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In this paper, we review some recent results on nonlocal interaction problems. The
focus is on interaction kernels that are anisotropic variants of the classical Coulomb
kernel. In other words, while preserving the same singularity at zero of the Coulomb
kernel, they present preferred directions of interaction. For kernels of this kind and
general confinement we will prove existence and uniqueness of minimizers of the
corresponding energy. In the case of a quadratic confinement we will review a recent
result by Carrillo and Shu about the explicit characterization of minimizers, and
present a new proof, which has the advantage of being extendable to higher
dimensions. In light of this result, we will re-examine some previous works motivated
by applications to dislocation theory in materials science. Finally, we will discuss
some related results and open questions.
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1. Introduction

The general goal of this review paper is the study of the minimization problem for
an energy of the form:
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defined for € P(RY). Here, P(R") stands for the space of probability measures
in RY. In this formulation a measure u € P(RY) represents the distribution of a
family of particles in RY | the first integral in I(y) is called the interaction energy,
whereas the last integral usually plays the role of a confinement energy.

Energies as I arise as mean-field limits of discrete energies. More precisely, let us
consider n particles in RY located at points z', 22, ..., 2" in R and let us define
as their interaction energy the quantity:
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2 M. G. Mora

Since the order in which particles are considered is irrelevant, it is natural to assume
the interaction kernel W to be an even function. This discrete energy describes
nonlocal interactions in the sense that each particle interacts with any other particle
in the system and not only with those in its immediate neighbourhood. If one
identifies the distribution of particles with the so-called empirical measure:

18
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one can show, under suitable assumptions of W and V, that the discrete energies:
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I'-converge to I, as n — 0o, with respect to the narrow convergence in P(RY) (see,
e.g. [21]). In other words, minimizers of I describe the asymptotic behaviour of
optimal distributions at the discrete level in the many-particle limit.

In many applications the typical interaction among particles is short-range repul-
sive and long-range attractive. This behaviour can be reproduced in the energy I
by assuming:

e W(x) — 400, as  — 0, so that the interaction energy blows up when particles
get too close to one another;

e V(x) — +oo fast enough, as |z| — 400, so that the confinement energy blows up
when particles escape at infinity.

As a model example, we can consider as W the Coulomb kernel:
—log|z| if N =2,

1 .
W 1fN>3,

W(x) =

and, as confinement potential, a power law V' (z) = |«|P with p > 0 or the indicator
of a given compact set K C RV:

if K
v =10 LTET
+oo ifzr¢g K.

In this last case (which we call physical confinement) minimizing I is equivalent
to minimizing the sole interaction energy on the class of probability measures
supported in K.

Continuum energies as I, as well as their discrete counterparts, are relevant
in a variety of applications, ranging from physics (electrostatics, Coulomb gases,
Ginzburg-Landau theory) to biology (population dynamics) and materials science.
In particular, the Coulomb kernel is probably the most studied interaction kernel
in physics and in mathematics.

Besides existence and uniqueness, one of the main questions in minimizing I is
whether minimizers can be identified or at least some of their qualitative properties
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can be established. For instance, can we determine the dimension of their supports
and their shape? Is the distribution ‘regular’ on the support? One of the key diffi-
culties in addressing these questions is the nonlocal nature of the problem: given a
distribution g, any local perturbation of i, however small, will have a global impact
on the interaction energy. Moreover, numerical simulations show that, according to
the different choice of W and V', minimizers may present a rich variety of geometries
and shapes (see, e.g. [12]).

In this paper, we will focus on the two-dimensional (2D) case N =2 and on
interaction kernels of the form:

W(z) = —log |z| + k(z), (1.2)

where k is an even 0-homogeneous function, smooth enough outside 0. The kernel
W can be seen as a perturbation (not small though) of the 2D Coulomb kernel.
Since & is 0-homogeneous, k() depends only on the angle that 2 forms with respect
to a given reference axis. In this sense we call k an anisotropic kernel, meaning that
it introduces some preferred directions of interaction.

The goal of this paper is to review the most recent results about existence,
uniqueness, and characterization of minimizers for kernels W of the form (1.2)
and general confinements V. The common thread of these results is the following
key idea. A clever way to look at this class of problems is via Fourier analysis. In
fact, if we denote by f the Fourier transform of f given by

J?(g) = % . f(z)e™®*dx for € € R?,

formally we have
m =27 ﬁ/\ﬁ

and by Plancherel theorem:

//RR W@ =) duly) du(z) = /RJW * ) dp = /R W (S dg

. 277/ WA de. (1.3)
RZ

In other words, the nonlocal interaction can be expressed in a local form in the
Fourier space. Note, however, that (1.3) holds true only under specific assumptions

for W and 1 (see proposition 3.2). Using (1.3) we will show that a sign condition on

W guarantees strict convexity of the energy and, therefore, uniqueness of minimizers
(see § 3). Moreover, the inversion formula for the Fourier transform will be a crucial
ingredient in the characterization results of § 4.

1.1. Motivation

The study of interaction kernels of the form (1.2) is motivated by materials
science, more precisely, by dislocation theory. Dislocations are defects in the crys-
talline lattice of a metal, whose presence and concerted movement favour plastic
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Figure 1. Cubic crystal with a dislocation.

—
b

Figure 2. Burgers circuit and the Burgers vector b.

slips, that is, relative slips of atomic layers, that macroscopically result into a
shearing plastic deformation.

Let us consider an idealized three-dimensional (3D) cubic lattice, where all 2D
sections along a certain direction are assumed to be identical. In this simplified 2D
setting a dislocation of edge type looks as shown in figure 1.

The presence of a dislocation can be detected as follows. One draws a so-called
Burgers circuit, that is, a closed circuit enclosing the defect. If we draw the same
circuit in a perfect reference crystal, the circuit does not close up, see figure 2. The
vector that needs to be added to close the circuit is defined as the Burgers vector.
The Burgers vector is thus a measure of the discrepancy between the distorted
lattice and a perfect lattice.

Assume now that every dislocation has the same Burgers vector (which for sim-
plicity we set to be e1). We would like to compute the interaction force between
two dislocations, the so-called Peach—Kdhler force. To make this computation we
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Nonlocal anisotropic interactions of Coulomb type )
consider a semi-discrete setting, where the crystal is described as a continuum
medium (as if the discrete lattice structure were averaged out), but dislocations
are still modelled as point singularities. In the framework of linear elasticity the
fundamental strain generated by a dislocation of Burgers vector e; located at 0 is
a solution 8 : R? — M?*2 of the problem:

divCs =0 in R2,

curl B = dpe;  in R2?,
where C is the tensor of linear elasticity and dy denotes the Dirac delta at 0. The
Peach—Kohler force can then be computed by the formula:

F = (Cﬂ(h X es,

where C( is the stress associated with the fundamental strain, e; is the Burg-
ers vector, and ez represents the dislocation line (in our simplified 2D setting
the dislocation line is orthogonal to the plane of the 2D section). For z € R?
the Peach—-Kohler force F(x) is the configurational force that a dislocation at x
experiences because of the dislocation at 0. It turns out (see [11, Chapter 13-4])
that

F = —(cVW,0)

for some positive material constant ¢ > 0, where W is of the form (1.2) with

la+b 2?2 + (a + b)%a3 1b—a 22 + (b —a)?a3
=— 1 - 1 1.4
() 4 a 08 ( |x]? + 4 a 8 || (1.4)

for © = (21, 2) € R%. Here, b > a > 0 are material constants. If the medium is
isotropic (which corresponds to a — 07, b = 1), the above expression reduces, up
to additive constants, to

2
k(z) = W (1.5)

We would like to predict the optimal distribution of dislocations at equilibrium
in this setting. For simplicity, let us focus on the isotropic case (1.5) and assume to
have exactly two dislocations located at z and y. Their interaction energy is given
by

(x1 —)?

