
5 

Long-time asymptotics 

For any dynamical system one of the first qualitative issues is to understand 
whether there are general patterns governing the long-time behavior. In this spirit 
we plan to study the long-time asymptotics of the Abraham model with prescribed 
external potentials. The basic mechanism at work is the loss of energy radiated to 
infinity, which is proportional to v(t) 2 according to Larmor's formula. Since the 
energy is bounded from below, we expect 

lim v(t) = 0 
t--+00 

(5.1) 

under rather general conditions. In fact, one would also expect that the velocity 
tends to a definite limit, 

lim v(t) = V 00 E V, 
t--+00 

(5.2) 

which leaves us with two qualitatively rather different cases. 

(i) v00 = 0. The charged particle comes to rest confined by the external potentials. 
(ii) v00 =J. 0. The charge escapes into a region with zero external potentials and 

travels there with constant velocity. 

If we take also the asymptotics fort --+ -oo into account, then four familiar cases 
arise: excitation by incident radiation and subsequent relaxation, (i)--+ (i); ioniza
tion, (i)--+ (ii); capture through radiation losses, (ii)--+ (i); and scattering of light 

from a freely moving charged particle, (ii)--+ (ii). 
There must be a corresponding long-time asymptotic for the radiation field. It 

consists of a part attached to the motion of the particle and a part scattered to 
infinity. Thus a more complete description of the long-time solution is 

Y(t) ~ Sq(t).v(t) + (Eout(t), Bout(t), 0, 0) (5.3) 
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5. 1 Radiation damping and the relaxation of the acceleration 55 

for large t. Here Sq(t),v(t) is the charge soliton at the current position and momen
tum and Eout(t), Bout(t) are the solution of the homogeneous Maxwell equations 
with appropriately adjusted initial conditions, the scattering data which depend on 
Y(O). 

At present two techniques are at hand for establishing a limit like (5.3). The first 
one exploits the fact that energy cannot be radiated to infinity forever. This route 
requires that all field modes are coupled to the particle as expressed by the 

Wiener condition (W): 

cp(k) > 0 0 (5.4) 

The second route is based on a contraction method. It needs no extra condition and 
gives explicit convergence rates. However, it requires lei to be sufficiently small, 
i.e. lei < e with a suitable e depending only on the initial energy. Presumably (W) 

and e are artifacts of our mathematical technique. 

5.1 Radiation damping and the relaxation of the acceleration 

We will establish the limit (5.1) under the Wiener condition, but otherwise in com
plete generality. The proof follows rather closely physical intuition and leads to an 
equation of convolution type which has a definite long-time limit. 

Let us consider a ball of radius R centered at the origin. At time t the sum of 
the field energy in this ball and of the mechanical energy of the particle is given by 

ER(t) = E(t)- ~ J d3 x(E(x, t)2 + B(x, t)2) 

{lxi::=:R} 

(5.5) 

provided R is sufficiently large. Using the conservation of total energy, E(t) = 
£(0), ER changes in time as 

d 2/2 ~ ~ ~ - ER(t) = -R d w w · [E(Rw, t) x B(Rw, t)], 
dt 

(5.6) 

where w is a vector on the unit sphere, d2w the surface measure normalized to 4rr, 

and E x B the Poynting vector for the flux in energy at the surface of the ball under 
consideration. Since the total energy is bounded from below, we conclude that 

R+t 

ER(R)- ER(R + t) =- J ds ~ ER(s) :S C 

R 

with the constant C = £ (0) - ¢ independent of R and t. 

(5.7) 
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In (5.7) we first take the limit R --+ oo, which yields the energy radiated to 
infinity during the time interval [0, t] through a large sphere centered at the origin. 
Subsequently we take the limit t --+ oo to obtain the total radiated energy. To state 
the result let us define 

~ e I 3 ~ E 00 (w, t) = -- d· y cp(y- q(t + w · y)) 
4rr 

(5.8) 

which is a functional of the actual trajectory of the particle. Whatever its motion 
we must have 

(5.9) 

Note that the integrand in (5.9) is proportional to v(t) 2 , which therefore is expected 
to decay to zero for large t. 

