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LINEAR MAPPINGS PRESERVING SQUARE-ZERO MATRICES

PETER SEMRL

Let sln denote the set of all n x n complex matrices with trace zero. Suppose
that 4> : sln —* sln is a bijective linear mapping preserving square-zero matrices.
Then <j> is either of the form <j>(A) = cUAU'1 or (f>(A) = cUA'U'1 where U is
an invertible n X n matrix and c is a nonzero complex number. The same result
holds if we assume that <j> is a linear mapping preserving square-zero matrices in
both directions. Applying this result we prove that a linear mapping <f> defined on
the algebra of all n X n matrices is an automorphism if and only if it preserves
zero products in both directions and satisfies 4>(I) = I. An extension of this last
result to the infinite-dimensional case is considered.

1. INTRODUCTION AND STATEMENT OF THE RESULTS

The problem of characterising linear operators on matrix algebras that leave invari-
ant certain functions, subsets or relations has attracted the attention of many mathe-
maticians in the last few decades [4]. It seems that the systematic study of such map-
pings begins with the paper of Marcus and Moyls [5]. They proved that every linear
operator defined on a matrix algebra that preserves the spectrum is either an automor-
phism or an antiautomorphism. This result was extended by Howard [3] who obtained
the general form of bijective linear mappings that preserve the set of all matrices anni-
hilated by a given polynomial with at least two distinct roots. Let a be an arbitrary
complex number and p a polynomial given by p(A) = (A — a) for some positive inte-
ger k, k ^ 2. If <j> is a linear mapping on Mn that preserves the set of all matrices
annihilated by p then the hnear transformation <p defined by <p(A) = <f>(A + al) — al
preserves nilpotent matrices of nilindex not more than k. So, in order to get the com-
plete description of all hnear mappings that preserve the set of all matrices annihilated
by a given polynomial, it suffices to study hnear mappings preserving nilpotents of
nilindex at most k, 2 ^ k ^ n. We denote by sln the subspace of all matrices with
trace zero. It is easy to see that the hnear span of all nilpotent matrices is sln [1].
Thus, when studying hnear preservers of nilpotents of a bounded nilindex, we assume
that these mappings are defined on sln.
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The case k = n was treated in [1] where it was proved that a linear bijective
mapping on aln that preserves nilpotent matrices differs from an automorphism or an
antiautomorphism by a multiplicative constant. It is the aim of this note to solve the
above mentioned problem in the case k = 2.

A matrix A is square-zero if A2 = 0. A mapping <f>: sln —* sln preserves square-
zero matrices if A E sln and A2 = 0 imply $(A) = 0. We say that a mapping <f>
preserves square-zero matrices in both directions if for every A £ sln the matrix <f>(A)
is square-zero if and only if A2 = 0. Our first result is

THEOREM 1 . Let <f> : sln —> a/n be a linear mapping preserving square-zero
matrices in both directions. Then <f> is either of the form

(1) 4>{A) = cUAU'1

or

(2) <f>{A) = cVAxU~x

where U G Mn is an invertible matrix and c G C is a nonzero number.

It follows from [2, Lemma 1] that if a linear bijective mapping <j> : sln > sln pre-
serves square-zero matrices in one direction, then it preserves them in both directions.
This yields together with Theorem 1 the following result.

COROLLARY 2 . Assume that <f> : sln —> sln is a bijective Hnear mapping pre-
serving square-zero matrices. Then <j> is either of the form (1) or of the form (2).

In the above result the bijectivity assumption is indispensable. Namely, let V C sln

be a subalgebra of square zero (that is, A,B £V implies AB — 0). Then every linear
mapping <f>: sln —> V C sln preserves square-zero matrices.

A mapping <f> on Mn preserves zero products in both directions if for any two
matrices A,B G Mn the relation <j>(A)<j>(B) = 0 holds if and only if AB — 0. Another
simple consequence of Theorem 1 is:

COROLLARY 3 . Let <f> : Mn —> Mn be a linear mapping preserving zero prod-
ucts in both directions. Assume also that <j>(I) = I • Then <j> is an automorphism of
the algebra Mn.