—log |z — y| +
lz —y[?

The Coulomb term forces z and y to be as far as possible (this repulsive behaviour
is counterbalanced by the presence of some confinement), whereas the anisotropic
term is minimized when z; = y1, that is, when the two dislocations are aligned
vertically. Does the same phenomenon occur in the mesoscopic description (1.1)7
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In other words, let I be the energy defined by

= —log |z — 7@1 — ) T x x
I(M)M2xR2< log |z —y[ + PR )du(y)du(H/RZV( ) du(z),
(1.6)

where ;1 € P(R?) represents now the distribution of a family of dislocations of Burg-
ers vector e. Is it true that minimizers of I have a one-dimensional (1D) vertical
support? And if so, what is their distribution? This last question is actually not
difficult to answer. In fact, let u € P(R?) be a measure of the form pu =z, @ v
with Z; € R and v € P(R). When restricted to measures of this form the energy I
reduces to

J(Z1,v) = —//RX]RlogLs —t|dv(t) dv(s) +/RV(i17t) dv(t).

Thus, if the minimizer of I has a vertical support, its vertical projection minimizes
the 1D functional J(Z1, -) among all measures in P(R). The functional J is known in
the literature as the log-gas energy and its minimizers can be explicitly computed for
several confinements. For instance, for V (x) = |z|? the unique minimizer of J(z1, -)
is the so-called semicircle law, that is, the measure:

%my L[-v2,v2()

(and the optimal choice for 71 is clearly Z; = 0). Therefore, in the case V (z) = |z|?,
if the energy I in (1.6) has a minimizer p with a vertical support, then necessarily
1 is given by the semicircle law on the vertical axis

%50(931) ©1/2 - 23H' L [-V2, V2] (22). (1.7)

1.2. Overview of the results

We now briefly review the main results about explicit characterization of min-
imizers for kernels of the form (1.2). We consider an energy of the form (1.6)
with confinement V' (x) = |z|? and we introduce a parameter a € R in front of the
anisotropic term. The role of « is that of tuning the strength of the anisotropic
interaction. The energy

no =[] (— log — 3] + a(_yy)> ) du(o) + [ laf du)

(1.8)
has a unique minimizer, which can be characterized as follows:

e if @« =0 (purely Coulomb case), the minimizer is the so-called circle law

1
;XBl(Oﬁ

the derivation of this classical result is attributed to [8, 10, 17];

https://doi.org/10.1017/prm.2024.19 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.19

Nonlocal anisotropic interactions of Coulomb type 7

e if & =1 (dislocation case), the minimizer is the semicircle law on the vertical
axis, that is, the measure (1.7); this was proved in [18];

e if & € (0, 1), the minimizer is given by the ellipse law:

1

XE4 > (19)
|Ea|

where

932 1‘2
Ey,={zecR?: 1 2 <1
« {a: 1—a+1—|—a

this result is contained in [2].

We mention that the minimizer of I, can be actually identified for any value of
a € R, see theorem 5.1.

The above results show that at a = 1 the anisotropy has a dramatic effect on
the structure of the minimizer and, in particular, on its dimensionality. For any
a € [0, 1) the minimizer is given by a uniform distribution on a 2D set and it is
only at o = 1 that an abrupt loss of dimensionality occurs. A natural question is
whether this phenomenon can be explained in mathematical terms and how much
of this analysis is bound to the specific choice of the anisotropy.

In [15], we conjectured that the loss of dimensionality could be related to a
change of sign of the Fourier transform of the interaction kernel. Indeed, we have
that

(1-a)& + (1 + )83
€] ’

see (5.2). Thus, for « € [0, 1) the Fourier transform of W,, is strictly positive outside
0, whereas it is only non-negative for av = 1.

Let us consider now an interaction kernel of the form (1.2) with a general even and
0-homogeneous anisotropy &, and confinement V(x) = |x|2. In [14], it was proved
that, if x is small enough in C3(S!), then the minimizer is unique and given by the
normalized characteristic function of the domain enclosed by an ellipse centred at
the origin. Note that the smallness assumption on s implies in particular that the
Fourier transform of W outside 0 is strictly positive.

Recently, Carrillo and Shu proved that the smallness assumption in [14] can be
lifted, as long as the condition on the non-negativity of the Fourier transform of
W outside 0 is preserved. More precisely, in [3] the following remarkable result was
proved: let W be an interaction kernel of the form (1.2) with s even, 0-homogeneous,
and smooth enough on S!, and let the confinement be V(x) = |z|?; then,

W:(g) = calp +

e if W > 0 outside 0, the unique minimizer is the normalized characteristic function
of the domain enclosed by an ellipse centred at the origin;

e if W > 0 outside 0, the unique minimizer is either as above or is a semicircle law
on a line passing through the origin.
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This result sheds some light on the relation between loss of dimensionality and
change of sign of the Fourier transform: for this class of kernels loss of dimension-
ality cannot occur as long as the Fourier transform is ‘not degenerate’. However,
explicit examples show that for a degenerate Fourier transform both cases (ellipse
or semicircle law) can indeed occur, see remark 5.2.

In this article, we will first review the existence and uniqueness results for interac-
tion kernels of the form (1.2) and general confinements. In the case of the quadratic
confinement V(z) = |z|? we will present a new proof of the result [3] by Carrillo
and Shu, which follows the approach proposed in [16] for the analogous problem
in 3D. This different approach has the advantage of being extendable to higher
dimensions. We will then deduce the characterization of minimizers in the disloca-
tion case (1.5) from this general result. Finally, we will examine an example with
physical confinement given by the domain enclosed by an ellipse and discuss some
open questions.

2. The existence result and first properties of minimizers

Throughout the paper, we will consider an interaction kernel of the form:
W(z) = —log|z| + k(x) for x #0, W(0) = o0, (2.1)

where £ is an even 0-homogeneous function of class H® on S' with s > 3/2 . We
will denote the 2D Coulomb kernel by W, that is,

Wo(z) = —loglz| for x #0, Wy(0) = +oc.
Since « is bounded on R? \ {0}, there exist two constants C, Co € R such that
Wo(z) +Cp < W(z) < Wo(z) +Cy  for every z € R?. (2.2)

2.1. Logarithmic capacity
For any compact set K C R? we define the logarithmic capacity of K as

cap(K) = fb( inf / . Wo(z — y) dp(z) du(y)) ,

neEP(K)

where ®(t) = e ! for t € R and ®(+00) = 0. Note that the integral above is well
defined (possibly equal to +00), since the integrand is bounded from below on
K x K.

If B C R? is a Borel set, we define its capacity as

cap(B) = sup { cap(K) : K compact, K C B}.

We will say that a property holds quasi everywhere (q.e.) if it holds up to sets of
zero capacity.
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The key property of the capacity is the following: if u € P(R?) has compact
support and satisfies:

/ / Wz — ) du() du(y) < +oo, (2.3)
R2 xR2

then u(B) = 0 for every Borel set B with cap(B) = 0. In other words, if a property
holds q.e., then it holds p-a.e. for any u € P(R?) with compact support and sat-
isfying (2.3) (as we will see, these are the relevant measures for the minimization
problem under study). This can be shown as follows: assume by contradiction that
u(B) > 0, where B C R? is a Borel set with cap(B) = 0. Then there exists a com-
pact set K C B such that u(K) > 0. Since p is compactly supported, there exists
Cy > 0 such that

Wz —y) = —Cy for every (z,y) € (supp p)?.

