K. Enomoto Nagoya Math. J. Vol. 100 (1985), 135-143

UMBILICAL POINTS ON SURFACES IN R^N

KAZUYUKI ENOMOTO

Let $\varphi: M \to \mathbb{R}^N$ be an isometric imbedding of a compact, connected surface M into a Euclidean space \mathbf{R}^{N} . ψ is said to be umbilical at a point p of M if all principal curvatures are equal for any normal direction. It is known that if the Euler characteristic of M is not zero and N = 3, then ψ is umbilical at some point on M. In this paper we study umbilical points of surfaces of higher codimension. In Theorem 1, we show that if M is homeomorphic to either a 2-sphere or a 2-dimensional projective space and if the normal connection of ψ is flat, then ψ is umbilical at some point on M. In Section 2, we consider a surface M whose Gaussian curvature is positive constant. If the surface is compact and N=3, Liebmann's theorem says that it must be a round sphere. However, if $N \geq 4$, the surface is not rigid: For any isometric imbedding Φ of R^3 into $\mathbf{R}^{*} \Phi(S^{2}(\mathbf{r}))$ is a compact surface of constant positive Gaussian curvature $1/r^2$. We use Theorem 1 to show that if the normal connection of ψ is flat and the length of the mean curvature vector of ψ is constant, then $\psi(M)$ is a round sphere in some $\mathbb{R}^3 \subset \mathbb{R}^N$. When N = 4, our conditions on ψ is satisfied if the mean curvature vector is parallel with respect to the normal connection. Our theorem fails if the surface is not compact, while the corresponding theorem holds locally for a surface with parallel mean curvature vector (See Remark (i) in Section 3).

The author wishes to thank Professor Hung-Hsi Wu for his constant encouragement and valuable suggestions.

§1. Preliminaries

Let M be a connected *n*-dimensional C^{∞} Riemannian manifold and let $\psi: M \to \mathbb{R}^N$ be an isometric immersion of M into an N-dimensional Euclidean space \mathbb{R}^N . Let D and \overline{D} denote the covariant differentiations of M and \mathbb{R}^N respectively. Let X, Y be tangent vector fields on M. Then

Received August 16, 1984.

(1.1)
$$\overline{D}_X Y = D_X Y + B(X, Y)$$

where B(X, Y) is the normal component of $\overline{D}_X Y$.

Let ξ be a normal vector field on *M*. We write

(1.2)
$$\overline{D}_X \xi = -A_\xi X + D_X^{\perp} \xi$$

where $A_{\xi}X$ and $D_x^{\perp}\xi$ are the tangential and normal components of $D_x\xi$. Then we have

(1.3)
$$\langle A_{\xi}X, Y \rangle = \langle B(X, Y), \xi \rangle$$

where \langle , \rangle denotes the inner product of $\mathbb{R}^{\mathbb{N}}$. The linear transformation A_{ξ} on the tangent bundle TM is called the *shape operator* of M with respect to ξ . Since A_{ξ} is symmetric, i.e.

(1.4)
$$\langle A_{\xi}X, Y \rangle = \langle X, A_{\xi}Y \rangle,$$

all eigenvalues of A_{ξ} are real. An eigenvalue of A_{ξ} is called a *principal* curvature with respect to ξ . An eigenvector of A_{ξ} is called a *principal* vector with respect to ξ . The mean curvature vector H is defined by

(1.5)
$$H = \frac{1}{n} \operatorname{trace} (B)$$

The length of H is called the *mean curvature*.

Let R and R^{\perp} be the curvature tensors associated with D and D^{\perp} respectively, i.e.

(1.6)
$$R(X, Y)Z = D_X D_Y Z - D_Y D_X Z - D_{[X,Y]} Z$$

(1.7)
$$R^{\perp}(X, Y)\xi = D^{\perp}_{X}D^{\perp}_{Y}\xi - D^{\perp}_{Y}D^{\perp}_{X}\xi - D^{\perp}_{[X,Y]}\xi$$

where X, Y, Z are tangent to M and ξ is normal to M.