To establish (5.9) is somewhat tedious with pieces of the argument explained 
in the section below and in section 8.5. One imagines that the trajectory t c-+ q(t) 

is given and solves the inhomogeneous Maxwell-Lorentz equations according to 
(2.16), (2.17). If the time-zero fields are in MIT, 0 < a _:::: 1, see the definition 
(2.49), then Eini(t) and Bini(t) decay as stated in (5.28). Therefore lctdv ER(s)l < 

CR2 (1 + s)_2_ 21T and the contribution to (5.7) from the initial fields vanishes in 
the limit R --+ oo. Next one has to study the asymptotics of the retarded fields, 
which is carried out in section 8.5. There£ is fixed, and for our purpose we may 
set£ = 1. In addition in (8.48) the sphere of radius R is centered at q 8 (t), rather 
than at the origin. This means, in the present context one can use the asymptotics 
(8.51 ), (8.52) as R --+ oo with qF; (t) replaced by 0. Combining both arguments 
proves that (5.9) follows from (5.7) in the limit R --+ oo. 

The real task is to extract from (5.9) that the acceleration vanishes for long 
times. 

Theorem 5.1 (Long-time limit of the acceleration). For the Abraham model sat

isfying (C), (P), and the Wiener condition (W) let the initial data be Y(O) = 
(E0 , B0 , q 0 , v0 ) EMIT with 0 <a _:::: 1. Then 

lim v(t) = 0. 
t--+00 

(5.10) 

Proof: By energy conservation lv(t)l _:::: v < 1. Inserting in (2.41) and using (P) 

we conclude that lv(t)l _::::C. Differentiating (2.41) and using again (P) also 
lv(t)l _:::: C uniformly in t. Therefore E 00 (w, t) is Lipschitz continuous jointly in 
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w, t. Since the energy dissipation (5.9) is bounded, this implies 

lim E 00 (w, t) = 0 
t--+00 

(5.11) 

uniformly in w. 
We analyze the structure of the integrand in (5.8). The retarded argument de

pends only on Yll = w · y. Therefore the integration over y 1_ = y - Yll w can be 
carried out and we are left with a one-dimensional integral of convolution type. 

We set Cf!a(X3) = J dx1 dx2 cp(x). Then 

~ e f Eoo(w, t) = 4;r dy11 Cf!a(YII- qll(t + Yll)) 

X [(1- W · v)-2w X ((w- v) X v)]lt+yll 

= _!__ J dscpa(t- (s- qll (s))) 
4rr 

X [ (1 - w 0 v) - 2w X ( (w - v) X v)] Is 0 (5.12) 

Since 1411 (s) I < 1, we can substitute e = s - qll (s) and obtain the convolution rep
resentation 

Eoo(w, t) = f de cpa(t - e)gw(e) = Cf!a * Kw(t), (5.13) 

where 

Kw(e) = 4: [(1- W · v)-2w X ((w- v) X v)Jis(li). (5.14) 

From (5.11) we know that lim Cf!a * Kw(t) = 0. Ifi,O(ko) = 0 for someko, hence 
t--+00 

i,O violating the Wiener condition, then we could choose g w (e) periodic with fre-
quency lkol and still have Cf!a * Kw(t) = 0. At this point no further progress seems 
to be possible. However under the Wiener condition (W) and with the smoothness 
of Kw(e) already established, Pitt's extension to the Tauberian theorem of Wiener 
assures us that 

lim Kw(e) = o, 
11--+oo 

(5.15) 

which, since e (t) ---+ oo as t ---+ oo, implies 

lim W X ((w- v(t)) X v(t)) = 0 
t--+00 

(5.16) 

for every w in the unit sphere. Replacing w by -w and summing both expressions 
yields w x (w x v(t)) ---+ 0 as t ---+ oo. Since this is true for every w, the claim 
follows. D 
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Note that by fiat Theorem 5.1 avoids any claims as regards the convergence of 
(q(t), v(t)) as t--+ oo. 

Since the acceleration vanishes for large times, the comoving electromagnetic 
fields will adjust locally to the appropriate charge soliton. We established already 
that Eini(t) and Bini(t) decay. Thus one only has to consider the retarded fields 
Eret(X + q(t), t), Bret(X + q(t), t) relative to the position ofthe particle and com
pare them with the soliton fields Ev(t)(X), Bv(t)(x) at the current velocity. For 
this purpose one uses the representations (4.31), (4.32) for the charge soliton and 
(2.16), (2.17) for the retarded fields. We insert the explicit form (2.15) of the prop
agator. This yields 

Ev(x) = e J d3y (4nlx- yl)- 1(1x- Yl- 1cp(y- vlx- yl)n 

+v·Y'cp(y-vlx-yl)(v-n)), (5.17) 