Therefore, setting

1
vi=——ulL K,
p(K)

by (2.3) we have

J| we-pawwe) < s [ we -y au)

+7 Cy < +o0.
p(kE)z

On the other hand, from (2.2) it follows that

/ W — y) dv(a) du(y) > / Wo(z — y) dv(z) du(y) + C.
KxK KxK

This would imply that cap(K) > 0, contradicting the assumption cap(B) = 0.
In a similar way, one can show that a countable union of sets with zero capacity
has zero capacity.

2.2. The confinement potential

In this section, we assume the confinement potential V : R? — R U {400} to be
a lower semicontinuous function, which is bounded from below and satisfies the
following conditions:

lim <1V(x) - log|x|> = +o0 (2.4)

|z|—+oo \ 2

and
cap ({z € R*: V(z) < +oo}) > 0. (2.5)

Examples of admissible confinements are the power laws V(x) = |z|? with p > 0 or
the indicator function of a compact set of positive capacity.
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2.3. Main results

For every p € P(R?) we define:

1w>=/£2RzQvu—yw+§vuw+;4w>dmwdmw, (2.6

where the interaction kernel W is as in (2.1) and the confinement potential V' as in
§ 2.2.

THEOREM 2.1 [7, 20]. The energy I is well defined and has a minimizer in P(R?).
If u is a minimizer of I, then I(u) < 400, the support of u is a compact set, and
satisfies the following Euler—Lagrange conditions: there exists a constant ¢ = c¢(ju)
such that

1
(W p)(x) + iV(x) =c for p-a.e. x € suppp, (2.7)
and

(W s p)(x) + %V(m) >c forqge xrcR% (2.8)

Proof. The function (z, y) — W(z —y) + 3V (z) + 1V (y) is lower semicontinuous
and blows up at infinity by (2.4), hence it is bounded from below by a constant —c;
with ¢; > 0. Therefore, the energy I in (2.6) is well defined (possibly equal to +00)
and inf I > —oo. Note also that the two representations (1.1) and (2.4) coincide
whenever the interaction energy is well defined and not equal to —oo.

Assumption (2.5) guarantees that inf I < +o0. Indeed, writing {V' < +oo} as the
union over n € N of the compact sets {V < n}, we must have cap({V < ng}) >0
for some ng € N, that is, there exists a probability measure pg with support in
{V < ng} such that

// Wo(z —y) dpo(z) dpo(y) < +oo.
R2xR2
By (2.2) this implies that
J[. W= duote) dunly) < +0
R2xR2
On the other hand,

/ V() duo () < no,
R2

hence I(po) < +oc.

Existence of a minimizer follows by the Direct Method of the Calculus of Varia-
tions. Let (un ), be a minimizing sequence. Since inf I < +00, there exists a constant
C > 0 such that I(py,) < C for every n € N. By (2.4) for every M > 0 there exists
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a compact set K C R? such that
1 1
Wi(r—y)+ §V(x) + §V(y) >M for (z,y) € K x K.

Therefore, for every n € N:

\

C > I(pn) > M @ ) (K x K)°) = 1 (1 (K))”
M

This inequality implies that the sequence (u,), is tight, hence, up to subse-
quences, (fi,), converges narrowly to some p € P(R?) (we refer to [1, Chapter 5]
for the definition of tightness, narrow convergence, and their properties). Since the
integrand in I is lower semicontinuous and bounded from below, we have:

I(y) < lim inf I(u,),

n—0o0
hence p is a minimizer.

Let now g be a minimizer. In particular, I(x) < +o0o. By (2.4) there exists a
compact set K C R? such that

W(x—y)+ %V(x) + %V(y) >1(u)+1 for (z,y) € K x K. (2.9)

By taking K larger if needed, we can assume that pu(K) > 0. We claim that
supp p C K. Assume by contradiction that pu(K) < 1 and define:

N >
b= M(K)uLKEP(R ).

By (2.9) we deduce that

- L _ )+ V) 4+ L .
mwwmf@m/ﬁmim mwwr%mvwmmg
1 2
< ——— (T(u) — (I(p) + 1)(1 — (K
oy 0 = 00+ 0= (a0
1
—I(M)+1—W<I(N)7

where the last inequality follows from the fact that u(K) < 1. This contradicts the
minimality of u.

We conclude by showing that u satisfies (2.7)—(2.8). Let v € P(R?) be a competi-
tor such that its support is compact and I(v) < 4+o00. For € € (0, 1) we have that
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(1 —&)u + ev € P(R?). Therefore, by minimality:

I(p) < I((1 =€) +ev).

Expanding the energy on the right-hand side yields:
0< 2 [ Wxpdu+2e W*udu+5/ Vd(v—p) + O(e?).
R2 R2 R2

Dividing by 2¢ and sending € — 0T lead to the following inequality:

1 1
/ Wxpu+ =V du}/ Wxpu+ =V |du=:c (2.10)
R2 2 R2 2

for every v € P(R?) with compact support and I(v) < +oo.
Set P:=W %+ %V and assume by contradiction that

cap ({z € R*: P(z) <c}) > 0.

Note that by Fatou’s lemma P is lower semicontinuous, thus {P < c} is a Borel set.
By definition of capacity there exists a compact set K C R? of positive capacity
such that P(z) < ¢ for every x € K. Therefore, there exists v € P(K) such that

//R%qu Wz —y) dv(z) dv(y) < +oo.

Moreover, the confinement energy of v is also finite, since

/ 1de/:/ 1VdV</(C*W*,U)dI/ZC*/ W s pdv (2.11)
R2 2 K 2 K K

and the right-hand side is finite by the bound from below of W on compact sets.
Having finite energy and compact support, the measure v has to satisfy condition
(2.10). However, (2.11) contradicts (2.10). This proves (2.8).

To prove (2.7) we note that by (2.8) we have W i+ 2V > ¢ q.e., hence pr-a.e.
On the other hand, ¢ is by definition the integral of W % p 4 %V with respect to p,
so necessarily (2.7) holds true. O

REMARK 2.2. The previous result applies to much more general interaction kernels.
Note in particular that the only properties of k£ we used are boundedness and lower
semicontinuity.

3. The uniqueness result

As mentioned in the Introduction, the key assumption to guarantee uniqueness
of the minimizer is the sign condition W > 0 outside 0. In fact, this assumption
implies the strict convexity of the energy (when restricted to a suitable class). This
result bears some similarities to Bochner theorem, which characterizes functions
of positive type as those whose Fourier transform is a positive finite measure, see,
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g. [23]. Functions of positive type provide in fact interaction kernels whose cor-
responding energies are convex on discrete measures. However, the regularity of W
and W does not allow for a direct application of this theorem in our context.

Once strict convexity is established, not only the minimizer is unique, but the
two Euler-Lagrange conditions (2.7)—(2.8) are equivalent to minimality. Thus, iden-
tifying the unique minimizer reduces to finding a measure satisfying (2.7)—(2.8). In
order to do so it is essential to have an expression for W x y, in particular inside the
support of i where we need to verify (2.7). As we will see, the main idea is to rely
again on Fourier analysis applying the inversion formula for the Fourier transform.

