39

Correlators in x-space

In previous chapters we have discussed correlators in the momentum space. In some ap-
plications, some authors prefer to work in the x-space. From the pure theoretical point of
view, the use of the x-space is no better than the use of the momentum space, which is
the traditional tool of QSSR [1,3]. However, each representation has its own advantages
and inconveniences. The x-space approach is described in detail, for example in [386]. In
particular, the current correlators are measured in the most direct way on the lattice [393].
In the coordinate space, the two-point functions obey a dispersion representation:

M(x) = / dt —Kl(x\/_) ImII(?) , (39.1)

A2
where K (z) is the modified Bessel function, which behaves for small z as:
1z
Kz—0)~—-+—-Inz. (39.2)
z 2
In the limit x — 0, I1(x) coincides with the free-field correlator. For the sake of com-
pleteness, we begin with a summary of theoretical expressions for the current correlators,

both in the Q— and x—spaces. We will focus on the (V £ A) and (S = P) channels since
the recent lattice data [393] refer to these channels.

39.1 (Axial-)vector correlators

In case of (V & A) currents the correlator is defined as:
Mu(q) =i / d*x (T 1, (), O = (gugy — g0gHGY) . (39.3)

where —g? = Q% > 0 in the Euclidean space—time. For the sake of definiteness we fix the
flavour structure of the light-quark current J, as:

IV =iy, (1 £ ys)d . (39.4)
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390 VIII QCD two-point functions

In the chiral limit one has in the (V 4 A) case (see, e.g., [1,3] and previous chapters):

2
! : 2 g 2 a, (G4, 25673 o, (Gq)?
M40 = — —(1+°‘_)1n__“__+z( (G5)°) | 2567° o, (@a)
2 /v w QP30 81 0°
(39.5)
The corresponding relation for the (V — A) case reads as:
- dmy < Gq > 647w o,(Gq)? a;M2(Gq)?
VA 02y _ Mg 2
I1 (09 = —Q4 — T 0f + 87 08 s (39.6)

where Mg' ~ 0.8 GeV? parametrizes the mixed condensate as discussed in previous chapters.

In the x-space the same correlators, upon dividing by HI‘)/;A where HI‘;;A stands for the
perturbative correlator, are obtained by applying the equations collected for convenience in

the Table G.1 from [394] given in Appendix G. Therefore, one obtains [394]:

mv+4 oy T 022 273
oV —1- EAZ cx? = &(%(GM) Jx*Inx? + Wots(qq)z)c6 Inx?. (39.7)

pert

Note that In x? is negative since we start from small x. In the (V — A) case:

nv-4 2 3
oA — qu (Gg)x* Inx? — ?as (Gg)*x®Inx? . (39.8)
pert

The x-transform of the Q2 - T1(Q?) is given by:

QZ . HV+A T 2 4 27.[3 e s
— v~ 1~ el (G ——a Inx?. 39.9
Q2 . H[‘:o/e;LtA - 96(a( Mv) >X + 81 Q, (qu) X inx ( )
Similarly:
2. qqv-4 3
¢ L 0(Gg)x  nx? . (39.10)

QZ’ HV+A - 9

pert

39.2 (Pseudo)scalar correlators

Next, we will concentrate on the currents having the quantum numbers of the pion and of
ap(980)-meson. The correlator of two pseudoscalar currents is defined as

n* 0% Ei/d4x (T {I™ (x)JT(0)}) , (39.11)

where

JP =i(my, +myaysd , (39.12)
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39 Correlators in x-space 391

In the momentum space, it reads in terms of the renormalized coupling, masses and
condensates:

n’o? Ei/d4x (T {I™(x)JT(0)})

3 17 02\ o 0? Q2
ZQWH’"@ZH”(?‘I“v) ;}Qzl“v—ﬁ n s
7 (:(G4,)") | 89673 oy (Gq)?
3 o | (39.13)

Here, the standard OPE terms can be found in [1,3,167] as compiled in previous chapters,
while the gluon-mass correction was introduced first in [161]. It is more convenient to
introduce the running QCD coupling a,(Q?), the quark running mass /72; (Q?) and condensate
(Gq)(Q?),! into the second derivative in Q2 of I17(Q?) defined in Eq. (39.13), which obeys
an homogeneous RGE:

*nr 3 (my +mg)? 1Jrnals 4oy A2
802? ~ 872 Q2 37 1 Q2
2 R
7 {os(G4,)7) 8967° &, (7q)>

2— 2.3 . 39.14

t23 0* + 81  Q° (39:14)

In what follows, we shall work with the appropriate ratio where the pure perturbative
corrections are absorbed into the overall normalization and concentrate on the power correc-
tions assuming that these corrections are responsible for the observed rather sharp variations
of the correlation functions. Thus, in the x-space we have for the pion channel [394]:

n’ o T p s
= = 1—§k2x2+96< (G )t — o ag(Gg)’x®Inx* . (39.15)
pert

Note that the coefficient in front of the last term in Eq. (39.15) differs both in the absolute
value and sign from the corresponding expression in [386].

Similarly, in the S-channel, the correlator associated with the scalar current having the
quantum number of the ag:

JS =i(m, — my)ad (39.16)

is obtained from Eq. (39.13) by changing m; into —m; and by taking the coefficient in front
of the 1/Q% correction to be —140873 /81 instead of 89677°/81 in Eq. (39.13). This term
was found first in [666].

Therefore, we have in the x —space:

s 11
= 22 4 o (G4,) 87; (Gq)* O Inx? . (39.17)

.
1‘[5 27 96

pert

! We assume that o, 2% does not run like (o (G%,)?).
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392 VIII QCD two-point functions

The channel which is crucial for the analysis in [393,394] is the (S + P), which is
less affected by some eventual direct instanton contributions than the individual $ and P
correlators. In this channel:

1 nr s Qs 5 o
RP+SE§ H—P+_ — 1 - —X\x

pert HSCrt 27[
+ s (G2, + ﬁ(x,(qqﬁxﬁlnxz (39.18)
96" ATy 81’ ' '

This expression concludes the summary of the power corrections to the current correlators.
We shall see later on that the QCD expressions of the two-point functions given in this
part of the book are crucial inputs in the discussions of QCD spectral sum rules analysis and
in various high-energy processes (ee~ — hadrons total cross-section, Higgs decays, . . .).
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