mean curvature of $\Phi(M) \subset \boldsymbol{R}^{4}$ is constant and the normal connection is flat. Moreover, since we have

$$
\int_{-\infty}^{\infty} \kappa(z) d z<\pi,
$$

φ does not have any self-intersection and $\left.\Phi\right|_{M}$ is an imbedding.
(iii) If $\operatorname{dim} M \geq 4$ and the codimension is two, then we have the following theorem which is the analogue of Theorem 1. (The case of $\operatorname{dim} M=3$ is open.)

Theorem 3. Let M be a compact Riemanniam manifold of dimension $n \geq 4$ with positive constant sectional curvature $c^{2}>0$ and let $\psi: M \rightarrow \boldsymbol{R}^{n+2}$ be an isometric imbedding. Suppose that the mean curvature is constant. Then $\psi(M)$ is an n-dimensional round sphere in an $(n+1)$-dimensional affine space.

Proof. Since the sectional curvature is positive constant and $\operatorname{dim} M \geq 4$, there exists a global orthonormal frame field $\left(\xi_{1}, \xi_{2}\right)$ of the normal bundle of M such that

$$
\begin{equation*}
A_{\xi_{1}}=-c I \quad \text { and } \quad \operatorname{rank} A_{\xi_{2}} \leq 1 \tag{3.10}
\end{equation*}
$$

where I is the identity transformation of $T M$. (This was found by Henke and Erbacher independently [4], [5].) Let $\lambda=\operatorname{trace} A_{\xi_{2}}$. Then we have

$$
\begin{equation*}
H=c \xi_{1}+\frac{\lambda}{n} \xi_{2} \tag{3.11}
\end{equation*}
$$

Since $|H|^{2}=c^{2}+\lambda^{2} / n^{2}$ is constant, λ is constant.
On the other hand, due to a result obtained by O'Neill [7], there exists at least one point p_{0} on M where ψ is umbilical. Since rank $A_{\xi_{2}} \leq 1$, $A_{\xi_{2}}=0$ at p_{0}. Thus $\lambda=0$ at p_{0} and hence $\lambda \equiv 0$ on M. This implies that ψ is totally umbilical and since M is compact, M is an n-dimensional round sphere in some $\boldsymbol{R}^{n+1} \subset \boldsymbol{R}^{n+2}$.

References

[1] B. Y. Chen and G. D. Ludden, Surfaces with mean curvature vector parallel in the normal bundle, Nagoya Math. J., 47 (1972), 161-167.
[2] B. Y. Chen, On the surface with parallel mean curvature vector, Indiana Univ. Math. J., 22 (1973), 655-666.
[3] -, Geometry of Submanifolds, Marcel Dekker, 1973.
[4] J. Erbacher, Isometric immersions of constant mean curvature and triviality of the normal connection, Nagoya Math. J., 45 (1971), 139-165.
[5] W. Henke, Riemannsche Mannigfaltigkeiten konstanter positiver Krümmung in euklidischen Raumen der Kodimension 2, Math. Ann., 193 (1971), 265-278.
[6] D. A. Hoffmann, Surfaces of constant mean curvature in manifolds of constant curvature, J. Differential Geom., 8 (1973), 161-176.
[7] B. O. O'Neill, Umbilics of constant curvature immersions, Duke Math. J., 32 (1965), 149-159.
[8] S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math., 96 (1974), 346-366.

1-17-13 Jiyugaoka
Meguro-ku, Tokyo 152
Japan

[^0]: Received August 16, 1984.