3.1. The Fourier transform

We denote the Schwartz space of rapidly decreasing functions by S and its dual
space by &', the so-called space of tempered distributions. We recall that for every
¢ € S its Fourier transform ¢ € S is defined as

1

P& = —/ o(x)e T dr  for £ € R2

2 R2
The map ¢ +— @ is a continuous linear isomorphism (with continuous inverse) of S
into itself. This allows one to extend the definition of Fourier transform to elements
of 8§’ simply by duality, that is, the Fourier transform @ of an element u € 8’ is

defined as
(u,0) = (u,p) for every ¢ € S.

We recall that the Fourier transform of the tempered distribution §p (the Dirac
delta at 0) is the constant 1/(27). Moreover, for every ¢ € S and j = 1, 2 we have

—

Or,0(8) = i&;@(¢)  for £ € R
3.2. The Fourier transform of the kernel W

Both W and Wy are locally integrable functions with sublinear growth at infin-
ity, hence they are tempered distributions. Thus, their Fourier transforms are well
defined as tempered distributions. We start by computing the Fourier transform of
the Coulomb kernel Wy. Since AWy = —2ndy, formally we have

—E[PWo(€) = AW(€) = —2mby(€) = —1.

Hence, we would expect Wy () = 1 /|€]2. However, this function is not integrable at
0 and so, it does not define a tempered distribution. In fact, the correct expression
of Wy is as follows:

(Wo, ) = cop(0) +/ !

i<t €2 ©)de (3.1

(p(€) — (0)) dé + /

1
IV 4
le1>1 €12

for every ¢ € S. Here, ¢ = (1/27)(y + log 7), where 7 is the Euler constant. For
the proof of this formula we refer to [6] or [18].

To compute the Fourier transform of the anisotropic kernel &, it is convenient to
pass to complex variables to simplify notation. We replace x by z € C and write
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14 M. G. Mora

z = |z]e? with @ € [0, 27]. Since & is 0-homogeneous, we have that x(z) = x(e'?)
and thus, it can be written as a Fourier series for 6 € [0, 27]. Moreover, since k is
even, its Fourier series contains only the even terms, that is:

k(") = ag + Z (a2n cos(2n0) + bay sin(2n0))

n=1
with (a2n)nen, (ban)nen € £2. Note that for n € N:
cos(nf) = Re—— =: 9n(2) and  sin(nf) = Im =: wn(f)
|Z|” 2" \ N E1

The functions ¢,,, 1, are harmonic homogeneous polynomials of order n (in fact,
they correspond to the so-called spherical harmonics in dimension 2). We can thus
rewrite:

= ag + Z <a2n “ﬁzn + ban “f”z(n) ) (3.2)

Without loss of generality, we can assume that ag = 0. In fact, adding a constant
to x does not affect the minimization problem under study. Expression (3.2) is par-
ticularly convenient to compute the Fourier transform of x, owing to the following
result, whose proof can be found in [22].

LEMMA 3.1. Let ¢ be a harmonic homogeneous polynomial of degree m > 1 in R2.
Then the Fourier transform of ¢(x)/|z|™ is given by

¢(€)

" lgpm

(3.3)

for a suitable constant v,. For m even, m = 2n, one has y2, = (—1)"2n.

Note that ¢(£)/]£|™F2 behaves as 1/|¢]? for £ close to zero, therefore it is not
integrable at 0. Formula (3.3) has to be interpreted as in (3.1), that is:

() =m /. S ol©) — e e+ [ ogae

1< €™ g1>1 1§12

for every ¢ € S.
By lemma 3.1 and (3.2) with ap = 0 we deduce that

K(§) = i <(—1)”2na2n P2 () + (=1)"2nby, L) ) (3.4)

|§|2n+2 |§|2n+2

The argument can be made rigorous if (2naz, )nen, (2nban)nen € €2, that is, if k €

H(SY).
By (3.1) and (3.4) we can write:
W | R/l (¢
W(&) = codo + 15 |£|2 (|€/||2 ) =: codp + |§(|2), (3.5)

where, with an abuse of notation, U denotes the ‘angular part’ of . Note that ¥
is even and 0-homogeneous, and that the above formula has to be interpreted as
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in (3.1). In the following, we will need W € C°(S!). By Sobolev embedding this is
true if & € HP(S') with p > 1/2. This is guaranteed by our assumption x € H*(S?!)
with s > 3/2, owing to (3.4).

In the following, we will refer to ¥ as the even and 0-homogeneous function
given by formula (3.5). Note that the purely Coulomb case corresponds to ¥ = 1.
Moreover, by (3.4) and (3.5) we have

5 [ F@ant© = o [ a+r@)ante -1 (36)

2m Jsu T

PROPOSITION 3.2. Assume W >0 on St. Let o, 11 € P(R?) be two measures with
compact support and finite interaction energy. Let v := ug — p1. Then

xvdy = \f’(ﬁ) (97
[ Wava QW/RZ e PO de. (3.7)

In particular, the left-hand side is non-negative and is equal to zero if and only if
v =0, that is, if po = p1.

An immediate consequence of proposition 3.2 is the following: if T >0 on St,
then [ is strictly convex on the class of measures with compact support and finite

interaction energy. Indeed, let 1o, 11 € P(R?) be two such measures with g # pu1.
By proposition 3.2 we have that

/QW*(NO_Nl)d(NO_M1)>Oa

R

hence
/W*,uodqur/ W*uldu1>2/ W s g dpy.
R2 R2 R2

Let now g := (1 —t)uo +tur with ¢ € (0, 1). From the above inequality we
conclude that

/W*utdut<(1—t)2/ W*uoduo+t2/ Wk p1 dpn
R2 R2 R2

—|—t(1—t)</ W*uod,uo—l-/ W*mdm)
R2 R2
R2 R2

Since minimizers have compact support and finite interaction energy by theorem
2.1, this convexity property is enough to guarantee uniqueness and the equivalence
of (2.7)-(2.8) with minimality.
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16 M. G. Mora

Proof of proposition 3.2. The heuristic idea to prove (3.7) is to apply Plancherel
theorem, as we did formally in (1.3), and write:

IV*udu:2w/)ﬁHQW@ﬂ%M.
R2 R2

Taking into account (3.5) and the fact that

1
2(0) Af/<w:m
]RQ

:27'(‘

the right-hand side reduces to

U(€)
2 €2

However, this argument is only formal, since we do not have enough regularity to
apply Plancherel theorem. Our strategy is to prove (3.7) by approximation. This is
a rather delicate argument, since both sides of (3.7) may a priori be not finite and
neither W nor v have a sign.

For € > 0, let . be a radial mollifier supported on B.(0). Let v, :=v*p. €
C2°(R?) C S. Thus, 7 belongs to S and, in particular, to L>(R?). We note that
W s v, € C°°(R?) and, since 7 is smooth and 7 (0) = 0, we have that

[2(€)]* dé.

on [ WOROR s =2r [

W v, = 20W 0. € LY (R?).

Using these properties one can show that Plancherel theorem holds for W * v. and
Ve, that is,

T(€)

O 33)

/ (W s v2)(2)ve(z) do = 2n [ W(E)|me(6)? dé = 277/
R? R

R2

for every € > 0.
We now want to pass to the limit in (3.8), as € — 0F. For every £ € R? we have

ve(§) = 2mv(§)@(e€) — 2mv(§)@(0) = v(S),

as € — 0T. Therefore, U(€)|72(£)[2/|€? converges to W(&)|T(€)[2/|€|? for a.e. & € R2,
as € — 07. Moreover, |p(e-)| < C||p||z1. Either by dominated convergence or by
Fatou’s lemma we can thus pass to the limit in the last integral in (3.8).

