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The Standard Model

The 1970s witnessed the emergence of what has become the Standard Model

(SM) of particle physics. The SM describes the interactions of quarks and lep-

tons that are the constituents of all matter that we know about. The strong

interactions are described by quantum chromodynamics (QCD) while the elec-

tromagnetic and the weak interactions have been synthesized into a single elec-

troweak framework. This theory has proven to be extremely successful in de-

scribing a tremendous variety of experimental data ranging over many decades

of energy. The discovery of neutral currents in the 1970s followed by the direct

observation of the W and Z bosons at the CERN Sp p̄S collider in the early

1980s spectacularly confirmed the ideas underlying the electroweak framework.

Since then, precision measurements of the properties of the W and Z bosons

at both e+e− and hadron colliders have allowed a test of electroweak theory at

the 10−3 level. QCD has been tested in the perturbative regime in hard collision

processes that result in the breakup of the colliding hadrons. In addition, lattice

gauge calculations allow physicists to test non-perturbative QCD via predictions

for the observed properties of hadrons for which there is a wealth of experimental

information.

1.1 Gauge invariance

One of the most important lessons that we have learned from the SM is that

dynamics arises from a symmetry principle. If we require the Lagrangian density

to be invariant under local gauge transformations, we are forced to introduce a

set of gauge potentials with couplings to elementary scalar and fermion matter

fields that, apart from an overall scale, are completely determined by symmetry

principles. The most familiar example of such a field theory is the electrodynamics

of Dirac fermions or complex scalars, where the invariance of the Lagrangian under
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2 The Standard Model

spacetime-dependent phase transformations,

ψ(x) → eiqψα(x)ψ(x),

or

φ(x) → eiqφα(x)φ(x),

requires us to introduce the vector potential Aμ, with a coupling given by,

L = iψ̄γμ Dμψ − mψ̄ψ − 1

4
Fμν Fμν, (1.1a)

or

L = (Dμφ)∗(Dμφ) − m2φ∗φ − 1

4
Fμν Fμν. (1.1b)

Here, Dμ is the gauge covariant derivative given by Dμ = ∂μ + iqψ/φ Aμ(x), Fμν =
∂μ Aν − ∂ν Aμ and qψ/φ is any real number identified with the charge of the field. It

is easy to check that if, in addition to the local phase transformation of the fields ψ

and φ, the vector potential transforms inhomogeneously as

Aμ(x) → A′
μ(x) = Aμ(x) − ∂μα(x),

the Lagrangians of Eq. (1.1a) and Eq. (1.1b) will be invariant under the set of local

gauge transformations. The phase transformations of the fermion or scalar “matter”

fields form the group U (1). We will thus regard electrodynamics as a gauge theory

based on the group U (1), which is an Abelian group – i.e. its elements commute

with one another. We stress two features of these Lagrangians.

� The coupling of the vector potential (identified with the photon field when the

theory is quantized) to matter fields is given by the “minimal coupling principle”

where the ordinary derivative is replaced by the gauge-covariant derivative. For

fermionic matter, this gives the familiar fermion–antifermion–photon “vector”

coupling (proportional to the charge qψ ), while in the case of scalar matter, we

have both a three-point derivative coupling to the photon proportional to the

charge qφ and a four-point non-derivative scalar–scalar–photon–photon coupling

proportional to q2
φ . The point to be made is that the form of the interactions of

the photons with matter is completely fixed by the requirement of local gauge
invariance.

� The photon field is massless because a mass term 1
2
m2

γ Aμ Aμ would not be locally

gauge invariant. The matter fields may, however, be massive.

Yang and Mills, and independently Shaw (and later Utiyama), generalized this

idea to more complicated transformations of matter fields that form a non-Abelian

group rather than the group U (1). The construction of these Yang–Mills gauge
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theories is given in many texts and will not be repeated here. Instead of a single

photon field, we now have several gauge fields (equal to the number of generators)

in the adjoint representation of the gauge group. Matter and gauge fields (VAμ) are

again “minimally coupled” via the prescription

∂μ → Dμ = ∂μ + igtAVAμ,

where tA is the matrix representation of the group generator in the representation to

which the matter field belongs (for example, if the gauge group is SU (2) with matter

forming SU (2) doublets, tA = 1
2
σA, where σA (A = 1, 2, 3) are the Pauli matrices),

and g is a universal (gauge) coupling constant. Again, as before, there can be no

mass term for the gauge potentials, and the interaction of matter and gauge fields

is fixed by the local gauge symmetry. There are some important distinctions from

the Abelian case.

