
XI

Phenomenological models

QCD has turned out to be a theory of such subtlety and difficulty that a concerted
effort over an extended period has not yielded a practical procedure for obtaining
analytic solutions. At the same time, vast amounts of hadronic data which require
theoretical analysis and interpretation have been collected. This has spurred the
development of accessible phenomenological methods. We devote this chapter to
a discussion of three dynamical models (potential, bag, and Skyrme) along with a
methodology based on sum rules. Although the dynamical models are constructed
to mimic aspects of QCD, none of them is QCD. That is, none contains a rigor-
ous program of successive approximations which, for arbitrary quark mass, can be
carried out to arbitrary accuracy. Therefore, our treatment will emphasize issues
of basic structure rather than details of numerical fits. By using all of these meth-
ods, one hopes to gain physical insight into the nature of hadron dynamics. Despite
its inherent limitations the program of model building, fortified by the use of sum
rules, has been generally successful, and there is now a reasonable understanding
of many aspects of hadron spectroscopy.

XI–1 Quantum numbers of QQ and Q3 states

Among the states conjectured to lie in the spectrum of the QCD hamiltonian are
mesons, baryons, glueballs, hybrids, dibaryons, etc. However, since practically all
currently known hadrons can be classified as either QQ states (mesons) or Q3

states (baryons), it makes sense to focus on just these systems. We shall begin by
determining the quark model construction of the light-hadron ground states. Much
of the material will be valid for heavy-quark systems as well.

Hadronic flavor–spin state vectors

In many respects, the language of quantum field theory provides a simple and
flexible format for implementing the quark model. Let us assume that for any given
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292 Phenomenological models

dynamical model, it is possible to solve the field equations of motion and obtain
a complete set of spatial wavefunctions, {ψα(x)} for quarks and {ψα(x)} for anti-
quarks, where the labels α and α refer to a complete set of observables. A quark
field operator can then be expanded in terms of these wavefunctions,

ψ(x) =
∑
α

[
ψα(x)e

−iωαtb(α)+ ψα(x)eiωαtd†(α)
]
, (1.1)

where ωα, ωα are the energy eigenvalues, b(α) destroys a quark and d†(α) creates
the corresponding antiquark. The quark creation and annihilation operators obey{

b(α), b†(α′)
} = δαα′,

{
d(α), d†(α′)

} = δᾱᾱ′,{
b(α), b(α′)

} = 0,
{
d(α), d(α′)

} = 0,{
b(α), d†(α′)

} = 0, (1.2)

which are the usual anticommutation relations for fermions.
In all practical quark models, an assumption is made which greatly simplifies

subsequent steps in the analysis, that the spatial, spin, and color degrees of freedom
factorize, at least in lowest-order approximation. This is true provided the zeroth-
order hamiltonian is spin-independent and color-independent. Spin-dependent inter-
actions are then taken into account as perturbations. This assumption allows us to
write the sets {α} and {α} in terms of the spatial (n), spin (s, ms), flavor (q), and
color (k) degrees of freedom respectively, i.e., α= (n, s,ms, q, k). If we are con-
cerned with just the ground state, we can suppress the quantum number n, and for
simplicity replace the symbols b, d†, etc., for annihilation and creation operators
with the flavor symbol q (q = u, d, s for the light hadrons),

b†(n = 0, q,ms, k)→ q
†
k,ms

,

d†(n = 0, q,ms, k)→ q
†
k,ms

. (1.3)

Hadrons are constructed in the Fock space defined by the creation operators
for quarks and antiquarks. Light hadrons are labeled by the spin (S2, S3), isospin
(T2, T3), and hypercharge (Y ) operators as well as by the baryon number (B).
Other observables like the electric chargeQel and strangeness S are related to these,

Qel = T3 + Y/2, S = Y − B. (1.4)

Since quarks have spin one-half, the baryon (Q3) and meson (QQ) configurations
can carry the spin quantum numbers S= 1/2, 3/2 and S= 0, 1, respectively. If we
neglect the mass difference between strange and nonstrange quarks, then flavor
SU(3) is a symmetry of the theory, and both quarks and hadrons occupy SU(3)
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Fig. XI–1 Some SU(3)-flavor representations.

multiplets. The quarks are assigned to the triplet representation 3 and the antiquarks
to 3∗. The QQ and Q3 constructions then involve the group products

3× 3∗ = 8⊕ 1,

(3× 3)× 3 = (6⊕ 3∗)× 3 = 10⊕ 8⊕ 8⊕ 1, (1.5)

so that baryons appear as decuplets, octets, and singlets whereas mesons appear
as octets and singlets. The SU(3)-flavor representations 3, 3∗, 8, 10 are depicted
in Y vs. T3 plots in Fig. XI–1. The circle around the origin for the eight-dimensional
representation denotes the presence of two states with identical Y, I3 values. Finally,
quarks and antiquarks transform as triplets and antitriplets of the color SU(3)
gauge group, and all baryons and mesons are color singlets.

