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Abstract

Let k be a field and V the affine threefold in A4
k defined by xmy = F (x, z, t), m > 2.

In this paper, we show that V ∼= A3
k if and only if f(z, t) := F (0, z, t) is a coordinate

of k[z, t]. In particular, when k is a field of positive characteristic and f defines a
non-trivial line in the affine plane A2

k (we shall call such a V as an Asanuma threefold),
then V � A3

k although V × A1
k
∼= A4

k, thereby providing a family of counter-examples
to Zariski’s cancellation conjecture for the affine 3-space in positive characteristic. Our
main result also proves a special case of the embedding conjecture of Abhyankar–Sathaye
in arbitrary characteristic.

1. Introduction

Let S[n] denote a polynomial ring in n variables over a ring S. Let k be a field of characteristic
p(>0) and R = k[X,Y, Z, T ]/(XmY + Zp

e
+ T + T sp), where m, e, s are positive integers such

that pe - sp and sp - pe. In [Asa87], Asanuma constructed the above threefold and proved the
following properties:

(i) R[1] ∼=k[x] k[x][3] ∼=k k
[4], where x is the image of X in R;

(ii) R �k[x] k[x][2]; and

(iii) R⊗k[x] k(p) ∼= k(p)[2] ∀p ∈ Spec(k[x]).

Originally Asanuma constructed this example as an illustration of a non-trivial A2-fibration
(defined in § 2) over a PID. The example showed that the theorem of Sathaye [Sat83] establishing
that any A2-fibration over a PID S containing Q (the field of rational numbers) must be
isomorphic to S[2] does not extend to the case Q * S.

The example was soon to acquire a wider significance. In a subsequent paper [Asa94, Theorem
2.2], Asanuma used the above example to construct non-linearizable algebraic torus actions on
Ank over any infinite field k of positive characteristic when n > 4. He then asked the following
question:

Question. Is R ∼=k k
[3]?

Recall that Zariski’s cancellation problem asks: if V is an affine variety over a field k such that
V×A1

k
∼= An+1

k , does it follow that V ∼= Ank? It was known that, for n 6 2, Zariski’s cancellation
problem has an affirmative answer over any field k. This was shown by Abhyankar, Eakin and
Heinzer [AEH72] for the case n = 1 (quoted in § 2 as Corollary 2.5), Fujita [Fuj79] and Miyanishi
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and Sugie [MS80] for the case n = 2 and ch k = 0, and Russell [Rus81] for the case n = 2 and
ch k > 0.

Subsequently, Asanuma observed [Asa94, Remark 2.3] that if the above ring R is not
isomorphic to k[3] then Zariski’s cancellation problem for the affine space A3

k has a negative
solution for positive characteristic; and if R is isomorphic to k[3] then the linearisation problem
for the affine space A3

k has a negative solution for positive characteristic. This dichotomy has
been popularized by Russell as Asanuma’s dilemma (cf. [FR05, Problem 2, p. 9]). Recently, the
author showed in [Gup14] that Asanuma’s threefold R is not isomorphic to k[3] when m > 2, thus
showing that Zariski’s cancellation problem does not hold for the affine 3-space A3

k in positive
characteristic.

Now recall that over any field k of positive characteristic p, there exist non-trivial lines in k[2],
i.e., there exists f(Z, T ) ∈ k[Z, T ] satisfying k[Z, T ]/(f) ∼= k[1] but k[Z, T ] 6= k[f ][1]. Examples
of non-trivial lines have been given by Segre [Seg56] and Nagata [Nag72]. An example of a
Segre–Nagata non-trivial line is the polynomial f(Z, T ) = Zp

e
+ T + T sp, where pe - sp and

sp - pe. A recent article of Ganong [Gan11] gives a nice overview on such non-trivial lines (called
‘exotic lines’ by Ganong).

Thus Asanuma’s threefold is of the form R = k[X,Y, Z, T ]/(XmY + f(Z, T )), where f is the
above-mentioned Segre–Nagata non-trivial line. After receiving a preprint of the paper [Gup14],
Russell asked the author to consider the more general class of rings A = k[X,Y, Z, T ]/(XmY −f),
where f ∈ k[Z, T ] is any non-trivial line, and examine whether such rings are necessarily non-
trivial (i.e., not isomorphic to k[3]).

This paper, following on from [Gup14], answers Russell’s question in the affirmative form> 2.
In fact, in § 3, we establish the following result which is independent of the characteristic of the
field k (Theorem 3.11).

Theorem A. Let k be a field of any characteristic and A an integral domain defined by

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1.

Set f(Z, T ) := F (0, Z, T ) and G := XmY − F (X,Z, T ). Then the following statements are
equivalent.

(i) f(Z, T ) is a variable in k[Z, T ].

(ii) A ∼=k[x] k[x][2], where x denotes the image of X in A.

(iii) A ∼=k k
[3].

(iv) G is a variable in k[X,Y, Z, T ].

(v) G is a variable in k[X,Y, Z, T ] along with X.

Over a field k of positive characteristic, the implication (iii) ⇒ (i) will answer Russell’s
question (Theorem 4.3). Criterion (i) also provides a general framework for understanding the
non-triviality of the Russell–Koras threefold defined by x2y + x + z2 + t3 = 0 over a field
of any characteristic. The non-triviality of the Russell–Koras threefold was first proved by
Makar-Limanov [Mak96] over a field of characteristic zero, and extended to arbitrary fields
by Crachiola [Cra05]. When k = C (the field of complex numbers), the implications (iii) ⇒ (i)
and (iii) =⇒ (v) also follow from results of Kaliman [Kal02] and Kaliman et al. [KVZ04],
respectively. Our proof is purely algebraic and valid for any characteristic. The implication
(iii) ⇒ (iv) establishes a special case of the Abhyankar–Sathaye embedding conjecture in
arbitrary characteristic (see Remark 3.12). We mention here that interest in the rings defined by
xmy = F (x, z, t) goes back to the 1970s (cf. [VD74]).
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It can be seen that the ring A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )), where m > 2, is an
A2-fibration over k[x] if and only if f(Z, T ) := F (0, Z, T ) is a line in k[Z, T ] (cf. Lemma 3.2). If
f(Z, T ) is a trivial line (i.e., a variable) then, by Theorem A, A ∼=k k

[3]. In § 4, we examine a few
properties of the ring A when f(Z, T ) is a non-trivial line in k[Z, T ]. We shall see that A[1] ∼=k k

[4]

although A �k k[3] (Theorems 4.2 and 4.3). We then compute the Derksen invariant and the
Makar-Limanov invariant of the ring A (Lemma 4.6) and give a characterization of Autk(A)
(Propositions 4.9 and 4.10). Finally, we show (Theorem 4.11) that if n 6= m, or if g and f are
inequivalent non-trivial lines in k[Z, T ] (i.e., if there does not exist any θ ∈ Autk(k[Z, T ]) such
that θ(f) = g), then k[X,Y, Z, T ]/(XmY − f(Z, T )) � k[X,Y, Z, T ]/(XnY − g(Z, T )), although
the two rings are stably isomorphic. Thus we have an infinite family of non-isomorphic rings
which are counter-examples to Zariski’s cancellation conjecture, each of them being a non-trivial
A2-fibration over k[1].

2. Preliminaries

Throughout the paper, all rings will be assumed to be commutative.

Notation. Recall that S[n] denotes a polynomial ring in n variables over a ring S. Thus, for
a subring S of a ring B, the notation B = S[n] will mean that B = S[T1, T2, . . . , Tn], where
T1, . . . , Tn are algebraically independent over S.

For a ring S, the notation S∗ will denote the group of units of S.
For a prime ideal p of S, k(p) denotes the field Sp/pSp.

Definition. A subring S of an integral domain B is said to be factorially closed in B if for
any non-zero a, b ∈ B, the condition ab ∈ S implies both a ∈ S and b ∈ S. A factorially closed
subring of B is also known as an inert subring of B.

It is easy to see that if S is factorially closed in B and B is a UFD then S is also a UFD.

Definition. Let k be a field and A be a k-algebra. A is said to be geometrically factorial over
k if A⊗k k̃ is a UFD for any algebraic extension k̃ of k.

We now state two applications of Russell–Sathaye criteria for a ring to be a polynomial
algebra in one variable over a subring.

Theorem 2.1. Let k be a field and F ∈ k[X,Y ] be such that k[X,Y ]⊗k[F ] k(F ) = k(F )[1]. Then

k[X,Y ] = k[F ][1].