� The gauge field strength FAμν = ∂μVAν − ∂νVAμ − g f ABC VBμVCν , where f ABC

are the structure constants of the gauge group, contains a new term in addition

to the curl that is present in electromagnetism. This results in self-interactions of

the non-Abelian gauge fields, and has important physical consequences such as

the well-known asymptotic freedom of QCD.
� The “charge” factor in the minimal coupling principle for the non-Abelian case

is replaced by g × tA. As a result, for simple groups, the coupling of matter to

gauge bosons is determined to be the universal coupling g times a determined

group theory factor. Thus the gauge boson couplings to matter are considerably

more restrictive than in the U (1) case where the charge q was any real number.

In particular, the ratio of charges in the U (1) case need not be a rational number.

1.2 Spontaneous symmetry breaking

We are familiar with the fact that the symmetries of the Hamiltonian (or the symme-

tries of the equations of motion) do not coincide with the symmetries of the solutions

of these equations. For instance, Newton’s laws governing the gravitational force

between the Earth and the Sun are rotationally symmetric, yet the motion of the

Earth around the Sun (i.e. a solution to the rotationally invariant equations of mo-

tion) is confined to a plane. Moreover, the orbit of the Earth, in general, is elliptical,

and not even invariant under rotations about a single axis. This is also true in quan-

tum theory. The p, d, f . . . orbitals of the hydrogen atom are rotationally variant

solutions of the rotationally invariant Schrödinger equation.

What then does it mean for a Hamiltonian to be invariant under some symmetry

transformation? These symmetries do not reflect themselves as symmetries of the

solutions to the corresponding equations of motion. What is true, however, is that

given a solution to the equations of motion, then we can find other solutions with
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the same energy by acting on the known solution by the symmetry transformation:

for the example of the Earth’s orbit that we considered, orbits where this ellipse

is differently oriented (but with the Sun still at the focus) correspond to allowed

motions and have the same total energy as the original orbit. If, however, the solution

that we found itself happens to be invariant under the symmetry transformation,

new solutions cannot be generated in this way.

In quantum field theory, we are especially interested in the symmetries of the

ground state of the system, since it is the excitations of the ground state that are

identified as particles. If, however, a ground state is not invariant under a symmetry

transformation, we know there must be another solution with the same energy; i.e.

the ground state must be degenerate. If the symmetry transformation that leaves

the equations of motion invariant is labeled by a continuous parameter, in general

there will be a continuous infinity of ground states. Which one should we choose to

build the spectrum of excitations upon? The answer is that it does not matter. It

is, however, important to note that once we make this choice, and express the

Hamiltonian (or the Lagrangian) in terms of fields whose quanta correspond to

excitations about any one particular ground state, the original symmetry of the

action is no longer manifest. The underlying symmetry is hidden, and is (perhaps

misleadingly) generally referred to as being spontaneously broken.

Although the symmetry is not really broken, it will not be obvious to an ob-

server doing experiments with particles that are excitations of one of the many

ground states of the theory. This is not to say that the underlying symmetry has no

experimental implications. For instance, in a renormalizable theory, all coupling

constant relationships for dimension four operators implied by the symmetry are

preserved even when this symmetry may be spontaneously broken. It is this feature

that gives us the universality of gauge interactions even though the gauge symmetry

is spontaneously broken. Relationships between lower dimensional operators can,

however, be modified by spontaneous symmetry breaking. A familiar example of

this is the fact that gauge bosons may acquire mass via the Higgs mechanism even

though, as we have seen, the explicit inclusion of such a mass term is forbidden by

gauge invariance. Indeed our interest in gauge theories with spontaneous symmetry

breaking stems mainly from this single observation, which allows the construction

of gauge theories where (some of) the gauge bosons acquire mass, resulting in

short-range forces as required by phenomenology.

