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Reinsurance forms can roughly be classified into proportional
and non-proportional. The authors of this paper had planned to
investigate the "efficiency" of two different reinsurance forms, one
from each of these categories. Efficiency is here understood as
reduction in the variance of the annual results of the risk business
achieved per unit of ceded reinsurance risk premium. This investi-
gation may be carried out in full later.

This note will only deal with the interplay between surplus and
excess of loss reinsurance; more specifically the effect of changes in
the volume of surplus cessions on the excess of loss risk premium.

The study came out of a practical Fire Reinsurance rating
problem and will be carried through under very simplified assump-
tions. Thus we will ignore the conflagration hazard and the possi-
bility of a wrongly taxed PML. This means that if amounts above
a PML of M are ceded on a surplus basis the highest loss per event
will be M, and an excess cover above a priority m will never pay
more than M-m per event.

The following notations will be used

R(M) ceded risk premium volume on surplus basis, the PML
retention being M.

TZM{WI) excess of loss risk premium if priority is m and surplus
cessions are made above a PML of M.

Obviously R(oo) = o and 7tm(m) = o and

dR

The volume of risk premiums ceded on surplus and excess basis is

nM{m) + R{M)
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I78 SURPLUS AND EXCESS REINSURANCE

This quantity obviously decreases when M increases, which gives

dR
dM dM dR

This means that an increase in the volume of surplus cessions by
a certain amount will lead to a decrease in the excess risk premium
by a smaller amount. It is easily seen that—drcM/dR decreases when R
increases. Starting from M = 00 (R = 0) the first small volume
of surplus cessions will have the relatively highest reducing effect on iz.

To investigate the behaviour of TZM and the interplay between
•KM and R we introduce the following functions and notations

g(s) —• the frequency function of the PML-size of claimed risks.

S(M) = J g(s)ds.
M

?«(#) — the probability of a claimed amount exceeding x,
given that the PML-size of the claimed risk is s.

1 f X f
y(s) = — - #rfcps(:*:) = ~ <ps{x)dx — the expected damage

0 0

degree, given s.
HM(%) — the probability of a claimed amount for own account

exceeding x, after surplus sessions above PML M.
H{x) = H.{x).

To express HM{%) in terms of g(s) and <p«(#) we have to integrate the
simultaneous density of s and x, -g(s)ds dtps(x), over the shaded
area in figure 1.

This gives

HM(x) = J g(s) 9s(x)ds + J g(s) 9s (^ sj =
X M

= J S(s) <?s{x)ds — j g{s) Us{x) — 9s (^ sU ds =
x M

00

= H(x) - j g(s) (9. (*) - 9s (^ s) j ds (1)
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Fig. I.

The excess of loss risk premium TCM(W) is obtained by integrating
HM(x) (see [1])

TzM{m) = I HM[x)dx = n(m)— TI(M) — I I g(s) Us{x) —

X

M' (2)

where TZ(X) = «.(*) = J

The ceded surplus risk premium volume R(M) is easily found to be

https://doi.org/10.1017/S0515036100010746 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100010746
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R(M) = - j j x 11 ~ ~) dfs(x) g(s)ds = j y(s)(s-M)g{s)ds (3)

Differentiating with regard to M we get

dR (M)

dM
= - J y(s)g(s)ds (4)

We will now consider two particular cases with regard to <ps(x),
the uniform case and the Pareto case. In both cases we start by
finding general expressions for ^M(W) and d^M/dR, i.e. expressions
valid for any choice of g(s). In order to arrive at explicit formulas
that make numerical computations possible, we then consider the
following particular choice of g(s).

The Pareto law

<> (a

will be assumed to describe the distribution of the PML size s of
claimed risks, for that part of the portfolio for which s > a. This
leaves us some freedom to assume various combinations of claims
frequencies and distribution of portfolio according to size for
s > a, and complete freedom in this respect for s < a.

1. The Uniform Case

In this case the damage degree is assumed to be uniformly
x

distributed in the interval [0,1], i.e. <ps(x) = 1 —-•
o

1
The expected damage degree is constant, y(s) = - , and hence

= " I (s-M)g(s)ds

and

dR(M) _
dM ~ ~ •
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X
Introducing <ps(x) = i — - in (i) we get

HM(x) = H(x) - J g(s) [~~^j ds = H(x) ~ ^ H(M) (5)
M

and by integrating

- H(M). (6)

Writing this as
M2—m

we see that the reduction of the excess risk premium due to surplus
cessions above M equals the excess risk premium above M, plus
the expected number of claims above M, multiplied by a factor

zM

We now differentiate TCM(W) with regard to M using

dnlM)
-dW = - H ^

and

dH(M) [Sis),

~dM~~ ~ ~ J "7"
M

We get

dnM(m)
dM

But since
CO BO

H(M) = ( g(s) (1 — —) ds = S(M) — M ! — ds,
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the last factor reduces to S(M), and we get

We thus obtain

" dR(M) V MV ^

We see that in this case diZMJdR does not depend on the function
g(s) but only on the priority m and the retention M — in fact only
on the ratio mjM. It can be shown that d-KMJdR will have this property
as soon as the distribution of the damage degree does not depend
on s, i.e. when <ps(x) can be written as a function only of x/s. The
proof of this will be published later.

a / sN— 1

We now introduce g(s) = - I-) (s> a). To calculate

we need the functions H(x) and n(x).