Then for any tangent vector fields X, Y, Z, W and normal vector fields ξ , η , we have the following equations:

(1.8)
$$\langle R(X, Y)Z, W \rangle = -\langle B(X, Z), B(Y, W) \rangle + \langle B(Y, Z), B(X, W) \rangle$$

(Gauss equation)

(1.9)
$$\langle R^{\perp}(X, Y)\xi, \eta \rangle = \langle (A_{\xi}A_{\eta} - A_{\eta}A_{\xi})X, Y \rangle$$
 (Ricci equation)

The normal connection D^{\perp} is said to be *flat* if $R^{\perp} = 0$. (1.9) implies that D^{\perp} is flat at $p \in M$ if and only if

136

UMBILICAL POINTS

for any two normal vectors ξ and η at p. Thus if D^{\perp} is flat at $p \in M$, there exists an orthonormal base e_1, \dots, e_n of T_pM such that each e_i $(i = 1, \dots, n)$ is a principal vector with respect to any normal vector at p.

A point p is said to be umbilical with respect to ξ if A_{ξ} is proportional to the identity transformation of T_pM . ψ is said to be umbilical at p if p is umbilical with respect to A_{ξ} for all normal vectors ξ at p. ψ is called totally umbilical if ψ is umbilical at every point of M. It is well known that if ψ is totally umbilical, then $\psi(M)$ is an open subset of either an n-dimensional affine subspace or an n-dimensional round sphere. (See, for instance, [3] for proof.)

§ 2. Umbilical points of surfaces in \mathbb{R}^N

In this section we prove the following theorem.

THEOREM 1. Let M be a compact surface which is homeomorphic to a 2-sphere or a 2-dimensional projective space and let $\psi: M \to \mathbb{R}^N$ be an isometric imbedding. Suppose that the normal connection of ψ is flat. Then ψ is umbilical at some point $p_0 \in M$.

Proof. Suppose that ψ does not have any umbilical point. Then at each point p of M there exists a neighborhood U_p of p and a normal vector field ξ on U_p such that A_{ξ} is not proportional to the identity transformation. We choose each U_p in such a way that U_p is simply connected and for any p and q $U_p \cap U_q$ is either empty or connected. Since M is compact, there exist a finite number of points p_1, \dots, p_k such that $M = U_{p_1} \cup \dots \cup U_{p_k}$. We simply denote U_{p_i} by U_i . Let ξ_i be a normal vector field defined on U_i such that A_{ξ_i} is not proportional to the identity at each point of U_i . At each point of U_i , the eigenvectors of A_{ξ_i} form a pair of lines (i.e. 1-dimensional linear subspaces) in the tangent plane. Since U_i is simply connected, there exist continuous line fields L_1^i and L_2^i on U_i such that at each q in U_i $L_1^i(q)$ and $L_2^i(q)$ contain all eigenvectors of $A_{\xi_i(q)}$.

Suppose $U_i \cap U_j \neq \phi$. Let $q \in U_i \cap U_j$. Since $A_{\xi_i(q)}$ and $A_{\xi_j(q)}$ are not proportional to the identity transformation and the normal connection is flat, all eigenvectors of $A_{\xi_i(q)}$ and $A_{\xi_j(q)}$ coincide. This implies that either (i) $L_1^i(q) = L_1^j(q)$ and $L_2^i(q) = L_2^j(q)$ or (ii) $L_1^i(q) = L_2^j(q)$ and $L_2^i(q) = L_1^j(q)$. Since $U_i \cap U_j$ is simply connected, it follows from the continuity of the