We assume that the reader is sufficiently familiar with the physics of spontaneous

symmetry breaking which is discussed in many excellent text books, so that we will

not describe the Goldstone and Higgs phenomena here. Instead, we confine our

discussion to some very general features of symmetry and spontaneous symmetry

breaking. Our purpose is mainly to illustrate that these familiar considerations also

apply to supersymmetry.
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We begin by considering the action of a symmetry transformation (which, by

definition, leaves the equations of motion invariant) on a state. This can be written

as,

|ψ〉 → |ψ ′〉 = eiαQ|ψ〉, (1.2)

where Q is the generator of the transformation and α is a real parameter. The

symmetry in question may be a spacetime symmetry in which case Q would be

one of the generators of the Poincaré group, or it may be an internal symmetry. In

general, we get a new state. As we have mentioned, the action of this transformation

on the ground state is especially important: the symmetry is spontaneously broken,

unless

eiαQ|0〉 = |0〉, (1.3a)

or equivalently,

Q|0〉 = 0. (1.3b)

The symmetry transformation changes the dynamical variables (which are operators

O acting on the states) as,

O′ = eiαQOe−iαQ ≈ O + iα[Q,O], (1.4)

where the last equality holds for an infinitesimal transformation. We thus see that

in order for a symmetry not to be spontaneously broken, we must have

〈0|δO|0〉 ≡ iα〈0|[Q,O]|0〉 = 0, (1.5)

where δO is the change in O under the (infinitesimal) symmetry transformation.

Of course, δO is itself a dynamical variable.

In quantum field theory,1 the field operators are the dynamical variables O. In

this case, as we have just seen, the vacuum expectation value (VEV) of some (pos-

sibly composite) field operator acts as the order parameter for symmetry breaking.

In order that Poincaré invariance not be spontaneously broken, only spin zero field

operators may acquire a VEV. If this is to result in the spontaneous breaking of a

symmetry generated by Q, then the field operator in question must transform non-

trivially under this symmetry. In the SM one is led to introduce a weak isodoublet

of spin zero fields that acquires a VEV and results in the spontaneous breaking of

1 In this case, the operator Q is obtained as the space integral of the time component of a Noether current. We
will not enter into discussions as to whether the integral is defined or whether we necessarily have to discuss
these issues in terms of densities. We will merely state that as long as we refer only to commutator brackets of
Q with some dynamical variable, we appear to be safe.
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electroweak gauge symmetry. We will see in Chapter 7 that these general consider-

ations apply to supersymmetry, so that at least in this sense supersymmetry is not

different from other familiar symmetries.

1.3 Brief review of the Standard Model

The SM is a non-Abelian Yang–Mills type gauge theory based on the group

SU (3)C × SU (2)L × U (1)Y, with SU (2)L × U (1)Y spontaneously broken to

U (1)em. Color SU (3)C is assumed to be unbroken.

1.3.1 QCD

The SU (3)C gauge bosons are the gluons and the resulting gauge theory is QCD.

Quarks are assigned to the fundamental 3 representation. Thus antiquarks are as-

signed to the conjugate 3∗ representation. All other particles are SU (3)C singlets,

and do not directly couple to the gluons. The QCD Lagrangian is given by

LQCD = −1

4
G AμνGμν

A +
∑

i=flavors

q̄i (i 	D − mi )qi (1.6)

where Gμν A = ∂μG Aν − ∂νG Aμ − g f ABC G BμGCν , Dμ = ∂μ + igs
λA
2

G Aμ and qi

contains a color triplet of quarks of flavor i . Quantization of the theory is possible

if appropriate gauge fixing terms are added to the QCD Lagrangian.

The QCD couplings of matter fermions with the gluons can now be extracted by

expanding the QCD Lagrangian. The self-interactions of the gluons are completely

fixed by gauge invariance. The interaction Lagrangian reads,

LQCD 
 −gs
∑

i q̄iγ
μ λA

2
G Aμqi + 1

2
gs f ABC (∂μG Aν − ∂νG Aμ)Gμ

B Gν
C

− 1
4
g2

s f ABC f AB ′C ′ G BμGCνGμ

B ′ Gν
C ′ . (1.7)

A summation over the repeated color indices A, B. . . is implied, and the sum in the

first term is again over all quark flavors.