Proof. By [RS79, Theorem 2.4.2], it is enough to show that k[X,Y ]∩k(F ) = k[F ]. Set D := k[X,
Y ] ∩ k(F ). Now k[F ] ⊆ D ⊆ k(F ). Since D∗ = k∗, we have D = k[F ]. 2

The following version of the Russell–Sathaye criterion [RS79, Theorem 2.3.1] is presented in
[BD94, Theorem 2.8].

Theorem 2.2. Let R ⊂ D be integral domains such that D is a finitely generated R-algebra.
Suppose that there exists a prime element π in R such that π remains prime in D, D[π−1] =
R[π−1][1], πD ∩R = πR and R/πR is algebraically closed in D/πD. Then D = R[1].

We deduce a consequence of Theorems 2.1 and 2.2 for later use.

Lemma 2.3. Let k be a field and F ∈ k[Z, T ] be such that k[F ] is algebraically closed in k[Z, T ].
Suppose that k[Y,Z, T ] ⊗k[Y,F ] k(Y, F ) = k(Y, F )[1] for an indeterminate Y over k[Z, T ]. Then

k[Z, T ] = k[F ][1].
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Proof. Let h ∈ k[2] be such that k[Y,Z, T, 1/h(Y, F )] = k[Y, F, 1/h(Y, F )][1]. Then h(Y, F ) =
Y nh1(Y, F ) for some n > 0 and h1 ∈ k[2] such that h1(0, F ) 6= 0. Set R := k[Y, F, 1/h1(Y, F )]
and D := k[Y,Z, T, 1/h1(Y, F )]. Then Y is a prime element of both R and D, Y D ∩ R = Y R
and D[Y −1] = R[Y −1][1]. Since k[F ] is algebraically closed in k[Z, T ], it follows that R/Y R(=
k[F, 1/h1(0, F )]) is algebraically closed in D/Y D = k[Z, T, 1/h1(0, F )]. Hence D = R[1] by
Theorem 2.2. Thus, there exists G ∈ k[Y, Z, T ] such that k[Y,Z, T, 1/h1(Y, F )] = k[Y, F,G,
1/h1(Y, F )]. Let α, β ∈ k[3] be such that

h1(Y, F )rZ = α(Y, F,G) and h1(Y, F )sT = β(Y, F,G)

for some r, s > 0. Then we have

h1(0, F )rZ = α(0, F,G(0, Z, T )) and h1(0, F )sT = β(0, F,G(0, Z, T )).

Therefore, k[Z, T ] ⊗k[F ] k(F ) = k(F )[G(0, Z, T )] = k(F )[1]. Hence k[Z, T ] = k[F ][1] by
Theorem 2.1. 2

We now quote three well-known results from [AEH72, 2.6, 2.8, 4.8].

Theorem 2.4. Let k be a field and A be a one-dimensional normal k-subalgebra of k[X1, . . . , Xn].
Then A = k[1].

Corollary 2.5. Let k be a field and A an affine k-algebra. Suppose that A[m] ∼=k k
[m+1]. Then

A = k[1].

Theorem 2.6. Let R be a UFD and D be an R-algebra such that R ⊂ D ⊂ R[X1, . . . , Xn],
tr. degRD = 1 and D is factorially closed in R[X1, . . . , Xn]. Then D = R[1].

We shall use the following definition of An-fibration that was given by Sathaye in [Sat83].

Definition. A finitely generated flat S-algebra R is said to be an An-fibration over S if R ⊗S
k(p) = k(p)[n] for every prime ideal p of S.

We shall also use the following term from affine algebraic geometry.

Definition. An element f ∈ k[Z, T ] is called a line if k[Z, T ]/(f) = k[1]. A line f is called a
non-trivial line if k[Z, T ] 6= k[f ][1].

We now define the key ingredients in our proof of Theorem A: the exponential map (a
formulation of the concept of Ga-action) and associated invariants.

Definition. Let A be a k-algebra and let φ : A −→ A[1] be a k-algebra homomorphism. For an
indeterminate U over A, let the notation φU denote the map φ : A −→ A[U ]. φ is said to be an
exponential map on A if φ satisfies the following two properties.

(i) ε0φU is identity on A, where ε0 : A[U ] −→ A is the evaluation at U = 0.

(ii) φV φU = φV+U , where φV : A −→ A[V ] is extended to a homomorphism φV : A[U ] −→ A[V,
U ] by setting φV (U) = U .

The ring of φ-invariants of an exponential map φ on A is a subring of A given by

Aφ = {a ∈ A |φ(a) = a}.
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An exponential map φ is said to be non-trivial if Aφ 6= A. For an affine domain A over a field k,
let EXP(A) denote the set of all exponential maps on A. The Derksen invariant of A is a subring
of A defined by

DK(A) = k[f | f ∈ Aφ, φ a non-trivial exponential map],

and the Makar-Limanov invariant (also known as AK-invariant) of A is a subring of A defined
by

ML(A) =
⋂

φ∈EXP(A)

Aφ.

We recall below a crucial observation (cf. [Gup14, Lemma 2.4] and [Cra05, Example 2.1]).

Lemma 2.7. Let k be a field and A = k[n], where n > 1. Then DK(A) = A and ML(A) = k.

We summarise below some useful properties of an exponential map φ (cf. [Cra05, pp. 1291–
1292] and [Gup14, Lemma 2.1]).

Lemma 2.8. Let A be an affine domain over a field k. Suppose that there exists a non-trivial
exponential map φ on A. Then the following statements hold.

(i) Aφ is factorially closed in A.

(ii) Aφ is algebraically closed in A.

(iii) tr.degk(A
φ) = tr.degk(A)− 1.

(iv) There exists c ∈ Aφ such that A[c−1] = Aφ[c−1][1].

(v) If tr.degk(A) = 1 and k̃ is the algebraic closure of k in A, then A = k̃[1] and Aφ = k̃.

(vi) Let S be a multiplicative subset of Aφ\{0}. Then φ extends to a non-trivial exponential
map S−1φ on S−1A by setting (S−1φ)(a/s) = φ(a)/s for a ∈ A and s ∈ S. Moreover, the
ring of invariants of S−1φ is S−1(Aφ).

We shall also use the following result proved in [Gup14, Lemma 3.3].

Lemma 2.9. Let B be an affine domain over an infinite field k. Let f ∈ B be such that f −λ is a
prime element of B for infinitely many λ ∈ k. Let φ be a non-trivial exponential map on B such
that f ∈ Bφ. Then there exist infinitely many β ∈ k such that each f − β is a prime element of
B and φ induces a non-trivial exponential map on B/(f − β).

Finally, we define the concept of an admissible proper Z-filtration on an affine domain.

Definition. Let A be an affine domain over a field k. A collection of k-linear subspaces {An}n∈Z
of A is said to be a proper Z-filtration if it satisfies the following conditions:

(i) An ⊆ An+1 for all n ∈ Z;

(ii) A =
⋃
n∈ZAn;

(iii)
⋂
n∈ZAn = (0); and

(iv) (An\An−1) · (Am\Am−1) ⊆ An+m\An+m−1 for all n,m ∈ Z.

We shall call a proper Z-filtration {An}n∈Z of A admissible if there exists a finite generating
set Γ of A such that, for any n ∈ Z and a ∈ An, a can be written as a finite sum of monomials
in elements of Γ and each of these monomials is an element of An.

Any proper Z-filtration on A determines the Z-graded integral domain

gr(A) :=
⊕
i

Ai/Ai−1,
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and a map

ρ : A −→ gr(A) defined by ρ(a) = a+An−1 if a ∈ An\An−1.

An exponential map φ on a graded ring A is said to be homogeneous if φ : A−→ A[U ] becomes

homogeneous when A[U ] is given a grading induced from A such that U is a homogeneous

element.

Remark 2.10. Note that if φ is a homogeneous exponential map on a graded ring A, then Aφ is

a graded subring of A.

We state below a result on homogenization of exponential maps due to Derksen et al.

[DHM01]; the following version of the result is presented in [Cra05, Theorem 2.6] (cf. [Gup14,

Theorem 2.3]).

Theorem 2.11. Let A be an affine domain over a field k with an admissible proper Z-filtration

and gr(A) the induced Z-graded domain. Let φ be a non-trivial exponential map on A. Then φ

induces a non-trivial homogeneous exponential map φ̄ on gr(A) such that ρ(Aφ) ⊆ gr(A)φ̄.

3. Main theorem

In this section we shall prove Theorem A. We first record two observations about the coordinate

ring of the threefold xmy = F (x, z, t).

Lemma 3.1. Let k be a field and A be an integral domain defined by

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1.

Let f(Z, T ) = F (0, Z, T ) and x denote the image of X in A. Then the following statements are

equivalent.

(i) A is a UFD.

