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Abstract. Some further numerical results are obtained for plane waves propagated into
elastic and plastic solids. Quantitative agreement with experimental results indicates that
rate of strain effects are not significant.

Introduction

In a recent article [1] a mathematical model for the propagation of
waves in elastic solids was solved numerically for the case of a semi-infinite
plate. Another article extended this treatment to plastic solids [2]. In both
cases the differential equations were solved by standard finite difference
techniques. The results indicated that the numerical techniques were not
entirely satisfactory although it was believed that the gross behaviour
obtained was correct.

It has since become possible to extend the investigations. Some simple
refinements to the numerical techniques produce a marked improvement
in the 'smoothness' of the final results and it has further been possible
to obtain results at greater time intervals from impact. Results obtained for
plastic solids now agree quantitatively with experimental results [3] and
this suggests that rate of strain effects are not significant. The notation
used is as in [2].

Differential and difference equations

We consider a plate of isotropic material bounded by xt = ±a, un-
bounded in x3, and semi-infinite in xx (xx, x2, x3 the Cartesian coordinates),
with a constant force impact applied at xx = 0 in the direction of in-
creasing xx. In terms of the stress and strain tensors au, sijt i, j — 1, 2, 3,
the dynamical equations can be expressed in scaled coordinates as

2Si. = d2°ik + 8 3 g '* , i, j , k = 1, 2,
" 8xi8xk dXjdxk

the superposed dots denoting double partial differentiation with respect
to time, t. The initial and boundary conditions are given by
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Sfj = au — 0, i, j = 1, 2, 3, for t ^ 0, xx > 0, all x2,

<xu = a, a12 = <r22 = 0> for t S; 0, a^ = 0, all x2,

a12 = a%% = 0, for all t, xltx2 = ±a.

As before we consider a mesh

t = Idt, I = 0, 1, • • •,

xx = mdx1, m = 0, 1, • • •,
x2 = «<5a;2, w = 0, 1, • • •, N — — ,

dx2

where dt, dxlt dx2, are constant increments in t, xit x2, and symmetry
considerations allow us to deal only with non-negative values of x2. The
differential equations are now replaced by finite difference approximations,
giving expressions similar to those used previously [2]. Again the ex-
pressions must be modified if n = 0, N. The essential difference in numerical
treatment lies in the removal of the restriction dxt = dx2.

If values ffu, o-22, a33, a12, e u , e12, are known for given values of
I, / — 1 , for all m > 0 and all n, then the difference expressions allow
us to determine approximations to eiS[l, m, n] and hence to ew[/+l, m, n\.
Special starting procedures (1=1) are not required.

Stress strain relations

In scaled coordinates the basic equations may be written in the form,

(1 —2J.)<JU = (l-v)en+ve22

= ven+(l-v)e22

1+V

Here v is Poisson's ratio and G(ait) is a function, of position and time,
which allows for work hardening.

These equations give approximate values for 6{j[l, m, n] and hence
for ou[l-\-l, m, n], once approximations have been obtained for eit[l, m, n],
as in the previous section. If n = N we compute an and hence a33 (with
a22 set to zero). We then set
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ff12 = °22 ~ £12 = 0.

It is nevertheless convenient to also compute these values on the boundary,
with a22 = 0 in the above equations, as a check on the adequacy of the
numerical solution. This treatment of the boundary conditions differs from
that described in the previous article [2] when G(aij) ^ 0. The present
approach seems more natural but should not give significant differences.

Since e12 = 0 for n = N there is some slight simplication in the cor-
responding difference approximation for £12.

We use a parabolic type of stress strain relation [2] and then the work
hardening function is

where 0 is a parameter and F(aij) is given by

Here the function 2k2 is a function of time and position defined (and
computed) by

W = Z [CT

2k2{t) = max {2k2{t'), w(t)}.
t'<t

The case G{aii) = 0 gives elastic behaviour and is used whenever un-
loading takes place [2].

The values of 0 should be chosen so that 20k2 :£ 1 and this sets a
maximum on the allowed values of 6. An adequate bound seems difficult
to obtain and the condition, 20k2 5g 1, must be checked experimentally.
Whenever 20k2 > 1 we set 1— 20k2 = 0 in order to compute G(aij). The
unloading criteria are not altered, nor is the value of 2k2. This approach
differs from that used before [2].

Computation and results

The equations were programmed in Algol for the Atlas computer at
London University and some results obtained were compared with previous
results [1], [2]. The agreement adequately verified the programming and
the various modifications in the equations. The results now to be described
were all obtained with a = J, N = 8, v = \.