1.3.2 The electroweak model

In order to allow a chiral structure for the weak interactions,2 the left- and right-

handed components of quark and lepton fields are assigned to different representa-

tions of the electroweak gauge group SU (2)L × U (1)Y. The SU (3)C × SU (2)L ×
U (1)Y assignment for the matter fields of the first generation of quarks and leptons

2 The QCD and QED couplings of fermions are vectorial because their left- and right-chiral components are
assumed to have the same charge.
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Table 1.1 The matter and Higgs boson field
content of the Standard Model along with the

gauge quantum numbers.

Field SU (3)C SU (2)L U (1)Y

L =
(

νL

eL

)

1 2 −1

eR 1 1 −2

Q =
(

uL

dL

)

3 2 1
3

uR 3 1 4
3

dR 3 1 − 2
3

φ =
(

φ+
φ0

)

1 2 1

is shown in Table 1.1. The other generations are copies of this in that they have the

same pattern of quantum numbers.

We should mention that we could equally well have written the SM field content

solely in terms of left-handed fermion fields. In that case, instead of the right-handed

eR, uR and dR, we can work with their charge conjugates, (eR)c, (uR)c, and (dR)c,

which are left-handed fields that have opposite hypercharge assignments from those

shown in Table 1.1. Needless to say, these charge-conjugated quark fields would

transform according to the 3∗ representation of SU (3)C. This way of writing the

field content of the SM will be useful when we consider the supersymmetrization

of the SM.

The electroweak Lagrangian is given by

LEW = Lgauge + Lmatter + LHiggs + LYukawa, (1.8)

where

Lgauge = −1

4
WAμνW μν

A − 1

4
Bμν Bμν, (1.9)

Lmatter =
∑

generations

[
iL̄ 	DL + iQ̄ 	DQ + iūR 	DuR + id̄R 	DdR + iēR 	DeR

]
, (1.10)

LHiggs = |Dμφ|2 + μ2φ†φ − λ(φ†φ)2, (1.11)
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and

LYukawa =
∑

generations

[

−λe L̄ · φeR − λd Q̄ · φdR − λuε
ab Q̄aφ

†
buR + h.c.

]

, (1.12)

where the Ds are appropriate covariant derivatives for each matter multiplet, and

εab is the completely antisymmetric SU (2) tensor with ε12 = 1.

The interaction Lagrangian for the electroweak theory is more complicated since

the SU (2)L × U (1)Y symmetry is assumed to be spontaneously broken to U (1)em.

The electroweak symmetry breaking sector of the SM is particularly simple, and

consists of a single complex SU (2)L doublet φ of spin zero fields with gauge

quantum numbers shown in Table 1.1. The field φ acquires a VEV signaling the

spontaneous breakdown of electroweak symmetry. This VEV is left invariant by

one combination of SU (2)L and U (1)Y generators which generates a different U (1)

group identified as U (1)em. The corresponding linear combination of gauge fields

remains massless and is identified as the photon,

Aμ = sin θWW3μ + cos θW Bμ (1.13)

with sin θW = g′/
√

g2 + g′2 and cos θW = g/
√

g2 + g′2, while all other gauge

fields acquire mass via the Higgs mechanism. The physical particles in the bosonic

sector of the SM are: the photon, a pair of charged massive spin 1 bosons

W ±

W ±
μ = (W1μ ∓ iW2μ)/

√
2, (1.14)

a massive spin 1 neutral boson Z0

Z0
μ = − cos θWW3μ + sin θW Bμ, (1.15)

and finally, one neutral scalar boson HSM, the Higgs boson, which is left over as

the relic of spontaneous symmetry breaking. In order to establish our notation,

and also for the convenience of the reader, we list the interactions of the physical

particles of the SM that we will use later when we discuss phenomenological

issues.

The interactions of quarks and leptons with gauge bosons can, as usual, be

worked out from the minimal coupling prescription discussed above, and simply

rewriting the SU (2)L × U (1)Y gauge fields in terms of the mass eigenstate photon,

W ±, and Z0 fields. For the electroweak gauge couplings of matter we find,

Lneutral = −e
∑

f

q f f̄ γ μ f Aμ + e
∑

f

f̄ γ μ(α f + β f γ5) f Zμ, (1.16a)
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Table 1.2 The constants α f and β f that
appear in Eq. (1.16a). The couplings are
independent of the fermion generation.

