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Abstract

Values belonging to lazy data types have the advantage that sub-components can be accessed
without evaluating the values as a whole: unneeded components remain unevaluated. A
disadvantage is that often a large amount of space and time is required to handle lazy data
types properly. Many special constructor cells are needed to ' glue' the individual parts of a
composite object together and to store it in the heap. We present a way of representing data
in functional languages which makes these special constructor cells superfluous. In some cases,
no heap at all is needed to store this data. To make this possible, we introduce a new kind of
data type: (partially) strict non-recursive data types. The main advantage of these types is that
an efficient call-by-value mechanism can be used to pass arguments. A restrictive subclass of
(partially) strict non-recursive data types, partially strict tuples, is treated more com-
prehensively. We also give examples of important classes of applications. In particular, we
show how partially strict tuples can be used to define very efficient input and output primitives.
Measurements of applications written in Concurrent Clean which exploit partially strict tuples
have shown that speedups of 2 to 3 times are reasonable. Moreover, much less heap space is
required when partially strict tuples are used.

Capsule review

Ever since Augustsson and Johnsson first published their work on the G-Machine, it has been
recognized that for good performance a functional language compiler must attempt to
minimize heap access. In the G-machine this was achieved by using a value stack. Nocker and
Smetsers have shown how to extend and generalize Augustsson and Johnssons' work, and they
report on the improvements to the execution time that the improvements give rise to.

In line with the Clean philosophy of functional programming, Nocker and Smetsers have
used annotations to mark those data structures that can be safely and usefully stored outside
the heap. In the particular applications that they have considered (Parsing and the Fast Fourier
Transform), they observe an approximately three-fold improvement in execution times.

1 Introduction

In pure functional languages, all expressions are referentially transparent. The value
of an expression is not changed by evaluating that expression. As a consequence,
there are (infinitely) many ways of denoting any given value. This fact is exploited by
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lazy data types: types whose values may contain unevaluated components. Lazy data
types allow infinite objects to be represented in a finite amount of space.

Functional languages handle (lazy) data types in a very elegant fashion, hiding all
details of memory management or pointer manipulation. However, in comparison
with strict data types, lazy data types have a serious disadvantage: a proper
implementation consumes large amounts of both space and time. To store a possibly
unevaluated expression, a complete representation including the environment needed
to evaluate it, has to be created in memory. Although there exist compilation
techniques which optimize memory management in many ways, the use of lazy
objects remains an expensive affair. Both packing and unpacking lazy values requires
significant execution time. Even worse, because of the dynamic memory behaviour
a complex heap allocation mechanism, including a garbage collector, is necessary. If
much memory is used, it is possible that more time is spent garbage collecting than
executing the program itself. In the worst case more memory is needed than is
available.

Strict data types have the advantage that the overhead introduced by (partially)
unevaluated values disappears. Furthermore, when using strict basic types, such as
strict integers or strict reals, we can avoid the use of any heap at all. Instead, values
of these types can be kept on stacks or in registers, which significantly increases the
efficiency of the code generated by the compiler.

Changing lazy data types into strict ones can be done by adding strictness
information to a program. To a certain extent, this information can be derived
automatically by strictness analysers. Implementations of such strictness analysers
(e.g. Nocker 1990) obtain fairly good results. Many functional programs have shown
a remarkable speedup, for instance an efficient compilation of the well-known
Fibonacci function leads to code that does not use any heap space. Even so, many
functional programs still have large space and time requirements.

1.1 Partially strict data types

To increase the efficiency of functional programs, we believe that it is inevitable to
appeal to the programmer. In this paper we present a new kind of data type for lazy
functional languages which makes it easier for a programmer to specify efficient
programs without losing the basic elegance of these languages. These new data types,
called partially strict data types, are obtained by supplying types with additional
strictness information. In a type definition this strictness information specifies which
components of that type should be evaluated (the so called evaluation context of that
component). In the type signature of a function the strictness information determines
the evaluation contexts of the parameters and the result.

We show later that this strictness information enables the compiler to generate
more efficient code, and we also present some important kinds of application that
benefit from this new technique. In particular, we present a new, efficient way of
handling IO in functional languages.

To discuss how partially strict data types can be implemented efficiently, we have
chosen to employ the ABC-machine (Koopman et al., 1990) as our abstract model.
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This abstract machine is similar to G-machine variants (e.g. Johnsson, 1987; Peyton
Jones and Salkild, 1989). The techniques presented in this paper are not restricted to
the ABC-machine, however, but can be applied to any stack- or register-based
(abstract) machine.