(ii) x is prime in A or x is a unit in A.

(iii) f(Z, T ) is irreducible in k[Z, T ] or f(Z, T ) ∈ k∗.

Proof. (i) ⇒ (ii): It is enough to show that either x is an irreducible element in A or x is a unit

in A. Let z, t respectively denote the images of Z, T in A. Suppose that x is not irreducible in A.

Then, since x is irreducible in k[x, z, t], there exist a, b ∈ A such that x = ab and a /∈ k[x, z, t].

Since A ⊆ A[x−1] = k[x, x−1, z, t], we have a = α/xi and b = β/xj for some α, β ∈ k[x, z, t] and

some integers i, j > 0. Therefore, xi+j+1 = αβ in k[x, z, t]. Since x is prime in k[x, z, t], we have

α = λxr, for some λ ∈ k∗ and r > 0. Thus a = λxr−i. Since a /∈ k[x, z, t], we have r − i < 0 and

hence x−1 ∈ A.

(ii) ⇒ (i): A[x−1] = k[x, x−1][2] is a UFD. Therefore, if x is prime in A then, by Nagata’s

well-known criterion, A is a UFD. If x is a unit in A, then clearly A = A[x−1] is a UFD.

(ii) ⇔ (iii) holds since A/xA = k[Y, Z, T ]/(f) = (k[Z, T ]/(f))[1]. 2

Lemma 3.2. Let k, A, f and x be as in Lemma 3.1. Then the following statements are equivalent.

(i) A is an A2-fibration over k[x].

(ii) A/xA = k[2].

(iii) f(Z, T ) is a line in k[Z, T ].
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Proof. (i) ⇒ (ii) follows from the definition of A2-fibration.
(ii)⇒ (iii): Since A/xA = k[Y,Z, T ]/(f) = (k[Z, T ]/(f))[1] and A/xA = k[2], by Corollary 2.5,

we have k[Z, T ]/(f) = k[1].
(iii) ⇒ (i): We have A/xA = (k[Z, T ]/(f))[1] = k[2]. Let p be a prime ideal of k[x] other than

xk[x]. Since x /∈ p, pk[x, x−1] is a prime ideal of k[x, x−1]. Since A[x−1] = k[x, x−1][2], we have
A⊗k[x] k(p) = k(p)[2]. Hence, for any prime ideal P of k[x], A⊗k[x] k(P ) = k(P )[2]. Since k[x] is a
PID and A is an integral domain containing k[x] (in particular, A is a torsion-free k[x]-module),
it follows that A is flat over k[x]. Thus A is an A2-fibration over k[x]. 2

We shall see (Theorem 3.11) that, when m > 1, the above ring A is k[x][2] if and only if
f(Z, T ) is a variable in k[Z, T ]. We now prove a few technical results needed to establish this.

Lemma 3.3. Let k, A, f and x be as in Lemma 3.1. Let x, y, z and t respectively denote the
images of X, Y , Z and T in A. Also let B = k[X,Y, Z, T ]/(XmY − f(Z, T )). Then there exists
a proper Z-filtration {An}n∈Z on A with x ∈ A−1\A−2 and z, t ∈ A0\A−1 such that the induced
graded ring gr(A) ∼= B.

Proof. We note that A ↪→ k[x, x−1, z, t] and that k[x, x−1, z, t] is a Z-graded ring k[x, x−1,
z, t] =

⊕
i∈Z Fi, where Fi = k[z, t]xi. Consider the proper Z-filtration {An}n∈Z on A defined

by An := A ∩
⊕

i>−n Fi. Then x ∈ A−1\A−2, z, t ∈ A0\A−1 and since A is an integral domain,
f(z, t) 6= 0 and hence y ∈ Am\Am−1. Using the relation xmy = F (x, z, t), we see that each
element g ∈ A can be written uniquely as

g =
∑
n>0

gn(z, t)xn +
∑
j>0

gij(z, t)x
iyj where 0 6 i < m (1)

and gn(z, t), gij(z, t) ∈ k[z, t]. Let Ã denote the graded ring gr(A)(:=
⊕

n∈ZAn/An−1) with

respect to the above filtration. For g ∈ A, let ḡ denote the image of g in Ã. From the filtration
on A and (1), it can be seen that

ḡ = gi(z̄, t̄)x̄
i, for some i > 0 if g ∈ k[x, z, t],

and
ḡ = gij(z̄, t̄)x̄

iȳj , for some j > 0, 0 6 i < m if g /∈ k[x, z, t]. (2)

It also follows from (1) that the filtration defined on A is admissible with the generating set
Γ := {x, y, z, t}. Hence Ã is generated by x̄, ȳ, z̄ and t̄ (cf. [Gup14, Remark 2.2(2)]).

We now show that Ã ∼= B. Let F (X,Z, T ) := f(Z, T ) +Xf1(Z, T ) + · · ·+Xnfn(Z, T ). Since
xmy and f(z, t) ∈ A0, and xmy − f (= xf1 + · · ·+ xnfn) ∈ A−1, we see that x̄mȳ − f̄ = 0 in Ã
(cf. [Gup14, Remark 2.2(1)]). As Ã can be identified with a subring of gr(k[x, x−1, z, t]) ∼= k[x,

x−1, z, t], we see that the elements x̄, z̄ and t̄ of Ã are algebraically independent over k. Now as
k[X,Y, Z, T ]/(XmY − f(Z, T )) is an integral domain, we have Ã ∼= B. 2

Proposition 3.4. Let k be a field and B the integral domain defined by

B = k[X,Y, Z, T ]/(XmY − f(Z, T )) where m > 1.

Let x, y, z and t respectively denote the images of X, Y , Z and T in B. Consider B =
⊕

i∈ZBi
as a graded subring of k[x, x−1, z, t] with Bi = B ∩ k[z, t]xi for each i ∈ Z. Suppose that there
exists a non-trivial homogeneous exponential map φ on the graded ring B such that k[y] ⊆ Bφ.
Then there exists w ∈ Bφ such that k[z, t] = k[w][1].
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Proof. Case 1. Suppose that Bφ ⊆ k[y, z, t]. Set D := Bφ∩k[z, t]. Since y ∈ Bφ and tr.degk B
φ =

2, it follows that D $ k[z, t]. By Lemma 2.8(i), Bφ is a factorially closed subring of B and hence
D is a factorially closed subring of k[z, t]. As D $ k[z, t], it then follows that tr.degk D 6 1.
Since Bφ is a graded subring of k[y, z, t] =

⊕
n∈Z k[z, t]yn (cf. Remark 2.10) and tr. degk B

φ = 2,
we have k $ D. Thus tr.degk D = 1. Therefore, by Theorem 2.6, D = k[w] for some w ∈ k[z, t].

We now show that Bφ = k[y, w]. Since Bφ is a graded subring of B, it is enough to show
that if u ∈ Bφ is a homogeneous element then u ∈ k[y, w]. Since u is homogeneous, we have
u = h(z, t)yi for some polynomial h(z, t) ∈ k[z, t] and i ∈ Z>0. By Lemma 2.8(i), h(z, t) ∈ D and
hence u ∈ k[y, w].

We now show that k[z, t] = k[w][1]. Let S = k[y, w](=Bφ) and L = k(y, w) be the quotient
field of Bφ. By Lemma 2.8(iv), we have B ⊗S L = L[1]. Hence, since

L ⊆ k[y, z, t]⊗S L ⊆ B ⊗S L = L[1]

and k[y, z, t] ⊗S L is a normal domain, we have k[y, z, t] ⊗S L = L[1] by Theorem 2.4. Since
k[y, z, t]⊗S k(y, w) = k(y, w)[1] and k[w] is algebraically closed in k[z, t], we have k[z, t] = k[w][1]

by Lemma 2.3.