To pass to the limit on the left-hand side of (3.8), we observe that

[ erg@m = [ 0¥ epep v

where we used that ¢, is a radial, hence even, function. Set . := . * p. and
note that ¥, has the same properties as . (it is radial, compactly supported, non-
negative, and integrates to one). Since W is continuous as a function with values
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in RU {+oco}, we have that (W x.)(z) — W(x), as € — 0", for every z € R?.
Moreover, by (2.2):

(W s 9.)(x) < (Wo *9.)(2) + Cy  for every x € R?. (3.9
Since W is superharmonic and . is radial, we have
(Wo *¥.)(z) < Wo(z) < W(z) — Oy for every x € R?, (3.10)
where the last inequality follows again from (2.2).
Let M > 0 be such that suppr C Bps(0) and let ¢ps be the minimum of W on
Byps(0). Combining (3.9) and (3.10), we deduce that

0< (Wxtp)(z) —emr S W(x)+Co—Cy —cpyr for every x € Bap(0)  (3.11)

and for every £ > 0 small enough.
We now write:

Lwswyevar=[[ v = dut dn
+//sz(W*wg)(m_y) dp () dpa (y)
‘2//W W)@ =) dpole) s (o).

Since po and p1 have finite interaction energy, we can pass to the limit in the first
two integrals on the right-hand side by (3.11) and dominated convergence. As for
the last integral, it goes to the limit either by dominated convergence or by Fatou’s
lemma. This completes the proof of (3.7).

To conclude, assume that

0= g Wsvdy =27 /]Rz \Péfz) [D(€)]? d¢. (3.12)

Since ¥ cannot be identically zero (otherwise, W would be constant) and is con-
tinuous outside 0, there exist § > 0, n > 0, and &y # 0 such that \T!(f) > n for all
& € Bs(&). Thus, (3.12) implies that 7 =0 on B;(£p). On the other hand, v is a
distribution with compact support, so by Paley—Wiener theorem 7 is the restriction
to R? of an entire function. Therefore, 7 has to be identically zero on R2, that is,
v=20. U

4. Characterization of minimizers

Throughout this section, we consider the confinement V(z) = |x|? and focus on the
characterization of the minimizer of I for this specific choice of the confinement.
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18 M. G. Mora
4.1. The Coulomb case

In the purely Coulomb case with confinement V(z) = |x|? the energy:

Io(u) = — //RzXRzloglw—yIdu(y)du(w)+ /}RzlwIQd/M% e PR, (41)

is invariant by rotations. Therefore, by uniqueness the minimizer po has to be
invariant by rotations, too. If we formally take the Laplacian of both sides of (2.7)
(with Wy in place of W), we obtain:

0=AWp*pug+2=—-2mug+2 on supp uo,

where the last equality follows from the relation AWy = —2ndy. Hence, pug = 1/7
on its support. Since pg is a probability measure, one can conjecture that po has
to be the normalized characteristic function of By (0). This is indeed the case, as
shown in the next theorem.

THEOREM 4.1 [8, 10, 17]. The unique minimizer of the energy Iy in (4.1) is the
so-called circle law, that is, the measure:
1
Ho = 7TXBI(O)-
The proof of this result is based on the Gauss averaging principle: for any r > 0:
T

1 .
- — 10g|z—re19|d9={

2 J_,

—logr %f |z <, (4.2)
—logl|z| if|z| =,

where z is a complex variable. A notable consequence of this principle is the well-
known fact that the Coulomb potential due to a homogeneous spherical body is the
same, outside the body, as if all the mass were at its centre.

Proving (4.2) is straightforward: if |z| > r, the map w — —log |z — w| is harmonic
for |w| < r, so (4.2) follows by the mean value property. If |z| < 7, one can write:
K3

—log|z — re’| = —log|ze™" — 7| = —log|ze® —r|.

The map w — —log|w — 7| is harmonic for |w| < |z|, so one can conclude again
by applying the mean value property. Finally, for |z| = one can argue by
approximation with radii p — r~ and dominated convergence.

Proof of theorem 4.1. By applying the Gauss averaging principle we can explicitly
compute the Coulomb potential of pg: indeed, using polar coordinates we have:

1 1t ,
(W()*/J,O)(‘f):—*/ log|:r—y|dy:—f/ / log | — 7™ |d@ r dr.
T J B1(0) T™Jo J-=

By (4.2) we deduce that

1 1
(Wo s pio) () = 4 3~ " for lel <1,

—log |z| for |x| > 1.
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Nonlocal anisotropic interactions of Coulomb type 19

Using this formula, one can immediately check that (Wy * po)(x) + %\m|2 = % for
z € B1(0) and (Wo * po)(z) + 3|z|> > § for & & B1(0), that is, po satisfies the
Euler-Lagrange conditions. By the results of the previous section this is enough
to conclude that pg is the unique minimizer of Ij. O

4.2. The anisotropic case

In this section, we discuss the characterization of the minimizer for the energy:
I(p) = // (—loglz —y| + K(z —y)) du(y) du(z) + / j2|* dp(z),  (4.3)
R2 X R2 R2

where & is even, 0-homogeneous, and of regularity H*(S') with s > 3/2. We start
by considering the case where the Fourier transform of the interaction kernel
(computed in (3.5)) is strictly positive outside 0.

THEOREM 4.2. Assume U > 0 on S', where U is the function introduced in (3.5).
Then the unique minimizer of the energy I in (4.3) is given by the normalized
characteristic function of the domain enclosed by an ellipse centred at the origin,
whose semi-azes ay, as satisfy the relation a2 + a3 = 2.

Theorem 4.2 was originally proved by Carrillo and Shu in [3]. Here, we present
an alternative proof inspired by [16].

Proof of theorem 4.2. We write a general domain enclosed by an ellipse as
E = REy, where R € SO(2) and

2 2
T T
Eoz{x€R2: ;—i—gél}
a a
1 2

and we set x := xg/|E|. The theorem is proved if we show that there exist a1, az > 0
and R € SO(2) such that

1
(W x)(z) + §|ac|2 =c¢ forevery z € E, (4.4)
and
1
(W x)(z) + §|;v|2 >c forevery z € R*\ E (4.5)

for some constant ¢ € R.