1.2 Structure of the paper

The next section briefly describes the abstract ABC-machine. Section 3 introduces
partially strict data types and considers how they may be implemented. In section 4
we present some typical applications together with performance figures. Section 5
concludes. Though the techniques are developed and implemented in Concurrent
Clean (Nocker et al., 1991), the program fragments in these sections are written in
Miranda.1

2 The abstract ABC-machine

The abstract ABC-machine is a mixture of a graph-rewriting machine and a more
traditional stack-based machine. Conceptually, evaluation of expressions is done
using graph rewriting. A functional program is therefore represented as a set of graph
rewriting rules. To increase efficiency these rewrite rules are not interpreted directly,
but are instead compiled into ABC instructions. Expressions are represented by
graphs and stored in the heap. Each node in the graph corresponds to either a
function application or a value (the result of the evaluation of an application). In the
latter case, we say that the graph that represents such a value is in head normal form.
The ABC-machine has three stacks, of which two are used for argument passing (the
third is used for storing code addresses, and is not relevant here): the A stack,
containing addresses of nodes in the heap, and the B stack, containing values of basic
types, such as integers or reals (see for example Fig. 1). Note that both stacks depicted

'a'

23

—31—

A stack B stack

Fig. 1. A and B stacks of the ABC machine.

in Fig. 1 grow downwards. Shaded nodes indicate subgraphs whose precise structure
is not relevant.

Basic values can be represented in two ways: as nodes in the heap, or as items on
the B stack. In the latter case, a basic value may occupy more than one entry, for
example, a 64-bit Real value needs two entries. As values are addressed relative to the

Miranda is a registered trademark of Research Software Ltd. (Turner, 1985).
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top of the stack, the sizes of all objects have to be known (preferably at compile time).
To store a value in the heap, a node has to be allocated and filled with the value.
Retrieving a value is relatively expensive because the node containing the value has
to be unpacked. Clearly, storing values on the B stack is much more efficient. In an
average ABC program, the efficiency increases by about a factor of eight when the B
stack is used instead of the heap (Heerink, 1990).

Although this is not a complete description of the ABC machine, it should be
sufficient to understand the optimizations below. In describing our implementation,
we restrict ourselves to the use of the stacks and the heap.

Generating efficient machine code from an ABC program is not straightforward.
At first sight, the use of stacks does not seem the most optimal way of using real
machine resources (such as registers). However, it is possible to keep some of the top-
most elements of the stacks in registers (which eliminates many push and pop
operations). In the Concurrent Clean implementation this method is exploited as
much as possible. The techniques presented in this paper lead to a more efficient use
of the A and B stack. Consequently, the final machine code will also be more efficient.
We will not consider machine code generation any further: this subject is treated more
extensively in Smetsers et al. (1991).

The idea of having a special stack for processing basic values is nothing new, but
we show here that this stack can also be used to keep (parts of) values of general
composite data types. In composite data types (sometimes called algebraic data types)
data constructors are defined that 'glue' the sub-components together. Generally,
composite objects are represented directly in the heap. Typically, 50% of the nodes
are used to represent the structure of the object rather than containing useful data.
For example:

tree* ::= Node* (tree*) (tree*) \

Leaf*

A tree is normally represented by an object consisting of linked nodes with almost the
same structure as a graphical representation.

Functions defined on complex data structures often use pattern matching to access
the components of those structures. As a consequence, these functions may be strict
in the corresponding argument. In such a case, it is sometimes possible to avoid
building unnecessary graph structures. For example:

head ::
head(f:r)
head[]

fromto ::

fromto a b

start ::

start =

nwn

num.

= /
= error ' list was empty

-»• num -»• [nuni]

= [],
= a: (fromto (a 4- 1) b),

head (fromto 2 10)

a> b
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Fig. 2. The result offromto passed to head.
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Fig. 3.

The function head uses pattern matching to access the head and the tail of the list. It
is therefore strict in its argument. Usually, the result oifromto is passed to head, as
shown in Fig. 2.

It is easy to see that the topmost node can be omitted. To distinguish between
empty and non-empty lists, a code which identifies the constructor (called the
construetorid) is pushed on the B stack (see Fig. 3). Obviously, for data types having
only one constructor, such as tuples, a constructorid is not needed.

Although one node has been saved in this example, many nodes are still needed to
represent the program structure.

3 Partially strict data types

How far a graph can be reduced at a certain moment depends on the evaluation
contexts of the nodes in the graph. In lazy functional languages we can distinguish
two kinds of contexts: lazy and head-normal form (hnf). Nodes in a hnf context can
be reduced to head-normal form, whereas the lazy nodes should be left unevaluated.
An example of a node which is always in a hnf context is the outermost node of the
right-hand-side of a function definition.

The problem with data constructors is that the arguments of such constructor
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nodes are always lazy, since the nodes containing the constructors are already in
head-normal form. Often, however, the hnf context is too restrictive. For instance,
when a function delivers more than one result these results might frequently be
computed immediately. However, the constructor that is needed to glue these results
together forces a lazy context for the arguments, which will postpone the evaluation
of these arguments. For example:

complex == (real, real)

plusC :: complex^ complex^-complex

plusC (rl, il) (rl, Q) = (rl + rl, i\ + il)

It is intended that the two parts of the result oiplusC should be reduced immediately.
However, the tuple constructor that is used to pack the real and imaginary parts of
the complex number forces a lazy context for its arguments.

To avoid this, we introduce a new, more general notion of context that is defined
by means of special data types.