We get

H(x) = J g(s) 11 —-I ds = —— -̂
x

ffW=Jg(o^=(a+i)
a

(g_i)(g~"1

Inserting this in (5) gives

a / M \ " a + 1 / « + 1
( ^ ^ ^ j ^ ^ ^ - ^ 2 j (9)

We also get

a (M
RIM) = -7 r —

v ; 2 (a — 1) \ a
Adding 2?(M) and ^M{m) gives the following expression for the
total volume of risk premium ceded on surplus and excess basis

a /M"\-a+1 w2

y ^ (10)
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2. The Par do Case

In [2] Benckert and Sternberg investigate whether the distribution
of the damage degree can be described by a Pareto distribution,
modified by concentrating all mass above s discreetly in the point
x = s. They come to the conclusion that this model gives a reason-
ably good fit to empirical data for some classes of fire insurance,
provided that claims below a certain limit are excluded.

Since most fire insurance policies in Sweden nowadays are written
with a deductible, the exclusion of the very smallest claims is not
a serious limitation. In theory the introduction of a deductible
should be taken into account by reducing all claims by the deductible
amount and working with a Pareto distribution with a density
of the type

f(x) = $(x + &)"9'1 over the interval (0, S — b). But, since we
are mainly interested in the large claims where the influence of
the deductible is negligible, we have decided to avoid unnecessary
complications in the formulas by simply excluding claims below
a certain limit. Following Benckert and Sternberg in [2] we take
this limit as the unit of value. We thus arrive at the following
expression for <ps(x)

( x-t, 1 < x < s (p > o)
*) =

' O, X > S

The expected damage degree is then

Qx-t-idx + s.s-t) =

(We assume here and in the following that P ^ 1. The modifications
when p = 1 are self-evident.)

Inserting the expression for <ps(%) in (1) leads to
00

HM(x)=H(x)~ j g(s)

= H(x) - i^J (H(M) - C(M)) 11)
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where

C{M) = J g(s) s~»ds
M

M

Integrating (11) and denoting I —I dx by I(M)
j \ivi 1
m

we get

KM{m) = 7t(») — TZ(M) — I(M) {H{M) — C(M)) (12)

We now differentiate TCM(W) and by noting that

and

d(H(M)—C{M)) p
dM ~ M

we find that

= H(M) — i + j;I (M)) (H(M)—
\ M I j.vx

I R \
(13)

Inserting the expression for y (s) in 7— we get

dR (M) 1
dM

The resulting expression for will hence be

C(M)— p ^-^
M
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[MJ ' ( I 5 )

1 ~C(M)J ~
M

We see that the first factor does not depend on m whereas the
second depends only on mjM. The first factor is obviously always
greater than one. If 8 < 1 (and according to [2] it seems reasonable

to work with values of 8 in the vicinity of 0,5) the ratio ds
\ ) * ^

M

will be a decreasing function of M and, since
s \ - 3

we see that -^— ( — ds<M»~\
(M) J sC(M)

This means that the first factor in — -7— is bounded above by

and for large values of M this quantity is close to one, the more so
the smaller 8 is. We have thus shown that —d-KM/dR will, for large M,
be approximately independent of g(s) and depend only on mjM.

We now introduce g(s) = - l - l (s > a).

We get
H(x) = a* *—«—P

C a."- x—a—P+1 x
n{x) = H(t)dt = = H(x)y ' J W <x + 8 — 1 a + 8 — i W

W = J e,S) S-» 4. L<X x—a—P OL
- — = —
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J s a + i

Inserting in (12) gives

)=A*n)-—^—-H(M)-

Inserting in (15) gives

1 _

I —
a + 1

Tedious but elementary calculations yield

If we add this to TTM(W) the terms containing Mx—P cancel out, and
we get the following expression for the total ceded risk premium
volume

The apparent lack of dimensional consistency in (18) and (19)
is a result of our particular choice of <p»(#). AH terms in TCM(W) have
the dimension 1 — p in m or ilf, but due to the form of y(s), i?(M)
will also contain a term which appears to be dimensionless. If we
had called the lower limit of x b instead of chosing it as our unit,
both -KM and R would have been of dimension one (in a or b).

