ON A QUESTION POSED BY D. LEVIATAN AND L. LORCH

BY
JEAN TZIMBALARIO

In this note we construct a pair of regular matrices T_{1} and T_{2} such that T_{1} is stronger than T_{2}, and the T_{2}-transforms of all bounded sequences are such that the sets of limit-points are connected, while there is a bounded sequence such that the set of limit-points of its T_{1}-transform is not connected. This provides a negative answer to a question posed by Leviatan and Lorch [3, §6, (c)].

Let T_{2} be any regular matrix having the property that for each bounded x the set of limit-points of $T_{2} x$ is connected. (For example the method $(C, 1)$ has this property (see [1] or [2]).) Then by regularity, there exists a bounded sequence x, and two disjoint increasing sequences of indices, $\left\{m_{r}\right\}$ and $\left\{n_{r}\right\}$ with the property:

$$
\lim _{r \rightarrow \infty}\left(T_{2} x\right)_{m_{r}} \neq \lim _{r \rightarrow \infty}\left(T_{2} x\right)_{n r}
$$

Let T_{1} be the matrix obtained from T_{2} by deletion of all rows except those of indices m_{r} and n_{r}. Evidently T_{1} is stronger than T_{2}. The sequence $T_{1} x$ is a subsequence of $T_{2} x$ with only two limit-points and therefore disconnected.

Furthermore, we construct two matrices T_{1} and T_{2} having the above property and such that T_{1} is strictly stronger than T_{2}. Let $T_{2}=(C, 1)$ and denote $\left\{p_{r}\right\}=$ $\left\{m_{r}\right\} \cup\left\{n_{r}\right\}$. It is clear that we can obtain a subsequence $\left\{q_{r}\right\}$ including an infinite number of elements of each of $\left\{m_{r}\right\}$ and $\left\{n_{r}\right\}$ and such that $q_{r+1}>q_{r} \cdot g$ for some $g>1$ and all $r \geq 1$.

Corresponding to each of these indices, we choose $x_{n}=1$ in the first half of the block $q_{r} \leq n<q_{r+1}$ and $x_{n}=-1$ in the second half of the block. All remaining x_{n} are defined to be 0 (see [2], p. 392).

Clearly $\lim _{T_{1}} x=0$ and $\lim _{T_{2}} x$ does not exist; thus T_{1} is strictly stronger than T_{2}.

References

1. H. G. Barone, Limit points of sequences and their transforms by methods of summability, Duke Math. J. 5 (1939), 740-752.
2. P. Erdös and G. Piranian, Laconicity and redundancy of Toeplitz-matrices, Math. Z. 83 (1964), 381-394.
3. D. Leviatan and L. Lorch, On the connectedness of the limit-points of certain transforms of bounded sequences, Canad. Math. Bull. (2) 14 (1971), 175-181.

Tel Aviv University, Tel Aviv, Israel