3.1 Definition

A partially strict data type is a data type where it is specified (e.g. by the programmer)
which parts of instances of that type should be evaluated or not. Expressed in terms
of contexts, a partially strict data type is a data type for which the context of all the
nodes of each possible instance is indicated explicitly. The default context is lazy. This
default can be overruled by a strictness annotation which makes the indicated part
partially strict. We use exclamation marks to denote strictness annotations. For
example

some-tuple == (lQ.num, boot), \nuni)

token ::= Keyword \keywordkind\

Identifier \entry \

IdentName \char \

Eof

f :: num -*• (bool, num) -»• some-tuple

fa(b,c) = «a,6),c).

An object of type some-tuple appearing in a strict context consists of a tuple of two
elements, both of which are evaluated to at least head-normal form. The first element
of this tuple is a tuple of two elements, of which the first one is a num value (evaluated)
and the second one is a bool expression (possibly unevaluated). The second argument
of the outermost tuple is an evaluated num value. An object of the (algebraic) type
token can have various appearances, depending on the constructor. Note that, for
instances of both types, graphs are built only if they occur in a lazy context.

Although it is possible to provide strictness annotations for non-strict positions, we
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only allow arguments of partially strict types to be indicated as partially strict. This
is because evaluation of a partially strict object in a non-strict context will force the
evaluation of the surrounding non-strict object (for example, if we omit the first
annotation in the definition of some-tuple then the first, strict numeral can only be
evaluated if the tuple itself is present). So, this limitation does not imply any
conceptual restrictions.

Annotations are allowed in type definitions as well as in type specifications of
functions (see the next example). Since the right-hand-side of a function always
appears in a strict context, we do not annotate the result type of the function
explicitly. The strictness properties of the type some-tuple have a consequence for the
function/: it becomes strict in both arguments; in fact,/is also strict in the second
sub-argument c.

The rest of this section discusses the implementation of partially strict data types.

3.2. Implementation

The A and B stacks are used for passing parameters and returning results. The type
of a function, including the strictness information, fully defines its calling convention.
This also holds if one of the arguments, or the result, has a type that is partially strict.
Consider, for example, the type of the following function (which is identical to the
function given in the previous example, but with expanded type synonyms and full
strictness information):

/ :: \num->\(bool,\num)->-(\(\num,bool),\num)

The first argument of / which is strict, is expected on the B stack. The second
argument of/is a partially strict tuple, of which the first argument, the bool, is passed
via the A stack and the second argument, the num, via the B stack. The boolean might
be unevaluated. The caller has to ensure that the layouts of both A and B stack are
correct. The following picture shows the stack layouts of an example call to / (see
Fig. 4).

y///,
— > • 'two) -' 1024

Fig. 4.

The result of/is handled in the same way./returns a tuple consisting of a strict
tuple and an evaluated num value. The latter is passed via the B stack. The innermost
tuple contains an evaluated num and a possibly unevaluated bool. Consequently, the
first argument of this tuple is placed on the B stack and the second one on the A stack.
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Things become more complicated if algebraic types are involved. Consider the
following example:

token := SpecialKeyword [keyword]
Identifier [entry \

IdentName \char \

Eof

keyword ::= OpenSyn \

CloseSym \

DotSym \

LambdaSym

env == (File, IdentTable)

getnexttoken :: ! env^-Q.token, \env)

parseexp :: \(\token,\env)^-(\syntaxtree,\env)

parseexp (Keyword OpenSym, e) =

parseexp (Keyword LambdaSym, e) =

parseexp ...

The size of an object of type token in a strict context depends on the object's
constructor. Hence, the corresponding constructorid, which is passed via the B stack,
defines the layout of the rest of the stacks. The use of these strict constructors ensures
that the function getnexttoken can return its result in an optimal way. Figure 5 shows
a snapshot of both A and B stack just before getnexttoken delivers its result with the
use of lazy types only (Fig. 5 a) and when using partially strict types (Fig. 5 b).

Keyw

Open

11
1J I

r1
File

_L

IdTb

/////

Fig. 5 a

> IdTb

File

Open

Keyw

Fig. 5 b
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The function parseexp can use the result of getnexttoken immediately. However, it
first has to analyse what instance of a token is actually present. A few switch
statements select the code for the right alternative:

parseexp. 1:

switch 0 4 Keyword Identifier IdentName Eof

Keyword:

switch 1 4 OpenSym CloseSym DotSym LambdaSym

OpenSym:

|| code for the first alternative

CloseSym:

DotSym:

LambdaSym:

|| code for the second alternative

Identifier:

3.3. Coercions

The layout of the stacks when a function is called is determined by the type of the
function. When the actual layout of the stacks differs from the layout expected at the
strict entry for a function, a conflict occurs. An example of such a conflict is:

/ :: ([char], (num, [char]))

g :: \([char], \(\num, \[char])) -»• num

start :: num

start = gf

Consider the application (gf). The way/delivers its result disagrees with the way g
demands its parameter, as can be seen in Fig. 6.

In such a case, code has to be generated that converts the result into the form
indicated by the type of the argument. We call such a conversion a coercion.

The most common coercion in lazy functional languages arises when an
unevaluated expression appears in a strict context. The node representing the
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(*)

V///,
LoC2

LoCl LoCl

Fig. 6. (a) Demanded stacks, (b) Offered stacks.

unevaluated expression comprises an application of some function/. The arguments
to / are also stored in the heap and must therefore be unpacked in such a way that
they agree with the calling conventions of/. Similarly, when a node is updated with
a result which has been divided over the stacks, these value have to be packed into
a suitable form.