Case 2. Now suppose that Bφ * k[y, z, t]. Since Bφ is a graded subring of B, it follows from
Lemma 2.8(i) that x ∈ Bφ. By Lemma 2.8(vi), φ induces a non-trivial exponential map φ1 on

B̃ := B ⊗k[x] k(x) = k(X)[Y,Z, T ]/(XmY − f(Z, T )) = k(x)[z, t]

such that B̃φ1 = Bφ ⊗k[x] k(x). Since tr.degk(x) B̃
φ1 = 1 and B̃φ1 is a factorially closed subring

of B̃ = k(x)[z, t], we have B̃φ1 = k(x)[w1] for some w1 ∈ k(x)[z, t] by Theorem 2.6. Again by
Lemma 2.8(iv), k(x)[z, t]⊗k(x)[w1] k(x,w1) = k(x,w1)[1]. Hence, by Theorem 2.1, we have k(x)[z,

t] = k(x)[w1][1]. Now w1 = α(x, z, t)/β(x) for some α(x, z, t) ∈ k[x, z, t] and β(x) ∈ k[x]. Set
w2 := β(x)w1. Then k(x)[w1] = k(x)[w2]. Now w2 ∈ B̃φ1∩k[x, z, t] ⊆ Bφ. Let w2 = h0(z, t)+h1(z,
t)x+· · ·+hr(z, t)xr for some hi(z, t) ∈ k[z, t], 0 6 i6 r. Then hi(z, t) ∈ Bφ for each i (since Bφ is a
graded subring of B). Set E := Bφ∩k[z, t]. Then, since Bφ is a factorially closed subring of B, we
have that E is a factorially closed subring of k[z, t]. Since tr. degk B

φ = 2 and x ∈ Bφ, it follows
that E $ k[z, t] and since hi(z, t) ∈ E for each i, 0 6 i 6 r, we have k $ E. Hence, E = k[w] for
some w ∈ k[z, t] by Theorem 2.6. Now, E = k[w] ⊆ Bφ ⊆ B̃φ1 = k(x)[w2] and k(x)[w2] ⊆ k(x)[w].
Hence k(x)[w] = k(x)[w2] = k(x)[w1]. Therefore, since k(x)[z, t] = k(x)[w1][1] = k(x)[w][1] and
k[w] (=E) is algebraically closed in k[z, t], we have k[z, t] = k[w][1] by Lemma 2.3. 2

The following result was proved by Makar-Limanov [Mak01] when the characteristic of the
field k is zero. We modify his arguments to give a characteristic-free proof.

Lemma 3.5. Let k be a field, P (Z) ∈ k[Z] a polynomial of degZ P (Z) > 1 and

D = k[X,Y, Z]/(XmY − P (Z)) where m > 1.

Let x, y, z respectively denote the images of X,Y, Z in D. Then there does not exist any non-
trivial exponential map φ on D such that y ∈ Dφ.

Proof. Let r = degZ P (Z) and λ be the coefficient of Zr in P (Z). We note that D ↪→ k[x, x−1, z]
and that k[x, x−1, z] is a Z-graded ring k[x, x−1, z] =

⊕
i∈ZCi, where Ci = k[x, x−1]zi. Consider

the proper Z-filtration {Dn}n∈Z on D defined by Dn := D ∩
⊕

i6nCi. Let E denote the graded
ring gr(D)(:=

⊕
n∈ZDn/Dn−1) with respect to the above filtration. For g ∈ D, let ḡ denote the
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image of g in E. Note that ȳ = λz̄r/x̄m. Thus, in the graded ring E, deg(x̄) = 0, deg(z̄) = 1 and
deg(ȳ) = r. We now show that

E ∼= k[X,Y, Z]/(XmY − λZr). (3)

Each element g ∈ D can be written uniquely as

g =
∑
n>0

gn(z)xn +
∑
j>0

gij(z)x
iyj where 0 6 i < m.

From this expression, it can be easily seen that the filtration defined on D is admissible with the
generating set Γ := {x, y, z}. Hence E is generated by x̄, ȳ and z̄. We also note that x̄mȳ−λz̄r = 0
in E. As E can be identified with a subring of gr(k[x, x−1, z]) ∼= k[x, x−1, z], we see that the
elements x̄ and z̄ of E are algebraically independent over k. Now as k[X,Y, Z]/(XmY − λZr) is
an integral domain, the isomorphism in (3) holds.

Suppose that there exists a non-trivial exponential map φ on D such that y ∈ Dφ. By
Theorem 2.11, φ induces a non-trivial exponential map φ̄ on E such that ȳ ∈ Eφ̄, i.e., k[ȳ] ⊆ Eφ̄.
By Lemma 2.8(vi), φ̄ induces a non-trivial exponential map on

E ⊗k[ȳ] k(ȳ) = k(ȳ)[x̄, z̄] ∼= k(ȳ)[X,Z]/(ȳXm − λZr),

which contradicts Lemma 2.8(v), as E ⊗k[ȳ] k(ȳ) is not a normal domain. 2

We record an observation on the Derksen invariant and the Makar-Limanov invariant of the
affine threefold xmy = F (x, z, t).

Lemma 3.6. Let k be a field and A be an integral domain defined by

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1.

Let x, y, z and t respectively denote the images of X, Y , Z and T in A. Then k[x, z, t] ⊆ DK(A)
and ML(A) ⊆ k[x].

Proof. Define φ1 by

φ1(x) = x, φ1(z) = z, φ1(t) = t+xmU and φ1(y) =
F (x, z, t+ xmU)

xm
= y+Uα(x, z, t, U)

(4)
and define φ2 by

φ2(x) = x, φ2(t) = t, φ2(z) = z+xmU and φ2(y) =
F (x, z + xmU, t)

xm
= y+Uβ(x, z, t, U).

(5)
Note that α(x, z, t, U), β(x, z, t, U) ∈ k[x, z, t, U ] and that k[x, z] and k[x, t] are algebraically
closed in A of transcendence degree two over k. It then follows that φ1 and φ2 are non-trivial
exponential maps on A with Aφ1 = k[x, z] and Aφ2 = k[x, t]. Hence k[x, z, t] ⊆ DK(A) and
ML(A) ⊆ k[x, z] ∩ k[x, t] = k[x]. 2

We now show that, form> 1, a necessary condition for the above ring A to be polynomial ring
(whence DK(A) = A by Lemma 2.7) is that F (0, Z, T ) can be expressed as a linear polynomial.

Proposition 3.7. Let k be a field and A be an integral domain defined by

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1.

Set f(Z, T ) := F (0, Z, T ). Let x, y, z and t respectively denote the images of X, Y , Z and T in
A. Suppose that DK(A) 6= k[x, z, t]. Then the following statements hold.
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(i) There exist Z1, T1 ∈ k[Z, T ] and a0, a1 ∈ k[1] such that k[Z, T ] = k[Z1, T1] and f(Z, T ) =
a0(Z1) + a1(Z1)T1.

(ii) If k[Z, T ]/(f) = k[1], then k[Z, T ] = k[f ][1].

Proof. (i) By Lemma 3.6, k[x, z, t] ⊆ DK(A) and now since DK(A) 6= k[x, z, t], there exists a
non-trivial exponential map φ on A such that Aφ * k[x, z, t]. Choose an element g ∈ Aφ\k[x, z, t].
Consider the proper Z-filtration {An}n∈Z on A and the induced graded ring B = gr(A) of
Lemma 3.3. For h ∈ A, let h̄ denote the image of h in B. By Theorem 2.11, φ induces a non-trivial
homogeneous exponential map φ̄ on B such that ḡ ∈ Bφ̄. By the relation (2) in the proof of
Lemma 3.3, ḡ = gab(z̄, t̄)x̄

aȳb(∈Bφ̄) for some 0 6 a < m, b > 0 and gab(z̄, t̄) ∈ k[z̄, t̄]. Since Bφ̄ is
factorially closed in B (cf. Lemma 2.8(i)), it follows that ȳ ∈ Bφ̄. Therefore, by Proposition 3.4,
there exists z̄1 ∈ k[z̄, t̄] such that k[z̄, t̄] = k[z̄1][1] and z̄1 ∈ Bφ̄. Then k[Z, T ] = k[Z1, T1] where
Z1 is the pre-image of z̄1 in k[Z, T ]. Let h ∈ k[2] be such that

h(Z1, T1) = f(Z, T ) = a0(Z1) + a1(Z1)T1 + · · ·+ an(Z1)T1
n.

Let k̃ be an algebraic closure of the field k. Then φ̄ induces a non-trivial exponential map φ̃ on

B̃ := B ⊗k k̃ = k̃[X,Y, Z1, T1]/(XmY − h(Z1, T1)) = k̃[x̄, ȳ, z̄1, t̄1]

such that k̃[ȳ, z̄1] ⊆ B̃φ̃. Since there exist infinitely many β ∈ k̃ such that z̄1 − β is a prime
element of B̃, by Lemma 2.9, we may choose β such that φ̃ induces a non-trivial exponential
map on the ring B̃/(z̄1 − β) and which also satisfies an(β) 6= 0. Thus, there exists a non-trivial
exponential map on the ring

B̃

(z̄1 − β)
∼=

k̃[X,Y, T1]

(XmY − h(β, T1))
=

k̃[X,Y, T1]

(XmY − (a0(β) + a1(β)T1 + · · ·+ an(β)T1
n))

with the image of ȳ in B̃/(z̄1 − β) lying in the ring of invariants. Hence, by Lemma 3.5, n = 1.
Thus, f(Z, T ) = a0(Z1) + a1(Z1)T1 for some Z1, T1 ∈ k[Z, T ] satisfying k[Z, T ] = k[Z1, T1].