Bv(x) = e J d3 y(4n lx- y l)-1n x (- lx- y l-1cp(y - lx- y lv)v 

+v · V'cp(y -lx- ylv)v), (5.18) 

where n = (x - y) I lx - y 1. Similarly for the retarded fields 

Eret(X + q(t), t) = J d3 y (4n lx- y 1)-1 (lx- y l-1cp(y + q(t) - q(r))n 

+ v(r). V'cp(y + q(t)- q(r))(v(r)- n) 

- cp(y + q(t)- q(r))v(r)), (5.19) 

Bret(X + q(t), t) = J d3y(4nlx- yl)- 1n x (- lx- Yl- 1cp(y + q(t) 

- q(r))v(r) + v(r) · V'cp(y + q(t)- q(r))v(r) 

- cp(y + q(t)- q(r))v(r)), (5.20) 

where r = t- lx- yl and t :=:: trp = 2Rrp/(I - v). 

We compare the fields locally and use the result that lim v(t) = 0. Then, for 
t-+CXJ 

any fixed R > 0, 

lim 
t-+CXJ 

J d3x( (E(x + q(t), t)- Ev(t)(X) ) 2 

{lxl:c:R} 

+ (B(x + q(t), t)- Bv(t)(x) ) 2) = 0. (5.21) 

The scattered fields are not covered by (5.21) and will be studied in section 5.3. 
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5.2 Convergence to the soliton manifold 59 

5.2 Convergence to the soliton manifold 

In the case of zero external potentials, in essence any solution Y (t) rapidly con
verges to the soliton manifoldS as t --+ oo, in particular v(t) --+ v 00 • Such behav
ior will be of importance in the discussion of the adiabatic limit, see chapter 6, 
where it will be explained that in the matching to a comparison dynamics one 
cannot use the naive v(O) but instead must take v00 • For hydrodynamic boundary 
value problems such a property is known as the slip condition, since the extrap
olation from the bulk does not coincide with the boundary conditions imposed 
externally. 

To prove the envisaged behavior we need a little preparation. Firstly we must 
have some decay and smoothness of the initial fields at infinity. We already intro
duced such a set of "good" initial data, Ma, compare with (2.49), and therefore 
require here Y (0) E Ma, 0 < a _:::: I. Secondly, we need a notion for two field 
configurations being close to each other. At a given time and far away from the 
particle the fields are determined by their initial data. Only close to the particle are 
they Coulombic. Therefore it is natural to measure closeness in the local energy 
nann defined by 

for given radius R. 

1 
II(E, B)ll~= 2 J d3x(E(x)2 + B(x)2) 

{lxi::OR} 

(5.22) 

The true solution is Y(t) = (E(x, t), B(x, t), q(t), v(t)) which is to be com
pared with the charge soliton approximation (Evco(x- q(t)), Bv(t)(X- q(t)), 
q(t), v(t) ). We set Z1 (x, t) = E(x, t)- Ev(t)(X- q(t)), Zz(x, t) = B(x, t)

Bv(t) (x - q (t)), Z = (Z 1, Zz) and want to establish that liZ(- + q (t), t)ll R--+ 0 
for large times at fixed R. 

Proposition 5.2 (Long-time limit for the velocity). For the Abraham model with 
zero external potentials and satisfying (C) let lei _:::: e with sufficiently small e and 
let the initial data be Y(O) E Ma for some a E (0, 1]. Then for every R > 0 we 
have 

liZ(· +q(t), t)IIR _:::: CR(1 + ltl)-1-a. (5.23) 

In addition, the acceleration is bounded as 

lv(t)l .:=:: C(1 + ltl)- 1-a (5.24) 

and there exists a V 00 E V such that 

lim v(t) = V 00 • 
t-+CXJ 

(5.25) 
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Proof: Using the Maxwell equations together with the identities (v · \7) Ev = 
-\7 x Bv + ecpv, ( v · \7) Bv = \7 x Ev one obtains 

d 
-Z(t) = AZ(t) - g(t), 
dt 

(5.26) 

where A is defined in (2.18) and g(t) has the components ( v(t) . \7 v)Ev(X - q (t)), 
(v(t) · Y'v)Bv(x- q(t)), and therefore 

Z(t) = U(t)Z(O)- lot ds U(t- s)g(s) (5.27) 

with U(t) =eAt. 