To give an idea of how much code may be involved in performing a coercion, we
give the ABC code for the previous example:

start. 1:

jsrf

push-ci 1

jsr-eval

pop-a 1

push-args 12 2

push-a 1

jsr_eval

pop_a 1

jsr_eval

push-A 0

update^a 1 3

pop_a2

jmpg

evaluate/

and now the coercion code

evaluate the second argument of the

outermost tuple {which is a tuple itself)

push the arguments of the innermost tuple

on the A stack and reduce the second one

(i.e. the second [char])

evaluate the first argument of the second

tuple {i.e. the num) and push it on the B stack

update the A stack by overwriting the

entry referring to the tuple with a

reference to the second [char] and pop

the superfluous entries from the A stack

finally

call g.

In some cases, large pieces of code may be necessary to perform the coercions.
However, this does not necessarily increase execution time. In most cases, a coercion
is done because the value of an object will be needed (in the case of unpacking), or
was used (in the case of packing). But then the packed or unpacked value will be
needed anyway, only the exact moment of packing or unpacking differs in the two
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cases. Superfluous coercions may, however, occur when calling certain kinds of
polymorphic functions. An example of this is the identity function applied to a strict
tuple. This problem might be solved by generating code for all different kinds of
applications of such functions. However, since such applications occur rarely, this
optimization is not recommended.

3.4 On recursive data types

Unfortunately, this method of argument passing will not work for recursively defined
data types. There are two reasons for this.

In contrast to non-recursive data-types, it is generally not possible to determine the
size of instances of recursive data types at compile-time. However, to determine the
positions of all the arguments or sub-arguments on the stacks it is necessary to know
at compile-time how large each object will be. For example:

sum :: \[num]-+\num^>-num

sum [ ] / = /

sum (a.r) I = sum r (l+a).

Suppose that [\num] indicates a fully evaluated list, of which the elements are passed
via the B stack. To locate the second parameter, we need to know how many elements
the list contains (see Fig. 7). A solution for this problem might be to place the actual

23

67

- Second
parameter

Fig. 7.

length of the list as an additional item on the B stack. But this is not the only problem.
When a parameter is passed from one function to another the parameter may need
to be copied, for instance when the called function expects it in a different position
on the stack. This is particularly inconvenient when the parameter consists of a large
number of stack entries. In some cases, especially when dealing with strict recursive
data types whose size is unpredictable, this might lead to an unacceptable loss of
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efficiency. Although such data types might be useful, they cannot be implemented
efficiently using this technique.

To allow the compiler to choose between either a call-by-value or a call-by-
reference mechanism (where the corresponding object is stored in the heap), we
demand that the size of each object has to be known at compile time. Consequently,
we restrict our attention to partially strict non-recursive data-types.

One further aspect of lazy recursive data types needs to be mentioned here. Because
of their recursive structure, these objects are generally built dynamically using
recursive functions. To be more specific, when a function builds a recursive object, it
usually creates the recursive parts by means of one or more (possibly indirect) calls
to the same function. Since these parts are glued together with a constructor, these
recursive calls appear in a lazy context, and hence they have to be built in the heap
instead of being evaluated immediately. Evaluating such an expression at a later stage
involves unpacking the object, followed by a call to the evaluation code of the
outermost function. However, if the evaluation code of the function no longer creates
the root node of the result (as proposed in section 2) then, to preserve possible
sharing, this has to be done after the evaluation has taken place. But then there is no
gain over the old implementation in which the left-hand-side root node is overwritten
by the result of the right-hand-side. Let us illustrate this with an example:

fromto ::

fromto a b = [ ], (a > b)

= a : (Jromto {a + 1) b).

As argued earlier, a node containing the fromto application has to be built before
evaluation. After evaluation this node will contain the root node of the rest of the list
(either a Cons or a Nil node). But this is exactly the node that we intended to avoid
building. Because of the lazy (indirect) recursive call of fromto, this node has been
created in advance.

In addition, updating the node is hampered by the fact that it is necessary to
examine the B stack in order to determine the constructor and arguments which
should overwrite the node.

4 Applications and performance

In this section we discuss three examples in which partially strict (non-recursive) data
types play an important role. They represent problems that cannot be implemented
efficiently in standard implementations of lazy functional languages. Our main
observation is that, thanks to the use of partially strict data types, both less execution
time and less heap space are consumed. In practice, it would be almost impossible to
derive this additional strictness information using only static analysis, so partially
strict data types are clearly beneficial here.

The first example, the Fast Fourier Transform, is a well-known algorithm. Much
computational work with complex numbers is involved. A complex number is defined
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as a (strict) tuple of two real numbers. In the second example we present a new way
of implementing 10 in functional languages. The last example is a simple
scanner/parser for lambda expressions, in which the new IO primitives are used. By
using partially strict data types characters and tokens can be processed in an optimal
way.