Two simple states to construct are the ρ+1 meson and the �++3/2 baryon,

|ρ+1 〉 =
1√
3
u

†
i↑d

†
i↑|0〉, |�++3/2〉 =

1

6
εijku

†
i↑u

†
j↑u

†
k↑|0〉, (1.6)

where the superscript and subscript on the hadrons denote electric charge and
spin component, and a summation over color indices for the creation operators is
implied. The normalization constants are fixed by requiring that the hadrons {Hn}
form an orthonormal set, 〈Hm|Hn〉= δmn. The other ground-state hadrons can be
reached from those in Eq. (1.6) by means of ladder operations in the spin and fla-
vor variables. In this manner, one can construct the flavor–spin–color state vec-
tors of the 0− octet and singlet mesons and the 1

2
+

octet baryons displayed in
Tables XI–1 and XI–2.

A convenient notation for fields which transform as SU(3) octets involves the
use of a cartesian basis rather than the ‘spherical’ basis of Tables XI–1,2. In fact,
we have already encountered this description in Sect. VII–1 during our discussion
of SU(3) Goldstone bosons where the quantity U = exp(iϕ · λ) played a central
role. The eight cartesian fields {ϕa} are related to the usual pseudoscalar fields by
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Table XI–1. State vectors of the pseudoscalar octet and
singlet mesons.

|π+〉 = 1√
6
[u†
i↑d

†
i↓ − u†

i↓d
†
i↑] |0〉

|π−〉 = 1√
6
[d†
i↑u

†
i↓ − d†

i↓u
†
i↑] |0〉

|π0〉 = 1√
12
[−u†

i↑u
†
i↓ + u†

i↓u
†
i↑ + d†

i↑d
†
i↓ − d†

i↓d
†
i↑] |0〉

|K+〉 = 1√
6
[u†
i↑s

†
i↓ − u†

i↓s
†
i↑] |0〉

|K0〉 = 1√
6
[s†
i↑d

†
i↓ − s†

i↓d
†
i↑] |0〉

|K0〉 = 1√
6
[s†
i↑u

†
i↓ − s†

i↓u
†
i↑] |0〉

|K−〉 = 1√
6
[d†
i↑s

†
i↓ − d†

i↓s
†
i↑] |0〉

|η8〉 = 1√
36
[u†
i↑u

†
i↓ − u†

i↓u
†
i↑ + d†

i↑d
†
i↓ − d†

i↓d
†
i↑ − 2s†

i↑s
†
i↓ + 2s†

i↓s
†
i↑] |0〉

|η1〉 = 1√
18
[u†
i↑u

†
i↓ − u†

i↓u
†
i↑ + d†

i↑d
†
i↓ − d†

i↓d
†
i↑ + s†

i↑s
†
i↓ − s†

i↓s
†
i↑] |0〉

π± = 1√
2
(ϕ1 ∓ iϕ2), π0 = ϕ3, η8 = ϕ8,

K± = 1√
2
(ϕ4 ∓ iϕ5),

K0 = 1√
2
(ϕ6 − iϕ7), K

0 = 1√
2
(ϕ6 + iϕ7), (1.7)

which is an alternative way of stating the content of Eq. (VIII–1.12). The physical
spin one-half baryons p, n, . . . can likewise be expressed in terms of an octet of
states {Bi} (i= 1, . . . , 8) in cartesian basis as

�± = 1√
2
(B1 ∓ iB2), �0 = B3,  = B8,

p = 1√
2
(B4 − iB5), n = 1√

2
(B6 − iB7),

!0 = 1√
2
(B6 + iB7), !− = 1√

2
(B4 + iB5). (1.8)

In the quark model, hadron observables have simple interpretations, e.g., the
baryon number is simply one-third the difference in the number of quarks and
antiquarks, etc. Thus, writing quark and antiquark number operators as N(q) and
N(q̄) for a quark flavor q, we have