Note that W % x is a C! function in R?. To compute its expression we would
like to make use of the inversion formula, that is, write W * x as an integral of its
Fourier transform. However, W is not a function, it is only a tempered distribution.
To circumvent this difficulty we apply this strategy to the gradient of W x x. In
fact, the Fourier transform of V(W x x) is given by

€W # x(€) = 2micW (£)X(€),

so the presence of the factor ¢ annihilates the singular part of W. Note that
V(W % x) is a continuous function that behaves as 1/|z| at infinity, so it is a
tempered distribution.
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Step 1: The inversion formula for V(W x x). We recall that

— J
XBi(0) &) = 1|(£|£|),

where J; denotes the Bessel function of the first kind of order 1. There is no explicit
formula for Ji; however, it is well known that J; has the following behaviour:

J(l]) = SlEl as € =0, (4.6)
C

[ (lED] < s €] = oo, (4.7)

l\DM—l

see, e.g. [13, Section 5.16].
For a = (a1, az) € R? we denote the diagonal matrix diag(a1, az) by D(a). By
writing x € F as © = RD(a)y with y € B1(0), we obtain:

1 Ji(ID(a)R"E])

R 1
) = Xm o) (D@RTE) = - =5 vore

By the bounds (4.6)—(4.7) we deduce that the function 2mi¢ WY belongs to L'(R?).
Therefore, since V(W * x) is a continuous function, the inversion formula holds,

that is:
(f) z:c§
e sae=— [ € J

for every x € R?, where we used that ¥ and X are even functions. Passing to polar
coordinates we obtain:

V(W*x)(m):/ﬁ mzx sin(z - €) d

V(W x)(x /31/ Yy (y)R(py) sin(pz - y) dpdH' (y)
1 J1 Ji(plD(@RTy]) 1
==z [, 0 e o ),

Setting r := p|D(a)RTy|, we deduce that

V(W xx)(x) = f% /S1 |D?z\IlRTy / Nl sm(ra(x y)) dr dH* (y) (4.8)

for every x € R?, where we set:

alz,y) = %. (4.9)

Using formula (5), p. 99, in [5], one can compute the improper integral:

oo o if0<a<l,

/ Ju(r) sin(ra)dr = 1 Fos1 (4.10)
r _— .

0 a++va? -1
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Moreover, we have that, if x € E, then
[z -y| = |D(a) "' R"x - D(a)R"y| < [D(a)R"y|,

that is, |a(z, y)| < 1 for every x € E. We conclude that

V(W x x)(x) = —% 8 m(\z%a(ﬂc,y)del(y)
1 T (y)

T s ID(a)RTy|2($'y)del(y) (4.11)

for every x € E. Formula (4.11) shows that V(W «* x) is a homogeneous polyno-
mial of degree 1 inside E. In other words, up to an additive constant, W % y is a
homogeneous polynomial of degree 2 inside E.

Step 2: Solving the first Euler—Lagrange condition. Solving (4.4) corresponds to
finding a1, as > 0 and R € SO(2) such that

V(W s x)(x) +x =0 forevery z € E.

By formula (4.11) this translates into the following system of three equations:

1 U(y)

— | ———yiyp dH (y) = 6 f k=12 4.12
T g1 \D(a)RTyPyjyk H (y) ik or every ]7 )< ( )

where ;. is the Kronecker delta.
Let us denote by M2X2 | the set of positive definite 2 x 2 symmetric matrices.

sym,—+
Note that M := RD(a)?RT € MS;H%JF and |D(a)RTy|?> = My -y. Solving system
(4.12) is therefore equivalent to finding M € M2 | such that
1 \fl(y) 1 :
— yiyr dH (y) = 6,5  for every j,k = 1,2. 4.13
- 3 e = (113)

Let us denote the entries of M by Mj;, for j, k =1, 2. Note that, if we multiply by
M, the jk equation in (4.13) and we sum over j, k, we obtain:

1 ~
tr(M) = My + Moy = — /Sl U(y) dH (y) =2,

™

where we used (3.6). Since tr(M) = a? + a2, where ay, ap are the semi-axes of the
candidate ellipse, we deduce that, if a minimizing ellipse exists, then necessarily its
semi-axes satisfy the relation:

al + a3 =2.
To solve (4.13) it is convenient to introduce the function:
1

£ = == [ $(0)log(My - ) a1 1) + x(01)

defined for every M € szxn% +- It is immediate to see that conditions (4.13) are

satisfied if we find M, € ngxrﬁ 4 such that Vy, f(My) = 0, where with a slight abuse
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of notation we denoted by V), the operator:

0 0 0
v]\/[ = ) ’ .
0M11 8M22 8M12

We claim that f has a minimizer in Mfyxﬁ - Since Mfyxrﬁ 4 is an open set, the claim
will imply the existence of a critical point of f in this set and thus, of a solution to
(4.13).

Given M € Msyxn% 4, we first look at the behaviour of the function f along the
line tM for t > 0, that is, we consider the function:

1 ~

glt) i= F(e0) =~ [ W) log(My - y) dH! () ~ 2logt + tes(1)
S

for t > 0, where the last equality follows from (3.6). It is immediate to see that g

is minimized at t. = 2/ tr(M). Therefore, minimizing f over MS;H%’  is equivalent

to minimizing f on the set:

M= {MeMI2 : tr(M)=2}.

sym,+

By diagonalization, any M € M can be written as M = QD(b)Q™ with Q € SO(2)
and b= (8, 2—0), 5 € (0, 2). Using this representation and a change of variables
we have that

FM) = F@DWIQT) =~ [ F(Qu)lox(3y? + (2~ M) A () + 2
Therefore, setting
15.Q) 1= —1 [ W@y log(Bs? + 2~ BB a'(v)
Sl

for every (8 € [0, 2] and Q € SO(2), it is enough to show that + has a minimizer in
(0, 2) x SO(2) to conclude that f has a minimizer in M and thus in Mfyxrr21+

The function ~ is finite and continuous on the compact set [0, 2] x SO(2). There-
fore, it has a minimizer (f8y, Qo) in this set. It remains to prove that 3y is neither
0 nor 2.

By assumption there exists a constant Cy > 0 such that

@(f) > Cy for every £ € S,
Using this inequality and (3.6), we obtain that
0 1 ~
< -~ |9
55100.Q0) = = [ F(@Qw)

2y2 — 1
Byt + (2 - B)y;
4 1 Co

Sy 5 AR AR

for every 8 € (0, 2). Since the right-hand side goes to —oo as 8 — 07, we deduce
that there exists some § > 0 such that

0
%’7(57 QO) <0

dH' (y)

dH* (y)
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for every 8 € (0, ¢). Hence, By cannot be equal to zero. One can show in a similar
way that By cannot be 2 either. This concludes the proof of the step.

Step 3: The first Euler—Lagrange condition tmplies the second one. To complete
the proof, we show that, if x = xp/|E| satisfies (4.4), then it satisfies (4.5), as
well. Assume x satisfies (4.4). By (4.4) it is enough to prove that the potential
(W * x)(x) + 3|z|* grows in the radial direction, that is:

VW s x)(x) o+ x> >0 for every z € R\ E.
Let z € R? \ E. We can write x = t2° with 2" € E. By (4.4) we have that
VW #x)(2?) - 2° + [ = 0,

which can be written by (4.11) as

1 ~
I /51 U(y)a?(2°,y) dH (y) + [2°]* = 0,

71'
where « is defined in (4.9). Multiplying this equation by #? yields:

! / B(y)a? (2, y) dH () + o2 = 0. (4.14)
Sl

™

By the inversion formula (4.8) and (4.10) we can write:

VOV 0@) o+ of? = [ = = | F(0)0* @)1 (0(w) 4 ()
il ja(z,y) e
L e e 4K )

Owing to (4.14), the expression above reduces to

VW xx)(@) - 2 + |z

= [ B)lae Vo) = Txw aae.) 4 () > 0.

i
This concludes the proof. O

The next result shows how to combine the previous theorem and an approxi-
mation argument to characterize the minimizer in the ‘degenerate’ case where the
Fourier transform of the interaction kernel is only non-negative outside 0. In partic-
ular, we prove that loss of dimensionality may occur and in this case the support of
the minimizer is contained in a straight line orthogonal to a direction § € St such
that ¥(£) = 0.