In the following sections only those program fragments are presented that are
important for the discussion. The complete programs can be found in the Appendix.
As mentioned earlier, the actual programs have been written in Concurrent Clean,
and compiled by the Concurrent Clean system. The measurements have been done on
a Macintosh Ilfx, with a MC68030 processor running at 40 MHz. All timings are
given in seconds of total execution time. Unless mentioned otherwise, all programs
were executed with a 3MByte heap. The most recent code generator has been used for
the compilation. This includes a smart register allocation mechanism (Smetsers et al,
1991), and a very efficient heap management system (Groningen et al., 1991).

4.1 The Fast Fourier Transform

The Fast Fourier Transform is a well-known algorithm for computing the discrete
Fourier Transform of an array of complex numbers (e.g. Cooley and Tukey 1965).
Consider an array A[Q... n — 1] of n complex numbers. The Fourier Transform of A
is an array B[0... n — 1], defined as

i-o

where r is the «th principal root of 1. A straightforward implementation of this
formula results in an algorithm with complexity O(n2). With the Fast Fourier
Transform, array B is computed by first splitting array A into two parts, then deriving
the Fourier Transforms of each part, and finally by merging the resulting arrays into
a single array. The complexity of this algorithm is O(n* log (n)).

The basic operations on complex numbers can easily be defined:

complex == Q.num, \num)

plusC :: \complex^>-\complex-> complex

plusC (rl, /I) (r2, il) = (rl + rl, i\ + il)

minC :: [complex^- [complex^- complex

minC (rl, il) {rl, /2) = (rl -rl, il-il)

mulC :: Icomplex -*• [complex -*• complex

mulC(rl, il) (rl, il) = (rl*rl-il* a,

Without strictness annotations all values would be lazy. However, because of the
annotations in the type complex everything is strict and efficient code can be
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generated. The strictness annotations on the arguments in these functions can also be
derived by a strictness analyser. However, the type specifications are essential, since
this is the only way to indicate that these functions return tuples that are strict in their
arguments.

The actual work in the Fast Fourier Algorithm is done during the merging. The
function merge merges two (converted) lists

merge :: [[complex]^ [[complex]->[num-> [complex]

merge even odd n

= low + + high

where

(low, high) = merge' even odd 0

|| merge' :: [[complex]->[[complex]-*\num^r([[complex], [[complex])

merge' (e:re) (o:ro) i = ([ui: urest, \umi: umrest)

where

(urest, umrest) = [merge' re ro (i+ 1)

ri = root i n

prod = mulC ri o

ui = plusC e prod

umi = minC e prod

merge'[] [] i =([],[])

The required values ui and umi of the new lists appear in a lazy context. This would
normally mean that the whole expression containing the complex operations would
have to be built in the heap. However, it is better to compute these values
immediately. This is done by adding strictness annotations to force a strict context for
the evaluation. Without these annotations, much more time and heap space is
required. In practice, it is almost impossible to derive this information using current
static analyses, though all elements of the list will certainly be used.

Table 1 shows timings for the Fast Fourier program. First, we note that due to the
use of strict types the total execution time in the case of an array of 211 elements is
decreased by a factor of almost three. This is caused both by more optimal code and
by lower heap use. The smallest amount of heap needed for the lazy version is around
2 Mbyte, whereas the strict version can easily run in 750 Kbyte. With lazy types the
heap use becomes so large that it is impossible to run the program on an array of 213

elements with a 3 MByte heap. The third row gives the execution time of a fairly
optimal C version of the Fast Fourier algorithm. It is twice as fast as the Clean
program. This can be completely attributed to the comparative heap behaviour of the
two programs: the C solution uses just 600K of memory, and no garbage collections
are required.

With respect to the efficiency of the Fast Fourier program the following notes are
important:
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Table 1. Timings for the Fast Fourier Transforms

Clean, strict types, array of 8K
Clean, lazy types, array of 8K
C, array of 8K
Clean, strict types, array of 2K
Clean, lazy types, array of 2K

Execution time

5-5
—
5-4
1-3
30

Garbage
collection time

4-9
—
—
01
0-8

Total time

10-4
—
5-4
1-4
3-8

• it seems as if the algorithm can be made faster by removing the call to append in the
function merge. This can be done by defining several instances of the merge'
function. In practice, this transformation appeared to have no effect.

• the algorithm written in an imperative language can be made faster by removing the
splitting. This is done by performing a complex shuffle operation on the original
array. Because lists elements cannot be accessed in constant time, this shuffling is
very expensive in a functional language without constant access-time arrays.

• the root values that are needed can be computed in advance. This would reduce the
number of computations. On the other hand, selecting the required root from the
list means an expensive selection. So, this optimization is only useful if arrays are
available.

• in all other respects, arrays do not improve efficiency. All other selections on lists
concern the first element, which can be obtained by pattern matching. Also, the
creation of new lists cannot be done more efficiently with arrays.

4.2 Fast IO in functional languages

One of the main disadvantages of lazy functional languages is their poor support for
IO. For example, input is usually obtained via a lazy list of characters. Clearly, this
repeated packing and unpacking of characters is not a very efficient way of passing
input to the program. This inefficiency can be partly eliminated by supplying higher
level functions that deliver integers, strings, etc., instead of characters. The effect of
these functions is to divide the input into larger pieces before it is packed and passed
to the program. However, such functions can only be used in particular cases. It
would be better to have efficient low level functions with which the programmer
himself can define these high level functions.