(ii) Since f(Z, T ) is a line, we have A/xA = k[2] and hence (A/xA)∗ = k∗. By (i) above,
there exist Z1, T1 ∈ k[Z, T ] and a0, a1 ∈ k[1] such that k[Z, T ] = k[Z1, T1] and f(Z, T ) = a0(Z1)+
a1(Z1)T1. If a1(Z1) = 0, then f(Z, T ) = a0(Z1) is clearly a linear polynomial in Z1 (since f(Z, T )
is a line) and hence a variable in k[Z, T ]. Now suppose that a1(Z1) 6= 0. As f(Z, T ) is irreducible
in k[Z, T ], a0(Z1) and a1(Z1) are coprime in k[Z1]. Hence A/xA ∼= k[Z, 1/a1(Z1)][1] and, since
(A/xA)∗ = k∗, we have a1(Z1) ∈ k∗. This again implies that f(Z, T ) is a variable in k[Z, T ]. 2

We shall now prove Theorem A (Theorem 3.11); we shall also prove the equivalence of five
more conditions each involving the Derksen invariant DK(A). In the proof of the implications
(v) ⇒ (vii) ⇒ (viii) of Theorem 3.11, we shall use a few results on the groups Ki of algebraic
K-theory. However, when F (0, Z, T ) is a line, one has a simpler proof of Theorem A which does
not need the language of K-theory (see Remark 3.13(1)).

We first quote a result from K-theory due to Quillen [Sri08, Corollary 5.5].

Theorem 3.8. Let R be a regular ring and U an indeterminate over R. Then the following
statements hold.

(i) The inclusion map R ↪→ R[U ] induces an isomorphism from Ki(R) to Ki(R[U ]) for each
i > 0.
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(ii) For each i > 1, the sequence

0 −→ Ki(R[U ]) −→ Ki(R[U,U−1]) −→ Ki−1(R) −→ 0

is a split short exact sequence, where the map Ki(R[U ]) −→ Ki(R[U,U−1]) is induced by
the inclusion map R[U ] ↪→ R[U,U−1].

The following result follows from [Sri08, Proposition 5.15, §5.6 p. 52 and §5.16 p. 61].

Theorem 3.9. Let R be a regular ring and x be a non-zero-divisor of R such that R/xR is a
regular ring. Let j : R −→ R[x−1] be the inclusion map. Then we have the following long exact
sequence of K-groups:

−→Ki(R/xR) −→ Ki(R)
j∗−→ Ki(R[x−1])

∂−→ Ki−1(R/xR)−→

Moreover, if φ : R −→ S is a flat ring homomorphism with u = φ(x) such that S and S/uS are
regular rings, then we have the following natural commutative diagram:

// Ki(R/xR) //

��

Ki(R) //

��

Ki(R[x−1])
∂ //

��

Ki−1(R/xR) //

��
// Ki(S/uS) // Ki(S) // Ki(S[u−1])

∂ // Ki−1(S/uS) //

where the vertical maps are induced by φ.

We also observe an elementary result.

Lemma 3.10. Let φ : R −→ B be an injective ring homomorphism. Then the map φ∗ : K1(R)−→
K1(B), induced by φ, maps the subgroup R∗ of K1(R) injectively into the subgroup B∗ of
K1(B).

We now prove our main theorem.

Theorem 3.11. Let k be a field and

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1.

Let x, y, z and t respectively denote the images of X, Y , Z and T in A. Set f(Z, T ) := F (0, Z, T )
and G := XmY − F (X,Z, T ). Then the following statements are equivalent.

(i) k[X,Y, Z, T ] = k[X,G][2].

(ii) k[X,Y, Z, T ] = k[G][3].

(iii) A = k[x][2].

(iv) A = k[3].

(v) A[`] ∼=k k
[`+3] for some integer ` > 0 and DK(A) 6= k[x, z, t].

(vi) A is an A2-fibration over k[x] and DK(A) 6= k[x, z, t].

(vii) A is geometrically factorial over k, DK(A) 6= k[x, z, t] and the canonical map k∗ → K1(A)
(induced by the inclusion k ↪→ A) is an isomorphism.

(viii) A is geometrically factorial over k, DK(A) 6= k[x, z, t] and (A/xA)∗ = k∗.

(ix) k[Z, T ] = k[f ][1].

(x) k[Z, T ]/(f) = k[1] and DK(A) 6= k[x, z, t].
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Proof. (i) ⇒ (ii) ⇒ (iv), (i) ⇒ (iii) are trivial. It suffices to prove (iv) ⇒ (v) ⇒ (vii) ⇒ (viii) ⇒
(ix) ⇒ (i) and (iii) ⇒ (vi) ⇔ (x) ⇒ (ix).

(iv) ⇒ (v) follows from Lemma 2.7.

(v) ⇒ (vii) follows from Theorem 3.8 and the fact that K1(k) = k∗ for any field k.

(vii) ⇒ (viii): Since DK(A) 6= k[x, z, t], by Proposition 3.7(i), there exist Z1, T1 ∈ k[Z, T ]
and a0, a1 ∈ k[1] such that k[Z, T ] = k[Z1, T1] and f(Z, T ) = a0(Z1) + a1(Z1)T1. Without loss of
generality, we may assume that Z1 = Z, T1 = T and f(Z, T ) = a0(Z)+a1(Z)T . We now consider
two cases.

Case 1: a1(Z) = 0. Let k̃ be an algebraic closure of k. Since A ⊗k k̃ is a UFD, it follows from
Lemma 3.1 that a0(Z) is either irreducible or a non-zero constant in k̃[Z, T ]. But if a0(Z) is a
non-zero constant, then A = k[x, x−1, z, t] and hence K1(A) 6= k∗, contradicting the hypothesis.
Thus, a0(Z) is irreducible in k̃[Z, T ] and hence a linear polynomial in Z. Therefore, f(Z, T ) is a
variable in k[Z, T ]. Hence A/xA = k[2], which implies that (A/xA)∗ = k∗.

Case 2: a1(Z) 6= 0. Since a0(Z)+a1(Z)T is irreducible in k[Z, T ] (cf. Lemma 3.1), we have (a0(Z),
a1(Z)) = 1 and hence it follows that A/xA = k[Z, T, Y ]/(a0(Z) + a1(Z)T ) ∼= k[Z, 1/a1(Z)][Y ].
Also A[x−1] = k[x, x−1][2]. Since A[x−1] and A/xA are regular rings, we have A is a regular ring.
Hence, by Theorem 3.9, we have an exact sequence:

−→K2(A[x−1])
∂−→ K1(A/xA)−→K1(A)

j∗−→ K1(A[x−1]) −→ (6)

where j∗ is induced by the inclusion j : A −→ A[x−1] and ∂ is the connecting morphism. Let
n and j denote the inclusion maps n : k −→ A and j : A −→ A[x−1]. By Lemma 3.10, j∗ ◦ n∗
maps k∗ injectively into (A[x−1])∗. Since K1(A) = n∗(K1(k)) by hypothesis, it follows that j∗
maps K1(A) injectively into K1(A[x−1]). Thus, from the exact sequence (6), we have the exact
sequence

−→K2(A[x−1])
∂−→ K1(A/xA) −→ 0. (7)

Since A[x−1] = k[x, x−1][2], by Theorem 3.8(i), the inclusion map k[x, x−1] ↪→ A[x−1] induces an
isomorphism from K2(k[x, x−1]) to K2(A[x−1]). Again, by Theorem 3.8(ii), the sequence

0 −→ K2(k[x]) −→ K2(k[x, x−1]) −→ K1(k) −→ 0 (8)

is a split short exact sequence, where the map K2(k[x]) −→ K2(k[x, x−1]) is induced by the
inclusion map k[x] ↪→ k[x, x−1]. Now consider the inclusion k[x] ↪→ A. Since A is flat over k[x],
by Theorem 3.9, we have the following commutative diagram between the exact sequences (8)
and (7):

K2(k[x, x−1])
∂ //

∼=
��

K1(k) //

φ∗
��

0

K2(A[x−1])
∂ // K1(A/xA) // 0

where the vertical maps are induced by the canonical inclusion maps. From this commutative
diagram it follows that the canonical map φ∗ : K1(k)(= k∗) → K1(A/xA), induced by the
inclusion φ : k ↪→ A/xA, is surjective. By Lemma 3.10, φ∗ maps k∗ injectively into the subgroup
(A/xA)∗ of K1(A/xA). Hence (A/xA)∗ = k∗(=K1(A/xA)).