For the first term we note that Z 1 (x, 0) = E 0(x)- EtfJ(X- q0 ), Z 2 (x, 0) = 

B 0(x)- BtfJ(X- q0 ) E Mer by assumption. Using the solution of the inhomo
geneous Maxwell-Lorentz equations in position space and the bound (2.49) one 
has 

IZI (x, t)l + IZ2(X, t)l ::: c t-2 I d3y o(lx- Yl- t)(IZI (y, 0)1 + IZ2(y, 0)1) 

+ c t- 1 I d3y o(lx- Yl- t)(IY'ZJ (y, 0)1 

+ IY'Z2(y, 0)1) 

::: c t-2 I d3y o(lx- Yl- t)(l + IYI)-1-cr 

+C t- 1 I d3y o(lx- y I - t)(l + IY 1)-2
-(T 

::: c (1 + t) -J-CT • (5.28) 

The integrand in the second term of (5.27) will be estimated in section 7.3 with the 
bound 

compare with (7.36). 
We chooseR ::::_ R'P. From (5.29) and (5.28) 

liZ(·+ q(t), t)IIR:::; C(l + t)- 1-cr 

+ C(v)e2 lot ds (1 + (t- s)2)-1 11Z(- + q(s), s)IIR. (5.30) 
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5.3 Scattering theory 

Let K =sup (1 + t)l+a liZ(-+ q(t), t)IIR· Then 
t::':O 

which implies K < oo provided C(v) e2 is sufficiently small. 

61 

(5.31) 

To estimate the decay rate for the acceleration we start from Newton's equations 
of motion in the form 

d 
-(mbyv(t)) = e(Ecp(q(t))- Ev(t)cp(O) + v X (Bcp(q(t))- Bv(t)cp(O))), 
dt 

(5.32) 

which uses the fact that the force from the soliton field vanishes. By energy con
servation lv(t) I :S v < 1. Therefore (5.32) implies 

lv(t)l :S CeiiZ(·+q(t),t)IIRq? (5.33) 

and (5.24) follows from (5.23). Since v(t) = v(O) + J~ ds v(s), one has lv(t) -
Vool :S C (1 + ltl)-a. D 

5.3 Scattering theory 

We still have to provide an analysis of the scattered wave. Our results are somewhat 
fragmentary and we start with an easy and sufficient integrability condition. 

Theorem 5.3 (Existence of scattering solutions). For the Abraham model satis
fying (C) and (P) let Y(t) EM be a solution. If 

fooo dtlv(t)l < oo, (5.34) 

then there exist scattering data (Esc, Bsc) such that 

lim (IIE(t)- Evu)(· -q(t))- Esc(t)ll 
t--+00 

+ IIB(t)- Bv(t)(·- q(t))- Bsc(t)ll) = 0, (5.35) 

where (Esc(t), Bsc(t)) = U(t)(Esc, Bsc) propagate according to the homoge
neous Maxwell-Lorentz equations. 

Note that in (5.35) the difference is in the global energy norm and therefore 
carries the information on the scattered wave. 
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Proof The difference in (5.35) is Z(t) by definition. (5.26) remains valid in the 
presence of external forces, which means that 

Z(t) = U(t)(Z(O)- lot dsU(-s)g(s)). (5.36) 

We set 

Esc(X) = E 0(x)- Evo(x- q0)-100 
dt(v(t) · 'lv)Ev(X- q(t)), 

Bsc(x) = B 0(x)- Bva(x- q0)-100 
dt(v(t) · 'lv)Bv(x- q(t)). (5.37) 

Since I v(t) I :::; iJ < 1, the integrands have uniformly bounded energy norm. Thus 
by assumption (5.34) the integrals converge in M and define (Esc. Bsc) EM. 
Hence (5.35) follows. D 

There are two cases of interest for which the integrability condition (5.34) can 
be checked. 

(i) Compton scattering (zero external potential). If lei :::; e, then by (5.24) 
lv(t)l :::; C(l + ltl)-l-a which implies (5.34). For a freely moving charge the 
asymptotic motion is rectilinear and the scattered waves propagate according to 
the free Maxwell equations. Such a result also applies to a charge reaching an 
essentially potential-free region. The standard example is a charge scattered by 
an infinitely heavy nucleus. For sufficiently long times the incident fields have de
cayed already and we assume that the charge has reached, with its velocity pointing 
outwards, a large sphere centered at the nucleus. Then the external force decays as 
I j t2 which combined with Theorem 5.3 yields the desired asymptotics. 