Our solution is based on partially strict tuples: we define a basic function readchar
that returns a character, as well as a kind of continuation (called a. file) that can be
used for obtaining the rest of the input, readchar gets a. file as input

readchar :: file -*• Q.char, \file)

Of course, a file might be implemented as a list of characters, or as a continuation
function. However, that would again be very inefficient. A better solution is to use a
more direct representation of a file, for example an index in the file table maintained
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by the run-time system. To be able to distinguish between the various representatives
of one physical file, we have to add a kind of version number to this representation.
The easiest way is to use an integer that indicates the current position in the file. Thus,
a file consists of a file position and a file index both represented by integers. We
assume the following internal representation for files

file == {\fik-position,\ file-index)

file-position == num

file-index == num

Clearly, both parts of the file value can be passed via the B-stack.
A problem with IO in functional languages is that many instances of one file can

exist. Files used for reading cause no problems. The file pointer of the physical file can
safely be adjusted if the current file position is checked on each access. For files used
for writing, things are worse since if parts of a file were overwritten this would violate
the property of referential transparency. We therefore only allow writes to the copy
of the file with the highest version number. Consequently, a run-time error message
will be given if an attempt is made to write to an old version of a file.

This kind of IO has been implemented in the Concurrent Clear System (Plasmeijer
et al., 1991). An example that shows the efficiency of this method is a program that
copies a file to another file (character by character)

copy file :: ! file ->! file ->• file

copyfile from to = to, if endoffile from

= copy' (readchar from) to

copy' :: IQ.char,!file)->!file-*-file

copy' (c,from) to = copyfile from (putchar c to)

main = copyfile (openfile "in" "r") (openfile "out" " w")

All strictness annotations in the above definitions are derived by the strictness
analyser. It takes 67 seconds to copy a file of 1 MByte. An equivalent C program is
only 25 % faster. This difference is due to the overhead of testing the file position
markers in the Clean version. If strings are written instead of characters, however, the
overhead becomes much less significant. In the current IO system of Concurrent
Clean (Achten et al., 1992) this testing is not needed anymore.

4.3 A simple scanner I parser

This example describes a simple scanner and parser for lambda expressions. With
strict tuples, functions can accept and return their values efficiently. This allows faster
scanners and parsers to be written. The function readchar is used for defining a
function that determines the net token of an input file
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token ::=

keyword ::=

env

entry

getnexttoken

Special Keyword

Identifier

IdentName

Eof

OpenSym \

CloseSym \

DotSym \

LambdaSym

== (\file, Udenttable)

== num.

:: \env^-(\token, \env)

\keyword

\entry

\char

getnexttoken (f, i) = (token, (file, table))

where

(c,file)
token'

(token, table)

skiplayout :: \file^(}.char, \file)

skiplayoutf = ('EofChar\f)

= skip (readcharf),

skip :: \(\char,\ file) ̂ (\char,\ file)

skip (' ' , / ) = skiplayout (readchar f)

skip('\t\f) = skiplayout (readcharf)

skip (l\n',f) — skiplayout (readcharf)

skip x = x

convertchartotoken :: \char

convertchartotoken ' ( '

convertchartotoken')'

convertchartotoken'.'

= skiplayout (readcharf)

= convertchartotoken c

= putinidenttable (token', t)

, if endoffilef

otherwise

convertchartotoken' \ \ '

convertchartotoken' Eof Char'

convertchartotoken c

-> token

= Special Keyword OpenSym

= SpecialKeyword CloseSym

= SpecialKeyword DotSym

= SpecialKeyword LambdaSym

= Eof

= IdentName c

All functions use strict types. The annotations in the type definition of env and in the
right-hand side of the type specifications are added by hand. No nodes need be built
for any of the input characters: they are all passed via the B stack. As soon as these
characters are processed, they can be removed. Both execution speed and memory
usage are improved by this technique.
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Similarly, the tokens produced by the scanner can be passed efficiently to the
parser. Consider, for example, the first alternative of the function parseexp:

parseexp :: \(\token,\env)->(\syntaxtree,\env)

parseexp(SpecialKeyword OpenSym, e)

= (Application expl exp2, new-env)

where

(expl,envl) = parseexp (getnexttoken e)

(expl, env2) = parseexp (getnexttoken envl)

new-env = expectclosesymbol (getnexttoken envl)

parseexp...

All calls to getnexttoken appear in a strict context (note that new-env and therefore
also the other environments appear in a strict context because of the strictness
annotations in the type specifications of the corresponding functions). So, the results
of these calls are passed via the stacks to parseexp. The way this function accepts the
tokens has already been discussed.

The syntaxtree data type is an example of a recursive data type (see the appendix
for its specification). So, no strictness annotations have been added to the type. Note
that there is also not much point in annotating the syntaxtree, since the structure will
be built anyway.

The program has been executed with a lambda expression of about 14K characters
as input. The timing figures are shown in Table 2 . Once again, the program with strict
types (without garbage collection time) is about twice as fast. The garbage collection
time is highly dependent on the size of the heap. Again, the lazy types lead to
extremely high heap usage. With lazy types a t least 1 MByte of heap is needed,
whereas for the other cases 100 KByte is sufficient.