B = [N(u)+N(d)+N(s)−N(u)−N(d)−N(s)]/3,
T3 = [N(u)−N(d)−N(u)+N(d)]/2,
Y = [N(u)+N(d)− 2N(s)−N(u)−N(d)+ 2N(s)]/3,

Qel = [2N(u)−N(d)−N(s)− 2N(u)+N(d)+N(s)]/3, (1.9)
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Table XI–2. State vectors of baryon
spin-one-half octet.

|p↑〉 =
εijk√

18
[u†
i↓d

†
j↑ − u†

i↑d
†
j↓] u†

k↑ |0〉
|n↑〉 =

εijk√
18
[d†
i↑u

†
j↓ − d†

i↓u
†
j↑] d†

k↑ |0〉
|↑〉 =

εijk√
12
[u†
i↑d

†
j↓ − u†

i↓d
†
j↑] s†

k↑ |0〉
|�+↑ 〉 =

εijk√
18
[s†
i↓u

†
j↑ − s†

i↑u
†
j↓] u†

k↑ |0〉
|�0↑〉 =

εijk
6 [s†

i↑d
†
j↓u

†
k↑ + s†

i↑d
†
j↑u

†
k↓-2s†

i↓d
†
j↑u

†
k↑] |0〉

|�−↑ 〉 =
εijk√

18
[s†
i↑d

†
j↓ − s†

i↓d
†
j↑] d†

k↑ |0〉
|!0↑〉 =

εijk√
18
[s†
i↓u

†
j↑ − s†

i↑u
†
j↓] s†

k↑ |0〉
|!−↑ 〉 =

εijk√
18
[s†
i↑d

†
j↓ − s†

i↓d
†
j↑] s†

k↑ |0〉

and the hadronic spin operator is

S =
∑
q

q
†
i,m′s

(σ )m′sms
2

qi,ms . (1.10)

Quark spatial wavefunctions

Many applications of the quark model require the knowledge of the quark spatial
wavefunctions within hadrons. It is here that the greatest variation in the differ-
ent models can occur, but several general features still remain. Indeed, in many
instances it is the general features that are primarily tested.

For example, the ground state in all models is a spatially symmetric S state in
which the wavefunction peaks at r = 0. The normalization condition of the quark
spatial wavefunction, ∫

d3x ψ†(x)ψ(x) = 1, (1.11)

ensures that the magnitude of ψ will be similar in those models having wavefunc-
tions of comparable spatial extent. This accounts for the agreement which can be
found among diverse quark models in specific applications. How does one fix the
spatial extent? One approach is to use an observable like the hadronic electromag-
netic charge radius, e.g.,

〈r2〉1/2proton = 0.87± 0.02 fm, 〈r2〉1/2pion = 0.66± 0.02 fm. (1.12)
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Fig. XI–2 Quark probability density in the bag and oscillator models.

Viewed this way, the bound states are seen to define a scale of order 1 fm. For exam-
ple, we display two models in Fig. XI–2, the oscillator result with α2= 0.17 GeV2

and the bag profile, which are each obtained by fitting to ground-state baryon
observables like the charge radius. Not surprisingly, their behaviors are quite simi-
lar. Also shown in Fig. XI–2 is an oscillator model wavefunction whose parameter
(α2= 0.049 GeV2) was determined by using data from decays of excited hadrons.
The difference is rather striking, and serves to demonstrate that the most impor-
tant general feature in setting the scale in quark model predictions of dimensional
matrix elements is the spatial extent of the wavefunction.1

Another aspect of quark wavefunctions involves the issue of relativistic motion.
A relativistic quark moving in a spin-independent central potential has a ground-
state wavefunction of the form

ψgnd(x) =
(
i u(r)χ


(r)σ · r̂χ
)
e−iEt , (1.13)

where u, 
 signify ‘upper’ and ‘lower’ components. As we shall see, in the bag
model these radial wavefunctions are just spherical Bessel functions. The above
form also appears in some relativized harmonic-oscillator models, which use a cen-
tral potential. If we allow for relativistic motion, then the major remaining differ-
ence in the quark wavefunctions concerns the lower two components of the Dirac
wavefunction. Nonrelativistic models automatically set these equal to zero, while
relativistic models can have sizeable lower components. Which description is the

1 We could obtain a bag result which behaves similarly by employing a charge radius of 0.5 fm rather than the
1 fm value shown.
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correct one? Quark motion in light hadrons must be at least somewhat relativistic
since quarks confined to a region of radiusR have a momentum given by the uncer-
tainty principle,2

p ≥ √3R−1 � 342 MeV (for R � 1 fm). (1.14)

Since this momentum is comparable to or larger than all the light-quark masses,
relativistic effects are unavoidable. A more direct indication of the relativistic
nature of quark motion comes from the hadron spectrum. Nonrelativistic systems
are characterized by excitation energies which are small compared to the con-
stituent masses. In the hadron spectrum, typical excitation energies lie in the range
300–500 MeV, again comparable to or larger than light-quark masses. Such con-
siderations have motivated relativistic formulations of the quark model.