COROLLARY 4.3. Assume U >0 on S, where U is the function introduced in (3.5).
Then the unique minimizer of the energy I in (4.3) is either the normalized char-
acteristic function of the domain enclosed by an ellipse centred at the origin and
with semiazes a1, ay satisfying a3 + a3 = 2, or is the push-forward of the semicircle
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law (1.7) through a rotation map g(x) = Rz for x € R? with R € SO(2) satisfying
\I/(R€1) =0.

Proof. For € > 0 we consider the kernels:
We(z) = =(1 +¢)log |z[ + r(x)

and we denote by I. the corresponding energies with confinement |z|?. Arguing as
in (3.4), it is immediate to see that

V(&) +¢

V/V\s(5) = c.0p + T

with ¥ +¢ > 0 on S'. By theorem 4.2 for every € > 0 the unique minimizer p. of
I. is the normalized characteristic function of a set E. of the form:

2 2
RZEgz{:EERQ: oy T <1}

with R. € SO(2) and (a1 )2 + (a2,.)* = 2. The sequence (y.). is tight, since the
support of i is contained in the closed ball of centre 0 and radius v/2 for every e > 0.
Therefore, up to subsequences, (ji.). converges narrowly to a measure po € P(R?).
We claim that pg is the minimizer of I. Indeed, since the supports of u. and pg
are uniformly bounded, on these sets W} is bounded from below by some constant
—cgp, with c¢g > 0. Therefore:

I (pe) 2 I(pe) — coe
and by lower semicontinuity:

liminf I (pe) = Hminf I (ue) = I(uo).

e—0*t e—0+

On the other hand, if x4 is any measure in P(R?) with compact support and such
that

//R . (—loglz —y| + k(z —y)) du(y) du(z) < +oo, (4.15)
2 «R2
then by minimality:

limsup Ic(pe) < lim Lo(p) = I(p).

e—0+ e—0+

Therefore, g minimizes I over all measures with compact support and satisfying
(4.15). By theorem 2.1 and proposition 3.2 we conclude that pg is the minimizer of
I on the whole P(R?).

Up to subsequences, we can assume that the rotations and the semi-axes converge,
that is, R. — R, a1, — a1, and az . — ag, as ¢ — 01, with R € SO(2), a1, az > 0,
and a? + a3 = 2. Therefore, we have two cases: either both a; and ay are strictly

https://doi.org/10.1017/prm.2024.19 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.19

Nonlocal anisotropic interactions of Coulomb type 25

positive, or one of them is 0 and the other one is v/2. In the first case g is the
normalized characteristic function of the set F given by

2 2
RIE={zer?: 4221
ay a3

In the second case, uo is the push-forward of measure (1.7) through the rotation
map g(z) = Rz for x € R? if a; =0, or g(z) = RJx for x € R? if ay = 0. Here, J
denotes a m/2-rotation.

__To conclude the proof assume that a; =0 and as = V2. We want to prove that
U(Rey) = 0. By (4.12) and the change of variable z = RTy we have that

1 U(R.2 |
m /S (01,2 (% )(azs)%% (Rez-e;)* dMi(z) =1 for j=1,2

for every € > 0. Summing over j and applying Fatou lemma yield:

S \11(1;22) dH(2) < hminfl/ ‘I’(R ?)+e S dH(2) = 2.
27T st Z2 e—0 7T 1 (a’l 5) (a275) 22

This implies that the function z — z; 2W(Rz) is integrable on S!, hence W(Re;) = 0
The case a; = v/2 and ay = 0 can be treated analogously. O

REMARK 4.4. If the quadratic confinement V(x) = |z|? is replaced by a positive
definite quadratic form @Q(z), theorem 4.2 and corollary 4.3 remain true, up to a
scaling of the semiaxes of the ellipse and of the semicircle law. Indeed, by rotating
the whole system if needed, one can always assume that Q(z) = D(\)z - x, where
A= (A1, A2) and A1, A2 > 0. Arguing as in the proof of theorem 4.2, one can show
that solving the first Euler-Lagrange condition for the normalized characteristic
function of the domain enclosed by an ellipse is equivalent to finding M e M2X2

sym,—+
such that
1 \T/(y) 1 .
— Yy dH (y) = \;jd;,  for every j, k =1,2. 4.16
[y AR () = A5, (4.16)
The existence of a solution to this system can be proved by showing that the
function
_ 1 ~
f(M):= f;/ U(y)log(D(A) "' My -y)dH' (y) + tr(M)  for M € M2 .
Sl

has a minimizer My in ngxn21+ Indeed, it is immediate to see that D(\)~!Mj
2x2

satisfies (4.16). The existence of a minimizer of f in My + follows by the same
argument in step 2 of the proof of theorem 4.2. The proofs of step 3 and of corollary
4.3 can then be easily adapted.
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REMARK 4.5. The results of theorem 4.2 and corollary 4.3 extend to R3, see [16],
where the kernel W is given by the following anisotropic variant of the 3D Coulomb
kernel:

W(z) = \I}|($) for z € R®, 2z #0, W(0) = +o0,

with W strictly positive, even, 0-homogeneous, and smooth enough on S2. More
precisely, we proved that, if W > 0, then the unique minimizer of the energy

EoG) = ([ We—n)dut)du@)+ [ ol dua). pePE),

is the normalized characteristic function of the domain enclosed by an ellipsoid
centred at the origin. If W > 0, the minimizer is either of this form or it may
collapse on a 2D measure, whose support is given by the domain enclosed by an
ellipse.

REMARK 4.6. The original proof by Carrillo and Shu in [3] is based on a different
technique. Their starting point is a formula expressing the interaction kernel as an
integral of 1D logarithmic kernels on projections. More precisely, they show that

1 /M~ . .
—log|z| + k(z) = —%/ () log |z - €| df + constant,

where W is the same function as in (3.5). They observe that the projection of xg/|E|
(with E the domain enclosed by an ellipse centred at the origin) on any line passing
through the origin is a semicircle law. Using this remark and the representation
formula above, they argue by projection and conclude by applying the minimality
of the semicircle law for the 1D logarithmic kernel. The same approach can be used
to treat 2D anisotropic Riesz kernels of the form:

]

0<s<2,

with W strictly positive, even, 0-homogeneous, and smooth enough on S'. However,
their strategy of proof extends to R? only under some rather strong symmetry
assumptions on the anisotropy, that essentially reduce the problem to a 2D setting
(see [4]).

5. Related results and open questions

In this last section, we show how to explicitly determine the optimal distributions
in some concrete cases and we discuss some open problems.
5.1. The dislocation case

As a first result, we show how to deduce the characterization of the minimizer of
I, in (1.8) from the results of the previous sections. The original proofs in [2, 18]
are based on completely different arguments.

https://doi.org/10.1017/prm.2024.19 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.19

Nonlocal anisotropic interactions of Coulomb type 27

THEOREM 5.1. Let I, be the functional defined in (1.8). Then for |a| < 1 the unique
minimizer of I, is given by the measure (1.9). For a > 1 the unique minimizer of
1, is the semicircle law (1.7), whereas for o < —1 it is the semicircle law on the
horizontal axis:

% 2 — 22H'L [-V2,V2|(x1) ® do(x2). (5.1)

Proof. We set W, (z) = —log |x| + ka(x), where

2
T

Ko (T) = QW.
Since we can write:
2 2
ax]—r5 o«
HQ(SC) = §W + 5,
lemma 3.1 ensures that
i \/I}a 6
Wo(€) = cadp + |§|(2) (5.2)
with
¥ B & &3
o) =01~ Q)W + (1 +O‘)Wa §#0.