(viii) ⇒ (ix): As before, we may assume that f(Z, T ) = a0(Z) + a1(Z)T . Suppose that
a1(Z) = 0, i.e., f(Z, T ) = a0(Z). Then A/xA = k[Y,Z, T ]/(a0(Z)). Since (A/xA)∗ = k∗, it
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follows that a0(Z) /∈ k∗. Then, as before, we have that a0(Z) is irreducible in k̃[Z, T ] and hence
a linear polynomial in Z. Therefore, f(Z, T ) is a variable in k[Z, T ].

Now suppose that a1(Z) 6= 0. Then, since a0(Z) + a1(Z)T is irreducible in k[Z, T ]
(cf. Lemma 3.1), we have (a0(Z), a1(Z)) = 1 and hence A/xA = k[Z, T, Y ]/(a0(Z) + a1(Z)T ) ∼=
k[Z, 1/a1(Z)][Y ]. Therefore, since (A/xA)∗ = k∗, we have a1(Z) ∈ k∗. Thus f(Z, T ) is a variable
in k[Z, T ].

(ix) ⇒ (i): Without loss of generality, we may assume that f(Z, T ) = Z. Set D := k[X,
Y, Z, T ] and R := k[X,G, T ]. Then D[X−1] = R[X−1][Z] and D/XD = (R/XR)[1]. Hence, by
Theorem 2.2, D = R[1], i.e., k[X,Y, Z, T ] = k[X,G, T ][1] = k[X,G][2].

(iii) ⇒ (vi) follows from Lemma 2.7.

(vi) ⇔ (x) follows from Lemma 3.2.

(x) ⇒ (ix) follows from Proposition 3.7(ii). 2

Remark 3.12. A version of the ‘epimorphism problem’ or ‘embedding problem’ for hypersurfaces
over a field k asks the following: if k[X1, X2, . . . , Xn]/(G) ∼= k[n−1], then is k[X1, X2, . . . ,
Xn] = k[G][n−1]? The Segre–Nagata non-trivial lines mentioned in the introduction show that
the problem has a negative solution when characteristic k > 0 (unless there are some additional
conditions on G). When characteristic k = 0, an affirmative answer for n = 2 has been given
independently by Abhyankar and Moh and by Suzuki (see [Abh77, Corollary 9.21]), and the
Abhyankar–Sathaye conjecture envisages an affirmative solution for n > 3. While the conjecture
remains open for n > 3, affirmative solutions to the epimorphism problem are known for a few
special cases of G even in arbitrary characteristic. When n = 3, ch k = 0 and G is a ‘linear plane
in A3

k’ defined by aX3 − b, where a, b ∈ k[X1, X2], it was shown by Sathaye [Sat76] that there
exist coordinates X,Y for which a ∈ k[X] and k[X,Y ] = k[X1, X2] and that G is a variable in
k[X,Y,X3](= k[X1, X2, X3]) along with X. This result was extended by Russell [Rus76] to fields
k of arbitrary characteristic.

Thus the implication (iv) ⇒ (i) of Theorem 3.11 may be thought of as a partial extension
of the Sathaye–Russell theorem on linear planes in A3

k to the linear hypersurfaces in A4
k of the

form xmy = F (x, z, t) in arbitrary characteristic. When k = C, more general cases of linear
hypersurfaces have been proved in [KVZ04].

Remark 3.13. (1) In the case where f(Z, T ) := F (0, Z, T ) is a line in k[Z, T ], Proposition 3.7(ii),
along with Lemma 2.7, gives an alternative proof of (iv) ⇒ (ix) in Theorem 3.11 (and hence a
proof of Theorem A) without using any machinery of K-theory. Note that this case will already
address the question of Asanuma–Russell mentioned in the introduction, for m > 1.

(2) In Theorem 3.11, for the case m = 1, the implications (ix) ⇒ (i) ⇒ (ii) ⇒ (iv) ⇒ (v)
⇒ (vii) and (i) ⇒ (iii) ⇒ (vi) ⇔ (x) ⇒ (viii) hold; however, (vii) ; (ix) and (viii) ; (ix) (cf.
Remark 4.7(2)).

We end this section with a partial converse to Proposition 3.7(i).

Proposition 3.14. Let k be a field and A be an integral domain defined by

A = k[X,Y, Z, T ]/(XmY − f(Z, T )) where m > 1

and f(Z, T ) = a0(Z) + a1(Z)T for some a0(Z), a1(Z) ∈ k[Z]. Then DK(A) = A.

Proof. Let x, y, z and t respectively denote the images of X, Y , Z and T in A. By Lemma 3.6,
we have k[x, z, t] ⊆ DK(A). We define an exponential map φ on A. If a1(Z) = 0, then φ is defined
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by

φ(x) = x, φ(z) = z, φ(y) = y and φ(t) = t+ U ; (9)

if a1(Z) 6= 0, then φ is defined by

φ(x) = x+ a1(z)U, φ(z) = z, φ(y) = y and φ(t) =
(x+ a1(z)U)my − a0(z)

a1(z)
. (10)

In either case, φ is an exponential map of A such that k[y, z] ⊆ Aφ. Hence DK(A) = A. 2

4. Asanuma threefolds

Let k be a field of characteristic p > 0 and

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1. (11)

Let f(Z, T ) := F (0, Z, T ). Let x denote the image of X in A. We have seen that:

(i) A is a UFD ⇐⇒ f(Z, T ) is either a constant or an irreducible in k[Z, T ];

(ii) A is an A2-fibration over k[x] ⇐⇒ f(Z, T ) is a line in k[Z, T ].

Moreover, when m > 2, we also have

(iii) A = k[x][2] ⇐⇒ A = k[3] ⇐⇒ f(Z, T ) is a variable in k[Z, T ].

We shall call a ring A defined in (11) an Asanuma threefold if f(Z, T ) is a non-trivial line in
k[Z, T ]. Thus, for m > 2, an Asanuma threefold is a non-trivial A2-fibration over k[x] which is
not isomorphic to k[3]. Recall that Asanuma made pioneering investigations on such a ring A;
for instance he considered the ring R mentioned in the introduction which was obtained from
Segre and Nagata’s non-trivial line f(Z, T ) = Zp

e
+ T + T sp, where pe - sp and sp - pe. In this

section, we shall see that, when m > 1, any Asanuma threefold is a counter-example to Zariski’s
cancellation problem for the affine 3-space A3

k in positive characteristic. Finally, we shall describe
the isomorphism classes of certain Asanuma threefolds.

We first prove an elementary lemma.

Lemma 4.1. Let k be a field and D an affine k-domain. Let F (X) ∈ D[X] and f := F (0).
Suppose that D/(f) = k[1]. Then D[X]/(Xm, F ) = (k[X]/(Xm))[1] for every m > 1.

Proof. Fix m. Let F (X) = f + XF1(X) for some F1(X) ∈ D[X]. Let h ∈ D be such that
D = k[h] + fD. Then D[X] = k[h][X] + fD[X], i.e.,

D[X] = k[h][X] + (F (X)−XF1(X))D[X] ⊆ k[h,X] +XD[X] + F (X)D[X] ⊆ D[X].

Thus,

D[X] = k[h] +XD[X] + F (X)D[X]

= k[h] +X(k[h] +XD[X] + F (X)D[X]) + F (X)D[X]

= k[h] +Xk[h] +X2D[X] + F (X)D[X]

· · ·
= k[h] +Xk[h] + · · ·+Xm−1k[h] +XmD[X] + F (X)D[X].

Hence, D[X]/(Xm, F (X)) = (k[X]/(Xm))[1]. 2
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Since any Asanuma threefold A is an A2-fibration over its subfield k[x] (Lemma 3.2), by a
theorem of Asanuma [Asa87, Proposition 2.5], we know that A[`] = k[x][2+`] for some ` > 0. We
now present a generalised version of Asanuma’s stability theorem [Asa87, Theorem 5.1] showing
that we actually have A[1] = k[x][3].

Theorem 4.2. Let k be any field of characteristic p (>0) and

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1.

Let f(Z, T ) := F (0, Z, T ) be such that k[Z, T ]/(f) = k[1]. Then

A[1] ∼=k[x] k[x][3] ∼=k k
[4],

where x denotes the image of X in A.