Table 2. Timing figures for the scanner/parser

Scanner, lazy types
Scanner, lazy types
Scanner, strict types
Scanner, strict types

Heap size

3M
1 M
3M

100 K

5

5.7

Execution
time

0-72
0-7O
0-36
0-36

Discussion

Related work

Garbage
collection time

0-28
113
00
00

Total time

10
1-83
0-36
0-36

There is growing experience with efficient implementations of lazy functional
languages. However, except for Peyton Jones and Launchbury (1991), there is no
work that relates directly to partially strict da ta types. In current implementations of
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lazy functional languages strictness of data types is restricted to some very specific
cases. This holds both for the implementation of LML (Johnsson, 1987), and for the
new implementations of Haskell (Hudak et ah, 1992). For example, in LML it is
possible to add strictness information to algebraic data type definitions. However, it
is not clear how this information is used to obtain more efficient code. Furthermore,
the use of these annotations is not really encouraged.

A related but incomparable field of research is strictness analysis of non-flat data
types (Burn, 1987; Wadler and Hughes, 1987). Though the results of such an analysis
state how expressions can be evaluated within a certain context, it is unlikely that this
can provide useful information for a general parameter passing mechanism such as
we described. Such information might well be useful for implementations on parallel
machines (Burn, 1987).

A similar way of adding strictness information to data types has been introduced
by Peyton Jones and Launchbury (1991). They describe types, called unboxed values,
where strictness annotations are considered as a kind of type (note that in contrast,
in our approach strictness annotations determine the evaluation contexts of nodes in
the graph). As a consequence, the type system has been changed in such a way that
strict types are bound to special unboxed data constructors. In contrast to partially
strict data types, in which coercions are generated by the compiler, conversions from
unboxed to boxed values and vice versa, have to be done explicitly. This is also the
reason that polymorphic functions cannot immediately be applied to unboxed values
(though it is stated that automatic coercions can be introduced). Boxed constructors
already existing in the program cannot be used for their corresponding unboxed
values. Also in the case of unboxed values, as with our approach, strict recursive data
types are problematic, and the authors forbid certain kinds of recursive data types.
Because of these limitations, it is unclear to what extent unboxed values should be
available in a language: it could be rather difficult for a programmer to explicitly
manipulate (un)boxed values. It appears to us that, especially from a programmer's
point of view, partially strict data types are preferable to unboxed values. This is
especially true if one bears in mind that the same gain in efficiency will be achieved
with the former as with the latter.

Peyton Jones and Launchbury (1991) mainly treat the semantic aspects of adding
unboxed values to a language. Though the intention of unboxed values is to improve
efficiency, the authors do not pay much attention to implementation issues. Because
of the similarity to partially strict data types, we can also state that unboxed values
will lead to more efficient code. The implementation techniques presented in this
paper are equally applicable to unboxed values.

5.2 Conclusion

We have presented a method that allows more efficient functional programs to be
written. Often, values that are instances of partially strict data types need not be
stored in the heap. Whenever such a value appears in a strict context, it can be passed
to other functions on the stacks, or even in a set of registers. Furthermore, the overall
memory behaviour is better since less heap space is needed. In this paper we have only
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discussed how partially strict non-recursive data types can be used for optimizing
function calls. More optimizations and extensions are imaginable. For example, in
many cases it is possible to store evaluated objects more compactly in the heap. Also,
the restriction to non-recursive data type can be relaxed when the sizes of all objects
belonging to a type can be determined at compile-time. These are topics for further
research.

The motivation for introducing partially strict data types is to improve efficiency.
However, they do not have consequences for the expressiveness of the programming
language. Of course, it is difficult to estimate whether typical functional programs will
benefit from partially strict data types. Experience shows that they are important
when using non-recursive data types and functions that deliver multiple results (e.g.
using tuples). In these cases, the gain in efficiency more than counterbalances the
effort needed to supply the program with additional strictness information. For
example, in the Concurrent Clean system, partially strict data types have already
proven their usefulness. This system contains an extensive library for specifying
general IO (including menus, dialogs and keyboard and mouse input) in a very
convenient way (Achten et al., 1992). Without partially strict data types, denning and
using this library would have been practically impossible.

A point we want to stress is that strictness annotations can and should be added
by the programmer. Often, such strictness is inherent to the types specified by the
programmer. For example, the type definition of a complex number is intended to be
a strict one, but without language support it is not possible to indicate this. Generally,
it is very complicated or even not possible at all to derive such strictness by some kind
of static analysis. Nevertheless, thanks to the additional information provided by
partially strict data types the strictness analyser can derive more strictness information
for other parts of the program. This also gives an important speedup.

