MULTIPLICATIVE PROPERTIES OF JENSEN MEASURES

BY
JAMIL A. SIDDIQI

1. Let A be a uniform algebra on the compact set X and let ψ be a non-trivial linear functional on A. A finite non-negative measure μ on X is called a Jensen measure for ψ if

$$
\begin{equation*}
|\psi(f)| \leq \exp \left(\int_{X} \log |f| d \mu\right), \quad f \in A \tag{1}
\end{equation*}
$$

It is a well-known theorem of Bishop [1] that if ψ is multiplicative on A, then there exists a Jensen representing measure μ for ψ (i.e. μ is a probability measure such that (1) holds and $\left.\psi(f)=\int_{X} f d \mu, f \in A\right)$. Complementing this result, Ito and Schreiber [2] have proved a theorem which can be restated as follows:

Theorem. Let ψ be a linear functional on a uniform algebra A. Then ψ is multiplicative if and only if $\psi(1)=1$ and there exists a Jensen measure for ψ. Furthermore this Jensen measure is a representing measure for ψ.

The object of this note is to give a measure-theoretic proof of this theorem which unlike the one given in [2] avoids the use of complex function theory.
2. Proof of the theorem. It follows from (1) that

$$
e^{t}=e^{t}|\psi(1)| \leq \exp (t \mu(X))
$$

for all real t. Hence μ is a probability measure and consequently $\|\psi\|=1$. Let α be a complex number and $\eta_{1}, \ldots, \eta_{r}$ the r th roots of unity. Then, for $f \in A$ such that $\psi(f)=0$, we have

$$
\begin{aligned}
1 & =\left|\psi\left(1-\alpha \eta_{1} f\right) \cdots \psi\left(1-\alpha \eta_{r} f\right)\right| \\
& \leq \exp \left(\int \sum_{1}^{r} \log \left|1-\alpha \eta_{k} f\right| d \mu\right) \\
& \leq \int\left|1-\alpha^{r} f^{r}\right| d \mu .
\end{aligned}
$$

Thus for every $\alpha \in \mathbf{C}$ and for every $t>0$,

$$
\int \frac{1}{t}\left(\left|1+t \alpha f^{r}\right|-1\right) d \mu \geq 0
$$

[^0]If $z \in \mathbf{C}$ and $0<t \leq 1$, then

$$
\begin{aligned}
\frac{1}{t}(|1+t z|-1) & =\frac{1}{t|1+t z|^{2}-1} \\
& =\frac{z+\bar{z}+t|z|^{2}}{|1+t z|+1} \rightarrow \operatorname{Re} z
\end{aligned}
$$

as $t \rightarrow 0$. Also

$$
\left|\frac{1}{t}(|1+t z|-1)\right| \leq \frac{1}{t}| | 1+t z|-1| \leq|z| .
$$

Applying Lebesgue's bounded convergence theorem, we get that for all $\alpha \in \mathbb{C}$,

$$
\int \operatorname{Re} \alpha f^{r} d \mu \geq 0
$$

Hence

$$
\int f^{r} d \mu=0
$$

If $f \in A$ is arbitrary, then

$$
\begin{aligned}
\int f^{r} d \mu & =\int[f-\psi(f)+\psi(f)]^{r} d \mu \\
& =\sum_{k=0}^{r}\binom{r}{k}(\psi(f))^{r-k} \int(f-\psi(f))^{k} d \mu \\
& =(\psi(f))^{r}
\end{aligned}
$$

Thus $\psi(f)=\int f d \mu$ and $\psi\left(f^{2}\right)=\int f^{2} d \mu=(\psi(f))^{2}$. Now a routine argument shows that ψ is multiplicative. This proves the sufficiency part of the theorem, the necessity part being precisely Bishop's theorem.

References

1. Bishop, E. Holomorphic completions, analytic continuation and the interpolation of semi-norms, Ann. of Maths (2), 78 (1963), 468-500. MR 27 \#4958.
2. Ito, T. and Schreiber, B. M. Multiplicative properties of Jensen measures, Proc. Amer. Math. Soc. 26 (1970), 305-306.

Université de Sherbrooke
Sherbrooke, Québec, Canada

[^0]: This research was supported in part by the National Research Council of Canada Grant A-4057.