Here t ≡ tan θW and c ≡ cot θW.

f q f α f β f

� −1 1
4
(3t − c) 1

4
(t + c)

ν� 0 1
4
(t + c) − 1

4
(t + c)

u 2
3

− 5
12

t + 1
4
c − 1

4
(t + c)

d − 1
3

1
12

t − 1
4
c 1

4
(t + c)

and

Lcharged = − g√
2

(

ūγ μ 1 − γ5

2
VKMdW +

μ + ν̄γ μ 1 − γ5

2
�W +

μ + h.c.

)

. (1.16b)

Here g is the SU (2)L gauge coupling, and e ≡ g sin θW is the electromagnetic

coupling. The weak mixing angle θW is given in terms of g and the weak hypercharge

coupling g′ by g′ ≡ g tan θW. The constants α f and β f that appear in Eq. (1.16a)

are listed in Table 1.2. In Eq. (1.16b), VKM is the Kobayashi–Maskawa matrix that

arises because the weak interaction quark eigenstates and the corresponding mass

eigenstates do not coincide. It should also be understood that u and d in Eq. (1.16b)

contain all three generations of up- and down-type quarks, respectively, with matrix

multiplication implied over the generation indices.

Exercise Verify that the gauge interactions in Eq. (1.16a) are reproduced when we
replace the right-handed fermions with (Ec)L, (U c)L, and (Dc)L in our assignment
of quantum numbers for the fundamental fields. We use capital letters to denote
these fields only to match the notation that we will use later, but here (Ec)L is just
left-handed SU (2) singlet positron field, (eR)c, and likewise for (U c)L and (Dc)L.

The couplings of the Higgs boson to the gauge bosons are given by,3

LH V V = gMW HSM(W +
μ W μ− + 1

2
sec2 θW ZμZμ) (1.17a)

and

LH H V V = g2

4
(W +

μ W μ− + 1
2

sec2 θW ZμZμ)H 2
SM, (1.17b)

3 We write all interactions in the unitary gauge where there are no unphysical fields.
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while the self-interactions of the SM Higgs boson are given in terms of its mass

m HSM
=

√
−2μ2 by,

LH = −gm2
HSM

4MW

H 3
SM − g2m2

HSM

32M2
W

H 4
SM. (1.18)

The electroweak vector bosons also have self-interactions with the couplings given

by,

LW W V = −ig
[
W +

μνW μ− − W −
μνW μ+]

(Aν sin θW − Z ν cos θW)

− igW −
ν W +

μ (Aμν sin θW − Zμν cos θW), (1.19a)

and

LW W V V = −g2

4

{[
2W +

μ W μ− + (Aμ sin θW − Zμ cos θW)2
]2

− [
W +

μ W −
ν + W +

ν W −
μ + (Aμ sin θW − Zμ cos θW)

× (Aν sin θW − Zν cos θW)
]2

}

. (1.19b)

In Eq. (1.19a), Aμν = ∂μ Aν − ∂ν Aμ, and likewise for Zμν and Wμν .

Since the two chiralities of matter fermions belong to different representations of

SU (2)L × U (1)Y, it is not possible to include fermion mass terms without explicitly

breaking gauge invariance. As for electroweak gauge bosons, these masses are also

generated when electroweak symmetry is spontaneously broken. Fortunately, one

does not have to introduce additional fields for this purpose. The scalar doublet φ

in Table 1.1 (or its charge conjugate) has gauge invariant, renormalizable Yukawa

interactions of the form Q̄φdR or L̄φ�R (Q̄φcuR) to down-type (up-type) fermions,

which acquire mass when the field acquires a VEV. These Yukawa interactions result

in a scalar coupling of the Higgs boson HSM to SM fermions that is proportional to

the corresponding fermion mass, and is given by,

LYukawa = −
∑

i

λ fi√
2

f̄ i fi HSM, (1.20)

where λ fi = gm fi√
2MW

. The sum extends over all flavors of quarks and leptons. Notice

that the Yukawa couplings of all but the top quark in Eq. (1.20) are much smaller

than all the gauge couplings.
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