line fields that if (i) (or (ii)) occurs at one point of $U_i \cap U_j$, it must hold for all points of $U_i \cap U_j$. By renaming the line fields if necessary, we may assume that $L_1^i \equiv L_1^i$ and $L_2^i \equiv L_2^j$ on $U_i \cap U_j$. Let $\{U_{i_1}, \dots, U_{i_d}\}$ be a chain of the elements of $\{U_i: i = 1, \dots, k\}$, i.e. a subset of $\{U_i: i = 1, \dots, k\}$ which satisfies $U_{i_t} \cap U_{i_{t+1}} \neq \phi$ for all $t = 1, \dots, s - 1$. Suppose that we obtain a line field $L_1^{i_s}$ on U_{i_s} by the continuation of $L_1^{i_1}$ along the chain. If $U_{i_s} \cap U_{i_1} \neq \phi$, it may well happen that $L_1^{i_s}$ coincides with $L_2^{i_1}$ rather than $L_1^{i_1}$ on $U_{i_s} \cap U_{i_1}$. But in the case when M is simply connected (i.e. homeomorphic to a 2-sphere), it follows from the standard monodromy argument that $L_1^{i_s}$ always coincides with $L_1^{i_1}$. This implies that a global continuous line field L_1 can be defined on M. This is a contradiction because there is no global continuous line field on a 2-sphere. Thus if M is homeomorphic to a 2-sphere, there exists at least one point on Mwhere ψ is umbilical.

Now we consider the case when M is homeomorphic to a 2-dimensional projective space. Suppose that ψ does not have any umbilical point. Then, as we see in the above argument, there exists an open covering $\{U_i: i = 1, \dots, k\}$ of M and continuous line fields L_1^i and L_2^i defined on U_i such that if $U_i \cap U_j
eq \phi$, either $L_1^i \equiv L_2^j$ or $L_1^i \equiv L_2^j$ on $U_i \cap U_j$. Let $ilde{M}$ be the standard double covering of M which is homeomorphic to a 2-sphere and let $\pi: M \to M$ be the projection. Let U_{i1} and U_{i2} be the connected components of $\pi^{-1}(U_i)$. Let $L_1^{i\lambda}$ $(i = 1, \dots, k, \lambda = 1, 2)$ be the unique line field on $U_{i\lambda}$ which satisfies $d\pi(L_1^{i\lambda}) = L_1^i$. In a similar way, a continuous line field $L_2^{i\lambda}$ is defined. Now we have an open covering of \tilde{M} , $\{U_{i\lambda}\}$, and continuous line fields $L_1^{i\lambda}$ and $L_2^{i\lambda}$ on $U_{i\lambda}$. Moreover, if $U_{i\lambda} \cap U_{j\mu} \neq \phi$, we have either $L_1^{i\lambda} \equiv L_1^{j\mu}$ or $L_1^{i\lambda} \equiv L_2^{j\mu}$ on $U_{i\lambda} \cap U_{j\mu}$. Thus, using the standard monodromy argument again, we obtain a global continuous line field on M, which is a contradiction. Therefore, if M is homeomorphic to a 2dimensional projective space, there exists at least one point of M where ψ is umbilical. This completes the proof of Theorem 1.

§ 3. Surfaces in \mathbb{R}^{N} with positive constant curvature and constant mean curvature

In this section we use Theorem 1 to prove the following theorem.

THEOREM 2. Let M be a compact surface with constant Gaussian curvature $c^2 > 0$ and let $\psi: M \to \mathbb{R}^N$ be an isometric imbedding. Suppose that the mean curvature of ψ is constant, i.e. |H| is constant, and the normal

connection is flat. Then $\psi(M)$ is a round 2-sphere in a 3-dimensional affine space $\mathbb{R}^3 \subset \mathbb{R}^N$.

Proof. First we define a function on M by

(3.1)
$$F(p) = |H(p)|^2 - K(p) \quad (p \in M)$$

where H(p) is the mean curvature vector at p and K(p) is the Gaussian curvature of M at p. We prove the following lemma:

LEMMA 3.1. F(p) = 0 if and only if ψ is umbilical at p.

Proof. Let $(\xi_1, \xi_2, \dots, \xi_{N-2})$ be an orthonormal frame of $T_p^{\perp}M$, the normal space of M at p. Using (1.8), we obtain

(3.2)
$$K(p) = \sum_{\alpha=1}^{N-2} \det A_{\xi_{\alpha}}.$$

From (1.5) we have

(3.3)
$$H(p) = \frac{1}{2} \sum_{\alpha=1}^{N-2} (\operatorname{trace} A_{\xi_{\alpha}}) \xi_{\alpha}$$

so that

(3.4)
$$|H(p)|^2 = \frac{1}{4} \sum_{\alpha=1}^{N-2} (\operatorname{trace} A_{\xi_{\alpha}})^2.$$