(ii) Rayleigh scattering (bounded motion). Under the Wiener condition (W) we 
already know that limt---+oo v(t) = 0. If in addition the motion is bounded, 

lq(t)l :::: q (5.38) 

for all t, then necessarily 

lim v(t) = 0, 
t---+00 

(5.39) 

i.e. the particle comes to rest. Inserting in Newton's equations of motion (2.34) and 
using the fact that the fields become locally soliton-like, we infer that 

lim V</Jex(q(t)) = 0. 
t---+00 

(5.40) 

Let us define the set A of critical points for the potential <Pex. A = {q IV <Pex (q) = 

0}. By (5.40), q(t) approaches A as a set. If A happens to be a discrete set, then, 
by the continuity of solutions in t, q (t) has to converge to some definite q * E A. 
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Such reasoning yields no rate of convergence. The situation improves in the case 
where q* is a stable local minimum of ¢ex· We linearize the Maxwell equations at 
Y* = Sq* .O· The solution to the linearized equations converges exponentially fast 
to zero. Therefore, once q (t) is in the vicinity of q *, the velocity decays exponen
tially ensuring (5.34). In particular, if ¢ex is strictly convex and if (W) holds, then 
the asymptotics (5.35) of Theorem 5.3 hold for every Y (0) E M. 

A standard situation not covered by (i) and (ii) is the motion in a uniform mag
netic field. Even if one assumes that the motion is bounded, one can only conclude 
that v(t) --+ 0. The attractor A equals JR3. Physically one would expect the charge 
to spiral inwards and to come to rest at its center of gyration. Another instruc
tive example is the motion in a confining ¢ex with a flat bottom, say {x llx I _:::: 1} 
and Aex = 0. Each time the particle is reflected by the confining potential, it loses 
energy. Thus v(t) --+ 0 as t --+ oo, but q (t) has no limit. 

Notes and references 

Section 5.1 

The long-time asymptotics are studied in Komech and Spohn (2000), where the 
details of the proof can be found. See also Komech, Spohn and Kunze (1997). 
Pitt's version of the Wiener theorem is proved in Rudin (1977), Theorem 9.7(b). 
We remark that Theorem 5.1 provides no rate of convergence. Thus to investigate 
the asymptotics of the velocity and position requires extra considerations. 

Theorem 5.1 can also be read that under the Wiener condition the Abraham 
model admits no periodic solution. In the literature, Bohm and Weinstein (1948), 
Eliezer (1950), and in particular the review by Pearle (1982), periodic solutions of 
the Abraham model have been reported repeatedly for the case of a charged sphere, 
i.e. cp(x) = (4rra2)- 18(1xl- a), which is not covered by Theorem 5.1 since (W) 

is violated. These computations invoke certain approximations and it is not clear 
whether the full model, as defined by (2.39)-(2.41 ), has periodic solutions. Pearle 
(1977) argues that in the Nodvik model there are no periodic solutions. Kunze 
(1998) proves that ifthere is a periodic solution, its frequency is determined by the 
zeros of the radial part of the form factor (jl, which under (C) form a discrete set. 
If(j;has a zero, then the linearized system admits a periodic solution. However, the 
full nonlinear equations have no periodic solution, at least in a small neighborhood 
of the linearized periodic solution. 

As will be explained in chapter 11, the Abraham model extends in the obvious 
way to the dynamics of many charges. The argument of Theorem 5.1 applied to 
this case yields that the acceleration of the center of mass relaxes to zero. One 
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would expect particles to form neutral lumps, each of which is traveling at constant 
velocity for large t. No argument towards a proof is in sight. 

Section 5.2 

The contraction method was first developed in Komech, Kunze and Spohn (1999). 
Komech and Spohn (1998) prove the convergence to the soliton manifold in the 
case of a scalar wave field requiring only (W) and not the restriction lei < e. No 
convergence rates are obtained. Their result is extended to the Abraham model by 
Imaikin, Komech and Mauser (2003). Orbital stability was established before by 
Bambusi and Galgani (1993). Bambusi (1994) investigates the long-time stability 
in the case of an attractive central potential. 

Section 5.3 

Our results are based on Imaikin, Komech and Spohn (2002). The linearization 
argument is fully carried out in Komech, Spohn and Kunze (1997). 
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