Assume |a| < 1. Since \Tla > 0 on S! in this case, by theorem 4.2 the unique mini-
mizer is the normalized characteristic function of the domain enclosed by an ellipse
of semiaxes aj q, G2,o. We note that W, is symmetric with respect to the coordinate
axes, that is:

Wo(—21,22) = Wo(x1, —22) = Wo(z) for every x € R2.

By uniqueness the minimizer must have the same symmetry, that is, the ellipse
is symmetric with respect to the coordinate axes. Therefore, in system (4.12) the
rotation R is necessarily the identity matrix and the equation for j =1, k=2 is
trivially satisfied by symmetry. In other words, using the expression of ¥, the
semiaxes aj q, (2, satisfy:

1 1—a)yi+(1 3
/Sl( )y + +a)y2y]2<dH1(y):1 for every j =1,2.

™ (al,a)zy% + (GZ,Q)QZ‘/%

It is immediate to see that a1 o = v/1 — @, az, = v/1 + o is a solution of this system.
It is indeed the unique solution, since we proved in step 3 of the proof of theorem
4.2 that any solution of (4.12) is automatically a minimizer and the minimizer is
unique. We conclude that for |a| < 1 the minimizer is given by the measure (1.9).
Let now o = 1. Arguing as in the proof of corollary 4.3, one can show that the
minimizer of I; has to be the limit of the minimizer of I, as a — 17. Therefore,
the minimizer is the semicircle law (1.7). The same argument applies to @ = —1.

https://doi.org/10.1017/prm.2024.19 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.19

28 M. G. Mora

If @ > 1, let us denote by s the semicircle law in (1.7) and let p be any other
measure in P(R?). Then

IOL(/J’) 2 Il(lu’) > Il(/isc) = Ioa(,u/sc)v

where the last equality follows from the fact that the anisotropic interaction is 0
on the semicircle law. A similar argument shows that (5.1) is the unique minimizer
of I, for v < —1. O

REMARK 5.2. For anisotropy (1.4) and quadratic confinement one can prove that
the unique minimizer is the normalized characteristic function of the domain
enclosed by an ellipse (with explicit semi-axes) if b < 1 + a?, whereas is the semi-
circle law (1.7) if b2 > 1 + a?, see [9]. Since the Fourier transform of the kernel W in
this case is ‘degenerate’ outside 0 for any b > a > 0, this example shows that both
options predicted by corollary 4.3 can indeed occur. From a mechanical viewpoint
the quantity H = b®> — a? — 1 is the so-called anisotropy factor, which measures the
degree of anisotropy in a cubic crystal, see [11, eq. (13-27)].

5.2. Elliptic physical confinement

In this section, we provide a full characterization of minimizers for a general
anisotropy in the case of the physical confinement:

Vi) =

0 ifexeFE,
+oo ifz¢gE,

where FE is the domain enclosed by an ellipse centred at the origin. More precisely,
we have the following result.

THEOREM 5.3. Let E = REy with R € SO(2) and
2 2
Eoz{meR2: x;+x§<1}.
Let J be the functional defined by

J() = / /E (= logla g1+ x(a =) du(s) du)

for every p € P(E), where the anisotropy  is even, 0-homogeneous, and of class

H® on S' with s > 3/2. Assume T >0 on S', where T is the function introduced
in (3.5). Then the unique minimizer of J is given by the push-forward g4 g, of the

measure
—1/2
1 2 a3
DE, = e H'LOE
HoEo = 9 raras <a‘11 aj 0

through the rotation map g(x) = Rx for x € R2.
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REMARK 5.4. This result was proved in [19] for a special class of anisotropies. Note
that when F is the closed ball B, of radius > 0 and centre 0 the minimizer is given
by the uniform distribution on the boundary of the ball, that is, by the measure:

1
Hom, = — H'LOB,.
2mr

Proof of theorem 5.3. Up to rotating the axes and replacing x(x) by x(Rx), we
can assume without loss of generality that R is the identity matrix and F = FEj.
Theorem 2.1 and proposition 3.2 guarantee that the minimizer exists and is unique.
Moreover, it is characterized by Euler-Lagrange conditions (2.7)—(2.8), which take
the following form:

(W p)(x) =c for p-a.e. z € supp p, (5.3)
(W p)(x) =2c for qe. z € Ey. (5.4)

To prove the theorem it is enough to show that the measure ppg, satisfies
(5.3)-(5.4).
For t > 0, we consider the set:

2 2

x x
Et:{xeRQ: ;+§<1+t}.

ai a3

By formula (4.11) for the potential of a general ellipse we have that

YO+ x6.)(0) = s [ eyt (55

for every x € F; and every t > 0.

Let now z be in the interior of Ey. Since = € E; for every ¢ > 0, equation (5.5)
holds for every ¢ > 0. Differentiating both sides of (5.5) with respect to ¢ and
applying the coarea formula yield:

d

. 2y ~1/2
_ = _ I _ J1 o, J2 1
0= gr ( . VW (z —y) dy) 2 Jom, VW (x —y) (a‘f + a%) dH (y)

for a.e. t > 0. For x in the interior of Ey the right-hand side is a continuous function
of t, therefore we deduce that

1/2
1 2 2
0=1 / VW -y L+ 2] aH(y) = 1102V (W * ios,) ()
2 Jog, ay Qg

for every x in the interior of Ey. Since W * ugp, is a continuous function in R2?,

this implies that W x ppg, is constant in Ey, that is, (5.3)—(5.4) are satisfied for
M= HoE,- U
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5.3. Some open questions and further comments

As a consequence of theorem 4.2 and corollary 4.3, energies of the form (4.3)
may have minimizers of non-full dimensionality only if the Fourier transform of
their kernel is degenerate. However, degeneracy of the Fourier transform is not
a sufficient condition for loss of dimensionality, see remark 5.2. The arguments of
proof in theorem 4.2 show that, in the convexity range, loss of dimensionality occurs
if and only if system (4.13) does not have a solution M in Mfyxrz 4. Yet it would
be desirable to devise a criterion for the occurrence of a lower dimensional optimal
distribution, without resorting to explicit computations. Similarly, in the case of
fully dimensional minimizers, there is no characterization available for the rotation
of the optimal ellipse with respect to the coordinate axes.

However, some simple considerations can be made in some specific cases. Indeed,
if u is a measure with no atoms and support on a straight line passing through the
origin, then by 0-homogeneity:

//R?X]Rz k(x —y) du(z) dp(y) = k()

where v € S! is a vector parallel to the support of . Since the logarithmic inter-
action and the confinement are radially symmetric, this implies that, among all
measures with support on a straight line through the origin, the minimal energy
is attained in the directions where s is minimal. Therefore, if x has more than
one minimizer in the set {z € S' : 2y € (=1, 1]}, then loss of dimensionality can-
not occur, as long as the Fourier transform of the kernel is non-negative, otherwise
uniqueness would be violated.

Theorem 5.3 shows that the choice of confinement may also have a strong impact
on the shape of minimizers and on their dimensionality. Preliminary computations
indicate that strict positivity of the Fourier transform should guarantee full dimen-
sionality of minimizers for smooth confinements, such as, e.g. V(z) = |z|P with
p =2

Another interesting question is the analysis of optimal distributions outside the
convexity range, that is, for kernels whose Fourier transform is negative along some
directions. Numerical simulations seem to suggest the occurrence of rather complex
patterns, see [3].
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