The same result is not valid in the infinite-dimensional case. Let H be an infinite-
dimensional Hilbert space and B(H) the algebra of all bounded hnear operators. The
mapping <j> : B(H) —> B(H © H) given by <f>(T) — T@T preserves zero products in
both directions and satisfies <I>(I) = I • However, it is not an automorphism. In order to
extend Corollary 3 to the infinite-dimensional case we have to assume that the mapping
<f> is also surjective.

THEOREM 4 . Let X be a Ba.na.ch space, dimX > 1, and B(X) the algebra of
all bounded linear operators on X. Then a linear mapping <f> from B(X) onto B(X)
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is an automorphism if and only if <f> preserves zero products in both directions and

satisSes <f>(I) = I •

2. PROOFS

In order to prove Theorem 1 we shall need the following Lemma.

LEMMA 5 . Let A be a nonzero n x n complex matrix satisfying A2 = 0. Then
the following conditions are equivalent.

(i) rank^ = l .

(ii) dim (span{5 £ sln : B2 = 0 and (A + B)2 = 0}) ^ n(n - 2).

PROOF: In the case n = 2 there is nothing to prove. So, let us assume that n > 2.
Let A be a rank one matrix. We can assume that A is of the form

J O2.n_2

.0n_2,2 0 n .»-2,n-2/

where =(0 l

w h i l e Oij d e n o t e s t h e z e r o m a t r i x of d i m e n s i o n ixj. T h e s e t of a l l ixj m a t r i c e s sha l l
b e d e n o t e d b y Mij. I t is e a s y t o s e e t h a t m a t r i c e s h a v i n g t h e f o l l o w i n g f o r m s

o c \ ( ° ° 0l-2 \ ( o2i2 o2,n_2\
\Un-2,l V 0n_2,n-2/

where C £ Mi<n-i, D £ Mn-2,i, E £ sln-2, belongs to span{2? : B2 =
0 and (A + B)2 = 0}. It follows that the condition (ii) is fulfilled.

In order to prove the reverse implication we consider a square-zero matrix A sat-
isfying rank A = k > 1. Assume with no loss of generality that A is of the form

A=

02,2

02,2

02,2

02)2

02,n_2jt

02,n-2Jb

02,2 02,2 . . . J 0 2 > 7 1 _ 2 f c

3n-2fc,2 0 n - 2 t , 2 • • • 0 n -2 fc ,2 0 n - 2 * , n - 2 J b ,

Let us write an arbitrary square-zero matrix B satisfying (A + B)2 = 0 in the form

(3)

... Blk

... Xk Zj
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w h e r e B ^ G M2, Xt G Mn-2k>2, Yj G M2,n-2k, i,j = l,...k, a n d Z G M n - 2 k , n - 2 k •
It follows from A2 = B2 = (A + B)2 - 0 that AB + BA = 0, and consequently,
3B^ + BijJ = 0, XiJ = 0, and JYj = 0 for all i,j = 1 , . . . , k. A straightforward
computation shows that matrices Bij, Xi, and Yj have the form

(4) * «

(5) X, = ( 0 n _ 2 M X ! ) ,

and

(6) ^ = ( n ^ ' ) '

Let us first consider the case n > 2k. Clearly, we have trB = 0. Applying (4) we get
trZ = 0. This yields together with (4), (5), and (6) that

(7) dim (span{.B G sln : B2 = 0 and (A + B)2 = 0}) ^

n2 - 2k2 - 2k{n - 2k) - 1 = (n - kf + k2 - 1.

It follows from k ^ 2 that n — fc ^ n — 2. The assumption n > 2k implies together
with k ^ 2 that A; - n + 2 < 0. Thus,

dim (span{£ G s/n : B 2 = 0 and (A + B)2 = 0})

< (n - Jfc)(n - 2) + A;2 - 1 = n{n - 2) + k(k - n + 2) - 1 < n(n - 2),

which completes the proof in the case n > 2k. If n = 2k then the matrix Z in the
block form (3) of B has dimension 0 x 0 . For n — 2k > 4 the left-hand side of (7)
becomes n 2 — 2fc2 = 2fc2 < 4fc2 - 4k = n(n — 2). So, it remains to consider the case
(n, Jb) = (4,2). A straightforward computation shows that in this case the relation
B2 = 0 implies a n = — a22- One can now easily complete the proof. D