It follows from (3.2) and (3.4) that

(3.5)
$$F(p) = \frac{1}{4} \sum_{\alpha=1}^{N-2} \{ (\operatorname{trace} A_{\xi_{\alpha}})^2 - 4 \det A_{\xi_{\alpha}} \} .$$

Using elementary linear algebra, we can see that

$$(3.6) \qquad (\operatorname{trace} A_{\xi_{\alpha}})^{2} - 4 \det A_{\xi_{\alpha}} \geq 0$$

and the equality holds if and only if every $A_{\xi_{\alpha}}$ is proportional to the identity transformation. The lemma follows immediately.

Now we return to the proof of Theorem 2. Since M is compact, and the Gaussian curvature is positive, M is homeomorphic to either a 2sphere or a 2-dimensional projective space. Hence, by Theorem 1, ψ is umbilical at some point p_0 . By Lemma 3.1, $F(p_0) = 0$. On the other hand, since both |H| and K are constant on M, F is a constant function on M. Thus F = 0 at every point of M. By Lemma 3.1 again, this implies that ψ is umbilical at every point of M. Since M is compact, $\psi(M)$ is

a round sphere in some 3-dimensional affine space. This completes the proof of Theorem 2.

Remark. (i) If the mean curvature vector is parallel in the normal bundle, i.e. $D^{\perp}H = 0$, then |H| is constant and the normal connection D^{\perp} is flat unless M is either a minimal surface in \mathbb{R}^4 or a minimal surface in S^{N-1} ([2]). In [1], Chen and Ludden proved that if the Gaussian curvature of a surface in \mathbb{R}^4 is positive constant and the mean curvature vector is parallel in the normal bundle, it is an open piece of a round sphere. As we see in the following example, our theorem fails if M is not compact, while the Chen-Ludden theorem holds without global assumptions.

EXAMPLE 1. Let M be a surface of revolution in \mathbb{R}^3 which is obtained by rotating the curve

(3.7)
$$(x(s), z(s)) = \left(\alpha \cos s, \int_0^s [1 - \alpha^2 \sin^2 t]^{1/2} dt\right)$$

around the z-axis where $s \in (-\varepsilon, \varepsilon)$ for some small $\varepsilon > 0$ and α is a positive number. Then M is a surface of constant Gaussian curvature 1 and if $\alpha \neq 1$, M is not totally umbilical. Let h be the mean curvature of M. h is a function of s only, which is given by

$$h=rac{1+lpha^2\cos 2s}{2lpha\cos s(1-lpha^2\sin s)^{_{1/2}}}.$$

Now we define an isometric imbedding of \mathbb{R}^{s} into \mathbb{R}^{t} . First we define a function $\kappa(s)$ by

(3.8)
$$\kappa(s) = \frac{2(\beta^2 - h^2)^{1/2}}{1 - \alpha^2 \sin^2 s}$$

where β is any positive constant greater than

$$\sup h = rac{1+lpha^2\cos 2arepsilon}{2lpha\cosarepsilon(1-lpha^2\sin^2arepsilon)^{1/2}}.$$

Since z(s) = z(s') if and only if s = s', $\kappa(s)$ can be regarded as a function of z. $\kappa(z)$ is defined on $(z(-\varepsilon), z(\varepsilon))$ and we may assume, by taking ε small enough, that

$$\int_{z(-\varepsilon)}^{z(\varepsilon)}\kappa(z)dz < rac{\pi}{2}$$
 .

We extend $\kappa(z)$ to a non-negative function which is defined on $(-\infty, \infty)$ and satisfies

$$(3.9) \qquad \qquad \int_{-\infty}^{\infty} \kappa(z) dz < \pi \; .$$

Then there exists an isometric immersion of \mathbf{R} into \mathbf{R}^2 , $\varphi: z \mapsto (\varphi_1(z), \varphi_2(z))$, whose curvature is equal to $\kappa(z)$ at each z. φ does not have any selfintersection (i.e. is an imbedding) due to (3.9). Using φ , we define a map $\Phi: \mathbf{R}^3 \to \mathbf{R}^4$ by $\Phi(x, y, z) = (x, y, \varphi_1(z), \varphi_2(z))$. Then Φ is an isometric imbedding of \mathbf{R}^3 into \mathbf{R}^4 . We will show that $\Phi(M)$ is a surface in \mathbf{R}^4 with constant mean curvature and flat normal connection.