We consider, first, elastic wave propagation. In figure 1 we have
plotted the strain, en , on the boundary, at half a plate width from the
impact face, for increasing time. The solid line represents results obtained
for r]1 = ^, rj2 = ^, and the dotted line gives results for t]1 — tj2 = \- We
see that decreasing the ratio,
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TABLE

Boundary points

6 = 30, a = \, v = h Vi = = i

2 0.6896239

4 0.4449181

6 0.3598214

8 0.3698522

10 0.2546560

12 0.1589159

14 0.1376688

16 0.1673920

18 0.1040388

20 0.0292571

22 0.0325555

24 0.0396831

26 0.0190393

28 0.0043234

30 0.0005430

-0.0000286

-0.0001023

0.0002331

0.0001298

-0.0001443

—0.0013656

0.0007948

0.0002024

—0.0002179

-0.0003426

0.0002780

0.0001052

-0.0000376

—0.0000273

-0.0000052

-0.5996158

-0.3511708

-0.3128668

-0.2598031

-0.1552467

-0.1150172

-0.1223217

-0.0849370

-0.0360271

-0.0200858

-0.0259341

-0.0195121

-0.0070492

-0.0013342

-0.0001473

0.2579755

0.2471886

0.1744273

0.2574452

0.2271449

0.1188353

0.0819219

0.1936962

0.1559708

0.0359143

0.0374717

0.0587892

0.0309158

0.0073112

0.0009387

0.0006494

0.0043663

-0.0119117

-0.0080262

0.0091100

0.0242410

-0.0181529

-0.0079967

0.0080532

0.0067728

-0.0032317

-0.0019993

0.0004708

0.0004004

0.0000816

0.1264474

0.1174638

0.0901260

0.1175309

0.0975028

0.0561394

0.0418874

0.0766002

0.0559018

0.0126255

0.0129360

0.0198762

0.0103355

0.0024374

0.0003129

0.0332800

0.0348931

0.0362734

0.0367853

0.0259696

0.0237503

0.0217618

0.0199915

0.0124886

0.0028159

0.0022477

0.0017885

0.0004954

0.0000277

0.0000005
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— = 7—' Vi = T~' * = 1, 2,
fj2 OX^ 0Xt

has smoothed the results markedly. Above I = 50 the strain is oscillating,
with decreasing amplitude, about the known asymptotic value, \. Experi-
ments indicate that increasing N, or further decreasing r\x\r\2, do not ap-
preciably affect these results. The results for rj1 = r\2 may be compared
with those given in [2] (graph 1) and agreement is excellent, although the
value of N differs.

In [1] we plotted the strain, e n , for a fixed time interval and increasing
xx for a constant velocity impact. Large oscillations away from the impact
face indicated that some form of numerical instability might be present.
It is not possible to obtain a direct comparison with present results but,
in figure 3, we have plotted the strain against increasing x1, iox I = 50,
100, and rjx = •§% r\2 = \. The behaviour is much smoother. Results are not
markedly different for r\x = rj2 = \ and this suggests that the instability
previously observed was primarily due to the choice of too large a value
of t]z-

Much improved results have also been obtained for plastic wave
propagation. We have chosen 6 = 30 since, with a = \, this corresponds
to the choice 6 — 120, a = j , in [2]. In figure 2, the strain, en, on the
boundary at half a plate width from the impact face, has been plotted
against increasing time. The solid line gives results for rj1 = -g, *?2

 = \>
and the dotted line gives results for jyx = r\2 = \. Again, decreasing the
ratio JfoAh n a s smoothed the results. The results for rj1 = r\2 = \ may be
compared with those given in [2] (figure 2). There are some differences,
due in part to the different choice of AT and possibly to the different treatment
of boundary conditions. However, 26k2 has also been checked and these
values increase markedly beyond unity, for points close to the impact
face, and low values of /. The different approach employed in these cir-
cumstances has contributed appreciably to the observed differences in
results.

The situation is considerably better for ^ = ^, r\2 = \. At half a plate
width from the impact face the values of 2dkz increase to a maximum of
about 1.02 but do not exceed unity until I is greater than 100. Further
from the impact face the values increase somewhat further and then
decrease. This behaviour is probably caused by the use of finite step lengths
and can presumably be completely overcome by decreasing jyx and r\2 still
further, or by increasing N. We have obtained some results for N = 12
which suggest that this is so. The use of the stress strain relation with a
non-horizontal asymptote would also prevent the trouble.

We observe that for iV = 8 the strain rises to a plateau in accordance
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with experimental observations [3] and levels off at about I = 160. For a
plate of width one inch, and a material such as aluminium, dt ~ 0.18/^s
(for r)2 = -|). That is, the strain levels off at about 30 fis,. This corresponds
remarkably well with experimental results [3]. The table gives some results
on the boundary for / = 150. We should have <r22 = e12 = 0 and the values
in these columns are indeed small.

Errata

Dr A. R. Curtis (A. E. R. E.) kindly pointed out a mistake in the
article on elastic wave propagation [1]. Equation (13) should read

1 /dty
)^ 8^1 — 2 )

+0{dx)1,

and there is a corresponding alteration in the equation for uj+1>k0. He also
drew our attention to the likelihood of the presence of instability for large x.
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