Proof. Let y be the image of Y in A. Since k[X,Z, T ] ↪→ A, identifying X, Z, and T with their
images in A, we have A = k[X,Z, T, y]. Let U be an indeterminate over k[X] and Ψ : k[X,
U ] −→ k[X,U ]/(Xm) be the natural surjective map. Since k[Z, T ]/(f) = k[1], by Lemma 4.1, we
have a surjective k-algebra homomorphism Φ : k[X,Z, T ] −→ k[X,U ]/(Xm) with kernel (Xm,
F (X,Z, T )) satisfying Φ(X) = Ψ(X). Let h(X,Z, T ) ∈ k[X,Z, T ] and P (X,U), Q(X,U) ∈ k[X,
U ] be such that

Φ(h) = Ψ(U), Φ(Z) = Ψ(P (X,U)) and Φ(T ) = Ψ(Q(X,U)).

Let W be an indeterminate over A. Set

W1 :=XmW + h(X,Z, T ),

Z1 :=
Z − P (X,W1)

Xm
,

T1 :=
T −Q(X,W1)

Xm
.

We show that A[W ] = k[X,Z1, T1,W1]. Set B := k[X,Z1, T1,W1]. We have

Z = P (X,W1) +XmZ1,

T =Q(X,W1) +XmT1,

y =
F (X,Z, T )

Xm
=
F (X,XmZ1 + P (X,W1), XmT1 +Q(X,W1))

Xm

=
F (X,P (X,W1), Q(X,W1))

Xm
+ α(X,Z1, T1,W1),

W =
W1 − h(X,Z, T )

Xm
=
W1 − h(X,XmZ1 + P (X,W1), XmT1 +Q(X,W1))

Xm

=
W1 − h(X,P (X,W1), Q(X,W1))

Xm
+ β(X,Z1, T1,W1)

for some α, β ∈ B. Since Ψ(F (X,P (X,U), Q(X,U))) = Φ(F (X,Z, T )), we see that

F (X,P (X,W1), Q(X,W1)) ∈ Xmk[X,W1] ⊆ XmB.

Thus y ∈ B. Also, since Ψ(h(X,P (X,U), Q(X,U))) = Φ(h(X,Z, T )) = Ψ(U), we see that

h(X,P (X,W1), Q(X,W1))−W1 ∈ Xmk[X,W1] ⊆ XmB.
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Thus W ∈ B. Hence, A[W ] ⊆ B. We now show that B ⊆ A[W ]. Now

Z1 =
Z − P (X,W1)

Xm
=
Z − P (X,XmW + h(X,Z, T ))

Xm
=
Z − P (X,h(X,Z, T ))

Xm
+ γ(X,Z, T,W )

and

T1 =
T −Q(X,W1)

Xm
=
T −Q(X,XmW + h(X,Z, T ))

Xm
=
T −Q(X,h(X,Z, T ))

Xm
+ δ(X,Z, T,W )

for some γ, δ ∈ A[W ]. Since Φ(Z − P (X,h)) = Ψ(P (X,U)) − Ψ(P (X,U)) = 0 and Φ(T −
Q(X,h)) = Ψ(Q(X,U))−Ψ(Q(X,U)) = 0, we have

Z − P (X,h) = a(X,Z, T )Xm + b(X,Z, T )F (X,Z, T )

and
T −Q(X,h) = c(X,Z, T )Xm + d(X,Z, T )F (X,Z, T ),

for some a, b, c, d ∈ k[X,Z, T ]. Hence,

Z − P (X,h)

Xm
= a(X,Z, T ) + b(X,Z, T )y

and
T −Q(X,h)

Xm
= c(X,Z, T ) + d(X,Z, T )y.

Thus, Z1, T1 ∈ A[W ]. Hence B ⊆ A[W ]. Since B = k[X][3], the result follows. 2

The next theorem highlights the non-triviality of Asanuma threefolds for m > 1.

Theorem 4.3. Let k be any field of characteristic p(>0) and f(Z, T ) ∈ k[Z, T ] be such that

k[Z, T ]/(f) = k[1] but k[Z, T ] 6= k[f ][1].

Let

A = k[X,Y, Z, T ]/(XmY − F (X,Z, T )) where m > 1 and F (0, Z, T ) = f(Z, T ).

Then A �k k[3].

Proof. Follows from Lemma 2.7 and Proposition 3.7(ii). 2

Corollary 4.4. Zariski’s cancellation conjecture does not hold for any Asanuma threefold A
defined by A = k[X,Y, Z, T ]/(XmY −F (X,Z, T )), where m > 1 and F (0, Z, T ) is any non-trivial
line in k[Z, T ].

Proof. Follows from Theorems 4.2 and 4.3. 2

Remark 4.5. Theorem 4.3 gives us a better understanding of the main theorem in [Gup14]; the
arguments are now independent of the characteristic of the field k. However, the hypotheses of
Theorem 4.3 are fulfilled only for characteristic p > 0 since, by a famous theorem of Abhyankar
and Moh and of Suzuki [Abh77, Corollary 9.21], there does not exist any non-trivial line in k[2]

when ch k = 0. As mentioned earlier, when ch k = p > 0, we do have non-trivial lines (e.g., the
Segre–Nagata lines f(Z, T ) = Zp

e
+ T + T sp, where pe - sp and sp - pe).

In the rest of this section (except for Remark 4.7) we shall consider an affine k-domain
A satisfying the hypotheses of Theorem 4.3 and use the notation x, y, z and t to denote the
images in A of X, Y , Z and T , respectively. We first compute the Derksen invariant and the
Makar-Limanov invariant of A.

Lemma 4.6. Let A be as in Theorem 4.3. Then DK(A) = k[x, z, t] and ML(A) = k[x].
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Proof. Since f(Z, T ) is a non-trivial line, DK(A) = k[x, z, t] by Proposition 3.7(ii). By Lemma 3.6,
ML(A) ⊆ k[x]. We now show that k[x] ⊆ML(A). Let φ be any non-trivial exponential map on A.
We show that x ∈ Aφ. Since tr.degk A

φ = 2, there exist two algebraically independent elements
α, β ∈ Aφ ⊂ DK(A) = k[x, z, t]. Let

α = xα1(x, z, t) + α0(z, t) and β = xβ1(x, z, t) + β0(z, t) for some α0, α1, β0, β1 ∈ k[3].

Suppose, if possible, that α0(z, t) and β0(z, t) are algebraically independent over k. Consider the
proper Z-filtration {An}n∈Z on A and the induced graded ring B = gr(A) of Lemma 3.3. For
h ∈A, let h̄ denote the image of h inB. Then ᾱ= α0(z̄, t̄) and β̄ = β0(z̄, t̄). Now, by Theorem 2.11,
φ induces a non-trivial homogeneous exponential map φ̄ on B such that k[α0(z̄, t̄), β0(z̄, t̄)] ⊆ Bφ̄.
By the structure of B, k[z̄, t̄] ∼= k[2] and hence α0(z̄, t̄) and β0(z̄, t̄) are algebraically independent

over k. By Lemma 2.8(ii), it follows that k[z̄, t̄]⊆ Bφ̄. Since x̄mȳ = f(z̄, t̄) ∈ Bφ̄, we have x̄, ȳ ∈ Bφ̄

by Lemma 2.8(i). But this contradicts the fact that φ̄ is non-trivial.
Hence, α0(z, t) and β0(z, t) are algebraically dependent. Thus, there exists a polynomial

H ∈ k[2] such that H(α0, β0) = 0. Therefore, H(α, β) ∈ xk[x, z, t] ⊂ xA. Since H(α, β) ∈ Aφ, we
have x ∈ Aφ by Lemma 2.8(i). Thus k[x] ⊆ ML(A). 2

Remark 4.7. (1) Let A be the coordinate ring of the affine threefold xmy = F (x, z, t), where
m > 1 and F (0, z, t) is a line in k[z, t]. Then it follows from Lemma 2.7, Theorem 3.11 and
Lemma 4.6 that either DK(A) = A (respectively, ML(A) = k) or DK(A) = k[x, z, t] (respectively,
ML(A) = k[x]), according as A = k[x][2] or A 6= k[x][2].

(2) Some of our results on Asanuma threefolds (stated for m > 2) are not true for m = 1.
For instance, in contrast to Lemma 4.6, the Derksen and Makar-Limanov invariants of an
Asanuma threefold A = k[X,Y, Z, T ]/(XY −F (X,Z, T )) are always trivial, i.e., DK(A) = A and
ML(A) = k. To see this, recall that k[x, z, t] ⊆ DK(A) and ML(A) ⊆ k[x] by Lemma 3.6.
Interchanging the role of x with y (which we can do only for m = 1), we also have k[y, z,
t] ⊆ DK(A) and ML(A) ⊆ k[y]. Therefore, DK(A) = k[x, z, t, y] = A and ML(A) = k[x]∩k[y] = k.
We still do not know whether A is isomorphic to k[3].