Numerical examples and conclusions
In order to illustrate the behaviour of TZMIW) we have computed

•KM{m) numerically under the assumption that g(s) is of the Pareto
type with a = 2. The results are given in table 1 for the uniform
case and in table 2a for the Pareto case with p = 0.5.
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When m and M are chosen as multiples of a the computational
work involved is very slight. After computing R(M) and Tz(m) it
only remains to compute the product of two factors, the first
depending on M and the second on m (see (10) and (19)). It is
further seen from (10) that in the uniform case the parameter a
simply plays the role of norming constant. In the Pareto case,
however, this is not so, since the damage degree distribution
depends on s. It is therefore necessary to fix the value of a and in
the tables 1 and 2a the value a = 400 has been used.

Table 1
). Uniform case.

\ M
\SR(M)

m \

a
2a

3a

4a

a

200

0

2fl

100

42

0

(<x

3«
67

69
10

0

= 2. a

4a

5°

84

21

4
0

= 400)

5«
40

94
29

9
2

0

10a

20

"3

47
25

14
8

20a

10

123

57
35

23

17

50a

4

129

62

40

29

23

1 ooa

2

131

65
42

31

25

00

0

133
67

44
33
27

One sees immediately that the values in table 1 are much larger
than the corresponding values in tables 2a. This is a natural
consequence of the difference in expected damage degree. In the
uniform case y(s) is 50% whereas in the Pareto case, with p = 0.5,
y(s) is less than 10% for s > 400. To facilitate comparison of

Table 2
•nm(m). Pareto Case.

(a = 2. a = 400. p = 0,5)
a. Absolute values.

\ M
\R(M)

m \

a
2a

3<*
4a

5«

a

21.0

0

2a

7.46

7.8
0

3«
4.07

IO.I

1.87

0

4a

2.65

11.1

2-75

0.77

0

5«
1.90

11.7

3.26

1.21

0.40

0

10a

0.671

12.7

4-!5

2.03

i-i5

0.70

20a

0.238

J3-1

4-5°
2.36

I.47

I.OO

50a

O.O6O

13-3

4.66

2.51

1.6l

1.14

100a

0.002

13-3

4-7i

2-57
1.67

1.19

00

0

13-3

4.71

2-57
1.67

1.19
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b. Normed values.

\ M
\R(M)

m \
a

•za

3«
4a

a

2 0 0

0

2 a

7 1

74
0

3«

39

96

18

0

4a

2 5

106

2 6

7
0

5«
18

1 1 2

3 1

1 2

4
0

10a

6

1 2 1

4 0

19

1 1

7

2 0 a

2

125

43
2 2

1 0

5°a
0.6

126

44
2 4

15
1 1

1 ooa

0.02

127

45
2 4
1 6

1 1

00

0

127

45
2 4
1 6

11

relative sizes we have therefore normed the values for the Pareto
case, by putting R(a) = 200 and changing all other values in
table 2a in proportion. The results are given in table 2b.

A comparison of table 1 with 2b can now be said to show the
effect of the "decreasing damage degree" in the Pareto case.
R(M) and n(tn) decrease more rapidly than in the uniform case
and 7tAf(w) approaches its limit n(m) quicker.

Table 3
d-rtM

m
~M

0.005
0.01
0.05

O.I

0 . 2

0 .3
0 .4

0 .5
0 .6
0 .7
0 .8
0 . 9

1 . 0

Uniform Case

1.000
1.000
0.998

0.990
0.960
0.910
0.840
0.750

0.640
0.510
0.360
0.190
0.000

Pareto Case
(P = 0.5; M = 00)

0.965
0.950
0.888
0.842

0.776
0.726
0.684
0.646

0.613
0.582

0-553
0.526
0.500

The behaviour of — diZMJdR is illustrated in table 3 and figure 2.
Table 3 gives values of — dizMJdR in the uniform case and asymptotic
values of — d-KMJdR (i.e. the second factor in (15)) in the Pareto case
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with p = 0.5. The same functions are shown in graphic form in
figure 2.

Figure 2.
I. Uniform Case II. Pareto Case (|3 =0 .5 ; M =00)

Table 4, finally, gives values of the "correction factor for finite
M", i.e. the first factor in (17) computed for « = 2 and (3 = 0.5.
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Table 4
Pareto Case. Correction factor for finite M.

(a = 2, p = 0.5)

IOO

200

300

400

M

i-°43
1.030

1.025

1.021

800

1200

1600

2000

M

1.015

1.012

1.010

1.009

M

4000

8000

20000

40000

1.007

1.005

1.003

1.002
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