PROOF OF THEOREM 1: First, we shall prove that <j> is bijective. Assume that
A is a nonzero matrix satisfying <f>(A) = 0. Let x and y be nonzero column vectors
such that Ax = y. Now <j> preserves square-zero matrices in both directions, and
consequently, A2 = 0. It follows that x and y are linearly independent. This yields
the existence of a column vector z such that zxx = 0 and z*y = 1. Let us define a
square-zero matrix B = xz*. It follows from 0 = (<f>(B))2 = (<j>(A + B))2 that A + B

is square-zero. On the other hand, we have (A + B)2x = x. This contradiction shows
that <f> is bijective.

It follows from Lemma 5 that the bijective linear mapping <f>: sln —* sln preserves
nilpotents of rank one in both directions. It was proved in [l] that such mappings are
necessarily of the form (1) or (2). D
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We have already mentioned that Corollary 2 follows immediately from Theorem 1
and [2, Lemma 1]. One can easily prove CoroUary 3 using Theorem 1 and the direct sum
decomposition Mn = CI @ sln. We shall omit this proof because Corollary 3 follows
also from Theorem 4 as soon as we prove that <f> is one-to-one. It shall be the first
step in the proof of Theorem 4 to show that every linear mapping <j>: B(X) —> B(X)
preserving zero products in both directions is injective.

Let X be a Banach space. By F(X) we denote the ideal of all operators in B(X)

of finite rank. For any x £ X and / £ X' we denote by x ® / the linear bounded rank
one operator on X defined by [x ® f)y = f(y)x for y £ X. Note that every operator
of rank one can be written in this form.

PROOF OF THEOREM 4: Clearly, every automorphism on B(X) preserves zero
products in both directions. In order to prove the reverse implication we assume that
4>{I) = I and that <j> preserves zero products in both directions. First we shall show
that <j> is injective. Let A £ B{X) be a nonzero operator. It is an easy consequence of
the Hahn-Banach theorem that there exists B £ B(X) such that AB ^ 0. It follows
that <f>(A)<j>(B) ^ 0, and consequently, <f>(A) ^ 0.

Our next step shall be to show that <f> preserves idempotent operators in both
directions. Indeed, a hnear bounded operator P on X is idempotent if and only if
P(I — P) = 0. According to our assumptions this is equivalent to <j>(P)(I — <j>(P)) = 0.
This last relation is fulfilled if and only if <f>(P) is idempotent.

Next, we shall show that $ preserves idempotents of rank one. Let P be an
idempotent operator of rank one such that <t>(P) has rank greater than one. Then we
have <f>{P) — Qi + Q2 = <j>{Pi) + ^>(Pi) for some nonzero idempotents Q\, Q2, Pi, P2 •

This yields P — Pi + P2 - a contradiction. The same conclusion holds for ^~ 1 , and
consequently, <f> preserves projections of rank one in both directions. It follows from [6,
Proposition 2.6] that there exists either a bounded linear invertible operator U on X

such that 4>(A) = UAU*1 for all A £ F(X), or a hnear bounded invertible operator
V : X' —> X such that <t>{A) = VA'V-1 for all A £ F(X). Here, X' denotes the
dual of X and A' denotes the adjoint of A. The second case can not occur. Namely,
in this case we would have for an arbitrary pair A, B E F(X) that AB = 0 if and only
if <f>(A)<f>(B) = 0 which is equivalent to BA = 0. But this certainly is not true.

Define <p : B(X) —> B(X) by <p(A) = l / - 1 ^ ^ . Obviously, <p is a bijective
hnear mapping on B(X) preserving zero products in both directions, and <p(A) — A

for every A £ F(X). Let A be an arbitrary operator from B(X) and x an arbitrary
vector from X. Choose / £ X' such that f(x) = 1. We define y = Ax. Then we have
(A — y ® f)(x ® / ) = 0 which implies (ip{A) — y® f)(x ® / ) = 0. As a consequence we
get <fi(A)x = y. Hence, <p maps every operator from B(X) into itself. This completes
the proof. Q
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