The following result shows that the ring of invariants of any non-trivial Ga-action on an
Asanuma threefold A (m > 1) is a polynomial ring in two variables.

Corollary 4.8. Let A be as in Theorem 4.3 and φ be a non-trivial exponential map on A.
Then Aφ = k[x][1].

Proof. By Lemma 4.6, x ∈ Aφ. Thus φ extends to a non-trivial exponential map φ1 on A1 :=
A[x−1] = k[x, x−1, z, t]. Since k[x, x−1] is a UFD and A1

φ1 is factorially closed in A1(= k[x,
x−1][2]), we have A1

φ1 = k[x, x−1][1] by Theorem 2.6. By Lemma 2.8(vi), we have Aφ[x−1] =
A1

φ1 = k[x, x−1][1]. By Lemma 3.2, x is prime in A and A/xA = k[2]. Since Aφ is factorially
closed in A, we have that x is prime in Aφ and xA ∩Aφ = xAφ and hence

k ↪→ Aφ/xAφ ↪→ A/xA = k[2].

Thus, k[x]/(x) is algebraically closed in Aφ/xAφ. Hence, by Theorem 2.2, Aφ = k[x][1]. 2

We shall now describe a necessary and sufficient condition for an endomorphism of an
Asanuma threefold A (for m > 1) to be an automorphism of A.

Proposition 4.9. Let A be as in Theorem 4.3 and ψ ∈ Autk(A). Then:

(i) ψ(k[x]) = k[x] and ψ(k[x, z, t]) = k[x, z, t].

(ii) ψ(I) = I, where I is the ideal (xm, F (x, z, t)).
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Proof. (i) Let ψ′ be the extension of ψ to A[U ] defined by ψ′(U) = U . Then, for any φ ∈ EXP(A),

ψ′φψ−1 is also an exponential map on A and hence

ψ(DK(A)) ⊆ DK(A) and ψ(ML(A)) ⊆ ML(A).

Thus, ψ(k[x, z, t]) ⊆ k[x, z, t] and ψ(k[x]) ⊆ k[x] by Lemma 4.6. Since ψ is an automorphism we

have ψ(k[x]) = k[x] and ψ(k[x, z, t]) = k[x, z, t].

(ii) Since ψ restricts to an automorphism of k[x], we see that ψ(x) = λx+µ for some λ ∈ k∗
and µ ∈ k. Now ψ(y) = F (ψ(x), ψ(z), ψ(t))/(ψ(x))m. Since ψ(y) ∈ A ⊆ k[x, x−1, z, t], there exists

an integer i > 0 such that xiψ(y) ∈ k[x, z, t]. Hence, xiF (ψ(x), ψ(z), ψ(t))/(λx+µ)m ∈ k[x, z, t].

If µ 6= 0, then (λx + µ)m | F (ψ(x), ψ(z), ψ(t)) in k[x, z, t], which would imply that ψ(y) ∈ k[x,

z, t] and hence ψ(A) ⊆ k[x, z, t], a contradiction. Thus, ψ(x) = λx and ψ(y) = F (ψ(x), ψ(z),

ψ(t))/λmxm.

Note that xmA ∩ k[x, z, t] = I. Thus, λmxmψ(y) = F (ψ(x), ψ(z), ψ(t)) ∈ I and hence, ψ(I)

⊆ I. Since ψ is an automorphism, we have ψ(I) = I. 2

We now prove the converse of Proposition 4.9.

Proposition 4.10. Let A be as in Theorem 4.3 and ψ be an endomorphism of the ring A

satisfying (i) and (ii) of Proposition 4.9. Then ψ is an automorphism of the ring A.

Proof. Since k[ψ(x)] = k[x] and ψ(I) = I, we must have ψ(x) = λx for some λ ∈ k∗. Since

ψ(k[x, z, t]) = k[x, z, t], we have that ψ is injective. Therefore, it is enough to show that y = F (x,

z, t)/xm ∈ ψ(k[x, z, t, y]), i.e., y ∈ k[x, z, t, ψ(y)]. Since F (x, z, t) ∈ ψ(I), we have F (x, z, t) =

α′xm+β′F (ψ(x), ψ(z), ψ(t)) for some α′, β′ ∈ k[x, z, t]. Hence y = F (x, z, t)/xm = α′+β′λmψ(y) ∈
k[x, z, t, ψ(y)]. 2

Finally, we investigate the isomorphism classes of Asanuma threefolds of the form

A(m, f) := k[X,Y, Z, T ]/(XmY − f(Z, T )) where m > 2,

k is a field of positive characteristic and f is a non-trivial line in k[Z, T ]. By Theorem 4.2,

we have A(m, f)[1] ∼= k[4]. The next result describes the condition when two such rings are

isomorphic. (In fact the proof will also show that two affine threefolds xmy = F (x, z, t) and

xny = G(x, z, t) will be isomorphic only if m = n and there exists an automorphism θ of k[z, t]

satisfying θ(F (0, z, t)) = εG(0, z, t) for some ε ∈ k∗.)

Theorem 4.11. A(m, f) is isomorphic to A(n, g) if and only if m= n and there exists a k-algebra

automorphism θ of k[Z, T ] such that θ(g) = δf for some δ ∈ k∗.

Proof. Clearly, if m = n and θ(g) = εf for some θ ∈ Autk(k[Z, T ]) and ε ∈ k∗, then

A(m, f) ∼= A(n, g).

Set A := A(m, f) = k[x, y, z, t] and B := A(n, g) = k[x1, y1, z1, t1], where x, y, z, t

(respectively, x1, y1, z1, t1) denote the images of X,Y, Z, T in A (respectively, B).

Suppose that there exists a k-algebra isomorphism ψ : B −→ A. Replacing B by ψ(B), we

may assume that B = A. By Lemma 4.6, we have ML(A) = k[x] = k[x1] and DK(A) = k[x,

z, t] = k[x1, z1, t1]. Hence, x1 = λx + µ for some λ ∈ k∗ and µ ∈ k. Now y1 = g(z1, t1)/x1
n

and y1 ∈ k[x, z, t, x−1]. Hence, there exists an integer i > 0 such that xiy1 ∈ k[x, z, t], i.e.,

xig(z1, t1)/(λx + µ)n ∈ k[x, z, t]. If µ 6= 0, then (λx + µ)n | g(z1, t1) in k[x, z, t], which implies
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that y1 ∈ k[x, z, t]. Thus k[x1, z1, t1, y1] ⊆ k[x, z, t], a contradiction. Therefore, x1 = λx for some
λ ∈ k∗. Now, since xA ∩ k[x, z, t] = x1A ∩ k[x1, z1, t1], we have

(x, f(z, t))k[x, z, t] = (x1, g(z1, t1))k[x, z, t]. (12)

Therefore, since x1 = λx, by (12), we have f(z, t) = εg(z1, t1) + x1g1(x1, z1, t1) for some ε ∈ k∗
and g1(x1, z1, t1) ∈ k[x1, z1, t1].

Suppose, if possible, that m > n. Set m := nq− r, where q, r ∈ Z>0 and 0 6 r < n. Note that
q > 1. Since y ∈ A = k[x1, y1, z1, t1], we have

y =
f(z, t)

xm
= h1(x1, z1, t1) +

∑
06i<n,0<j

hij(z1, t1)x1
iy1

j ,

where h1(x1, z1, t1) ∈ k[x1, z1, t1] and hij(z1, t1) ∈ k[z1, t1]. Thus,

f(z, t)

xm
= ελm

g(z1, t1)

x1
m

+ λm
g1(x1, z1, t1)

x1
m−1

= h1(x1, z1, t1) +
∑

06i<n,0<j

hij(z1, t1)x1
i

(
g(z1, t1)

x1
n

)j
.

Comparing the coefficient of x1
−m from both sides, we get ελmg(z1, t1) = hrq(z1, t1)(g(z1, t1))q.

Since q > 1 and g(z1, t1) /∈ k∗, we have a contradiction. Hence m 6 n. Similarly, we have n 6 m.
Therefore, m = n.

Let z1 = α(x, z, t) and t1 = β(x, z, t). Then, since k[x, z, t] = k[x1, z1, t1] and x1 = λx, we have
k[z, t] = k[α(0, z, t), β(0, z, t)]. Now, by (12), we have f(z, t) = εg(α(0, z, t), β(0, z, t)). Consider
the automorphism θ of the the ring k[z, t] such that θ(z) = α(0, z, t) and θ(t) = β(0, z, t). Then
θ(g) = ε−1f . Hence the result. 2

Thus the Asanuma threefolds provide an infinite family of non-isomorphic affine rings which
are stably isomorphic to k[3].
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