Let ξ be a unit normal vector to M in \mathbb{R}^3 and ξ' be a unit normal vector to $\Phi(\mathbb{R}^3)$ in \mathbb{R}^4 . Let X_1 be a unit tangent vector to the generating curve (x(s), z(s)) and X_2 be a unit tangent vector to the circle z = const.Then X_1 and X_2 are principal vectors of M and hence $d\Phi(X_1)$ and $d\Phi(X_2)$ are principal vectors of $\Phi(M)$ with respect to $d\Phi(\xi)$. $d\Phi(X_1)$ and $d\Phi(X_2)$ are also principal vectors of $\Phi(M)$ with respect to ξ' . Since each normal space of $\Phi(M)$ is spanned by $d\Phi(\xi)$ and ξ' , $d\Phi(X_1)$ and $d\Phi(X_2)$ are principal vectors for all normal vectors to $\Phi(M)$ in \mathbb{R}^4 . This implies that the normal connection of $\Phi(M)$ is flat. Let H be the mean curvature vector of $\Phi(M)$. Then

$$H=h\,d\varPhi(\xi)+rac{1}{2}\kappa\Bigl(rac{dz}{ds}\Bigr)^{^{2}}\xi^{\prime}$$

and from (3.7) and (3.8), we have

$$|H|^{\scriptscriptstyle 2} = h^{\scriptscriptstyle 2} + rac{1}{4} \, \kappa^{\scriptscriptstyle 2} \Bigl(rac{dz}{ds} \Bigr)^{\scriptscriptstyle 4} = eta^{\scriptscriptstyle 2} \, .$$

(ii) If a compact surface in \mathbb{R}^4 with positive (not necessarily constant) Gaussisn curvature has parallel mean curvature vector, the surface must be a round sphere ([6]). However, as we see in the following example, there exists a compact surface in \mathbb{R}^4 with positive Gaussian curvature which has constant mean curvature, but is not a round sphere. This contradicts Theorem 5 on p. 361 of [8]. (A possible source of error in the calculations in [8] might be the formula (4.6) on p. 354 of [8] which is used to give the formula (6.2) in the proof of Theorem 5. The formula (4.6) holds for $\alpha_j = 4$ only when either M is minimal or M has a parallel mean curvature vector). The method of construction of this example is similar to the one in Remark (i).

EXAMPLE 2. Let M be a surface of revolution defined by

$$(s, \theta) \longmapsto (x(s) \cos \theta, x(s) \sin \theta, z(s)) \quad (0 \le \theta \le 2\pi)$$

where, for technical reasons to be explained below, x(s) and z(s) are required to satisfy the following conditions:

(a)
$$(x(s), z(s))$$
 is defined on $\left[-\frac{7}{12}\pi, \frac{7}{12}\pi\right]$
(b) $x\left(\frac{7}{12}\pi\right) = x\left(-\frac{7}{12}\pi\right) = 0, \ z\left(-\frac{7}{12}\pi\right) = -z\left(\frac{7}{12}\pi\right)$

(c) the curvature $\kappa(s)$ of (x(s), z(s)) satisfies the following conditions: (c1) $\kappa(s) = \kappa(-s)$

(c2)
$$0 < \kappa(s) < 1$$
 if $|s| < \frac{\pi}{6}$
(c3) $\kappa(s) = 1$ if $\frac{\pi}{6} \le |s| \le \frac{7}{12}\pi$