Partially strict tuples have been implemented in the Concurrent Clean compiler
(Smetsers et al., 1991). The three examples of section 4 demonstrate that programs
using these types can become much faster. They also show that partially strict data
types can be defined and used in a rather natural way. This means that a programmer
can gain efficiency simply by adding a few strictness annotations, and without losing
too much of the elegance of the original language.
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Appendix A Example programs

The Fast Fourier program:

complex = = ([num, [num)

plusC :: ! complex ->! complex -*• complex

plusC (r 1, il) (r2, /2) = (r 1 + rl, il + £2)

m/nC :: ! complex ->! complex -*• complex

minC (rl , il) (r2, /2) = (rl - r2, il - /2)

mw/C :: ! complex -»•! complex -> complex

mulC (rl, il) (rl, il) = (rl*r2-i\* il, rl*i2 + il *r2)

:: [[complex] -> !«MAM ->• [com^/ex]

cow length = com, length < 2

= merge res_even res-odd length

where

(«;e«, odd) = split com

res-even = fast even next-length

res-odd = fast odd next-length

next-length = length/2

merge :: \[complex]-*- [[complex]^- \num-+ [complex]

merge even odd n

= low++ high

where

(low, high) = merge' even odd 0

|| merge' :: {[complex]->• {[complex]->\num^> ([[complex], [[complex])

merge' (e: re) (o: ro) i = (!«/: urest, \umi: umrest)

where

(urest, umrest) = [ merge' re ro (i+l)

ri = root i n

prod = mulC ri o

ui = plusC e prod

umi = minC e prod

merge'[] [] i = ([],[])

root :: [num -*• [num -> complex

root) n = (cos z, sin z)

where

z = (2*j*pi)/n
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split ::

split (a:b:

split []

The lambda

token :: =

keyword

env

entry

ident table

! [complex] -*• (! [complex], ! [complex])

rest) = (a : even, b : odd)

where

(even, odd) = ! split rest

= ([],[])•

scanner/parser:

= SpecialKeyword [keyword |

Identifier \entry \

IdentName \char \

Eof

::= OpenSym \

CloseSym |

DotSym \

LambdaSym

= = Q.file, UdentTable)

== num

= = Q.num, \[char])

getnexttoken :: lenv-> (Itoken, \env)

getnexttoken (f, t) = (token, {file, table))

where

(c,file) = skiplayout (readchar f)

token' = convertchartotoken c

(token, table) = putinidenttable (token', t)

putinidenttable :: (\token, Udenttable)->(\token, Udenttable)

putinidenttable (IdentName c, t) = (Identifier entry, table)

where

(entry, table) = insert c t

putinidenttable x = x

insert :: \char^Udenttable->(\entry, Udenttable)

insert c t = (n — index, t), in-table

= (new-n, (newjn, c : chars)), otherwise

where

(n, chars) = t

(in-table, index) = findentry c chars 0

newjn = n + 1
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findentry :: \char -+\[char\^>-\num^-(}.bool,\num)

findentry c[] n = {False, 0)

findentry c (direst) n = (True, n), c = d

= findentry c rest (n + 1), otherwise

skiplayout :: \file-+(\char, I file)

skiplayoutf = ('EofChar\f) , if endoffilef

= skip (readchar f) , otherwise

skip :: (\char,\ file) -+(\char,\ file)

skip (' ' , / ) = skiplayout (readchar f)

skip ('\t\f) = skiplayout (readcharf)

skip C\n',f) = skiplayout (readcharf)

skip x = x

convertchartotoken :: \char ->• token

convertchartotoken ' (' = SpecialKeyword OpenSym

convertchartotoken ' ) ' = SpecialKeyword CloseSym

convertchartotoken ' . ' = SpecialKeyword DotSym

convertchartotoken ' \ \ ' = SpecialKeyword LambdaSym

convertchartotoken ' EofChar' = Eof

convertchartotoken c = IdentName c

syntaxtree ::= Variable entry \

Abstraction entry syntaxtree \

Application syntaxtree syntaxtree \

Erroneous

parseexp :: \(token, env)^Q.syntaxtree, lenv)

parseexp (SpecialKeyword OpenSym, e)

= (Application exp\ exp2, new^env)

where

(exp\,env\) = parseexp (getnexttoken e)

(expl, envl) = parseexp (getnexttoken envl)

new^env = expectclosesymbol (getnexttoken envl)

parseexp (SpecialKeyword LambdaSym, e)

= (Abstraction entry exp, newsnv)

where

(envl, entry) = expectvar (getnexttoken e)

envl = expectdotsymbol(getnexttoken envl)

(exp, new_env) = parseexp (getnexttoken envl)

https://doi.org/10.1017/S0956796800000691 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000691


Partially strict non-recursive data types 215

parseexp {Identifier entry, e)

= {Variable entry, e)

parseexp {Eof, e)

= print {Erroneous, e) " End of file encountered"

parseexp {token, e)

= print {parseexp {getnexttoken e)) "Error: exp expected"

expectclosesymbol :: \{\token, \env)^-env

expectclosesymbol {SpecialKeyword CloseSym, e) = e

expectclosesymbol {t, e) = print e " CloseSymbol
Expected"

expectdotsymbol :: \{\token, \env)^-env

expectdotsymbol {SpecialKeyword DotSym, e) = e

expectdotsymbol {t, e) = print e " DotSymbol Expected"

expectvar :: \Q.token,\env)^-{\env,\entry)

expectvar {Identifier entry, e) = {e, entry)

expectvar {t, e) = print {e, 0) " Variable Expected"

readchar :: ! file ->{\char,\ file)

print :: *->[char]^*
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