(c4)
$$\int_{0}^{7\pi/12} \kappa(s) ds = \frac{\pi}{2}$$

By (c1) and (c4), M becomes a compact surface in \mathbb{R}^4 . By (c2) and (c3), M has a positive Gaussian curvature at every point. Let h be the mean curvature of M. Then h is a function of s only and we have h(s) = 1 if $\pi/6 \le |s| \le (7/12)\pi$ and h(s) < 1 if $|s| < \pi/6$. We define a function $\kappa(s)$ by

$$\kappa(s) = rac{2(1-h(s)^2)^{1/2}}{\left(rac{dz}{ds}
ight)^2}.$$

We regard κ as a function of z. Since $\kappa = 0$ if $z(\pi/6) \le |z| \le z((7/12)\pi)$, we can extend $\kappa(z)$ to a continuous function on \mathbf{R} by setting $\kappa(z) = 0$ for all z such that $|z| > z((7/12)\pi)$. Then there exists an isometric imbedding of \mathbf{R} into \mathbf{R}^2 , $\varphi: z \mapsto (\varphi_1(z), \varphi_2(z))$ whose curvature is equal to $\kappa(z)$ at each z. We define a map $\Phi: \mathbf{R}^3 \to \mathbf{R}^4$ by $(x, y, z) = (x, y, \varphi_1(z), \varphi_2(z))$. By a similar argument to Remark (i), we can show that the mean curvature of $\Phi(M) \subset \mathbf{R}^4$ is constant and the normal connection is flat. Moreover, since we have

$$\int_{-\infty}^{\infty}\kappa(z)dz<\pi$$
 ,

 φ does not have any self-intersection and $\Phi|_{\mathcal{M}}$ is an imbedding.

(iii) If dim $M \ge 4$ and the codimension is two, then we have the following theorem which is the analogue of Theorem 1. (The case of dim M = 3 is open.)

142

UMBILICAL POINTS

THEOREM 3. Let M be a compact Riemanniam manifold of dimension $n \ge 4$ with positive constant sectional curvature $c^2 > 0$ and let $\psi: M \to \mathbb{R}^{n+2}$ be an isometric imbedding. Suppose that the mean curvature is constant. Then $\psi(M)$ is an n-dimensional round sphere in an (n + 1)-dimensional affine space.

Proof. Since the sectional curvature is positive constant and dim $M \ge 4$, there exists a global orthonormal frame field (ξ_1, ξ_2) of the normal bundle of M such that

where I is the identity transformation of TM. (This was found by Henke and Erbacher independently [4], [5].) Let $\lambda = \operatorname{trace} A_{\varepsilon_2}$. Then we have

$$(3.11) H = c\xi_1 + \frac{\lambda}{n}\xi_2.$$

Since $|H|^2 = c^2 + \lambda^2/n^2$ is constant, λ is constant.

On the other hand, due to a result obtained by O'Neill [7], there exists at least one point p_0 on M where ψ is umbilical. Since rank $A_{\xi_2} \leq 1$, $A_{\xi_2} = 0$ at p_0 . Thus $\lambda = 0$ at p_0 and hence $\lambda \equiv 0$ on M. This implies that ψ is totally umbilical and since M is compact, M is an *n*-dimensional round sphere in some $\mathbb{R}^{n+1} \subset \mathbb{R}^{n+2}$.

References

- B. Y. Chen and G. D. Ludden, Surfaces with mean curvature vector parallel in the normal bundle, Nagoya Math. J., 47 (1972), 161-167.
- B. Y. Chen, On the surface with parallel mean curvature vector, Indiana Univ. Math. J., 22 (1973), 655-666.
- [3] —, Geometry of Submanifolds, Marcel Dekker, 1973.
- [4] J. Erbacher, Isometric immersions of constant mean curvature and triviality of the normal connection, Nagoya Math. J., 45 (1971), 139-165.
- [5] W. Henke, Riemannsche Mannigfaltigkeiten konstanter positiver Krümmung in euklidischen Raumen der Kodimension 2, Math. Ann., 193 (1971), 265–278.
- [6] D. A. Hoffmann, Surfaces of constant mean curvature in manifolds of constant curvature, J. Differential Geom., 8 (1973), 161–176.
- [7] B. O. O'Neill, Umbilics of constant curvature immersions, Duke Math. J., 32 (1965), 149–159.
- [8] S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math., 96 (1974), 346-366.

1-17-13 Jiyugaoka Meguro-ku, Tokyo 152 Japan