Interpolating fields

In the LSZ procedure (App. B–3) for analyzing scattering amplitudes the central
role is played by interpolating fields. These are the quantities which experience the
dynamics of the theory in the course of evolving between the asymptotic in-states
and out-states. They turn out to be also useful as a kind of bookkeeping device. That
is, one way to characterize the spectrum of observed states is to use operators made
of appropriate combinations of quark fields ψ(x). For example, corresponding to
the meson sector of QQ states, one could employ a sequence of quark bilinears,
the simplest of which are

ψψ, ψγ5ψ, ψγμψ, ψγμγ5ψ, ψσμνψ, . . . . (1.15)

Any of these operators acting on the vacuum creates states with its own quantum
numbers. The lightest states in the quark spectrum will be associated with those
operators which remain nonzero for static quarks, i.e., with creation operators and
Dirac spinors of the form

ψ ∼
(

0

χm

)
d

†
m, ψ ∼

(
χm

0

)
b†
m. (1.16)

Only the pseudoscalar operators ψγ5ψ,ψγ0γ5ψ and the vector operators ψγiψ,
ψσ0iψ are nonvanishing in this limit. All the other operators have a nonrelativ-
istic reduction proportional to spatial momentum, indicating the need for a unit of
orbital angular momentum in forming a state.

The interpolating-field approach is particularly useful in situations where the
imposition of gauge invariance determines whether a given field configuration can
occur in the physical spectrum. We shall return to this point in Sect. XIII–4 in the

2 The
√

3 factor is associated with the fact that there are three dimensions.
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course of discussing glueball states. We now turn to a summary, carried throughout
the next three sections, of various attempts to model the dynamics of light-hadronic
states.

XI–2 Potential model

The potential model posits that there is a relatively simple effective theory in which
the quarks move nonrelativistically within hadrons. In the light of our previous
comments on relativistic motion, this would seem to be acceptable only for truly
massive quarks like the b quark and certainly questionable for the light quarks
u, d, s. However, in the potential model it is assumed that QCD interactions dress
each quark with a cloud of virtual gluons and quark–antiquark pairs, and that the
resulting dynamical mass contribution is so large that quarks move nonrelativistic-
ally. These ‘dressed’ degrees of freedom are called constituent quarks, and their
masses are called ‘constituent masses’. Constituent masses are not to be directly
identified with the mass parameters occurring in the QCD lagrangian.3 Energy lev-
els and wavefunctions are then obtained by solving the nonrelativistic Schrödinger
equation in terms of the constituent masses and some assumed potential energy
function.

The potential model is not without flaws. For light-quark dynamics, it is far
from clear that a static potential can adequately describe the QCD interaction.
Even with the use of constituent masses, one finds from fits to the mass spectrum
and/or the charge radius that quark velocity is nevertheless near the speed of light
(cf. Prob. XI–1). Also, although it is possible [LeOPR 85] to make a connection
between the lightest pseudoscalar mesons as Goldstone bosons on the one hand and
QQ̄ composites on the other, this is not ordinarily done. Such criticisms notwith-
standing, the nonrelativistic quark model does provide a framework for describing
both ground and excited hadronic states, and brings a measure of order to a spec-
trum containing hundreds of observed levels. Besides, virtually all physicists are
familiar with the Schrödinger equation, and find the potential model to be an under-
standable and intuitive language.

Basic ingredients

One begins by expressing the mass Mα of a hadronic state α as

Mα =
∑
i

Mi + Eα, (2.1)

3 We shall continue to denote the QCD mass parameter of quark qi as mi , and shall write the corresponding
constituent mass as Mi .
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where the sum is over the constituent quarks and antiquarks in α. The internal
energy Eα is an eigenvalue of the Schrödinger equation

Hψα = Eαψα, (2.2)

with hamiltonian

H =
∑
i

1

2Mi

p 2
i +

∑
i<j

Vcolor(rij ), (2.3)

where rij ≡ ri − rj , and the subscript ‘color’ on the potential energy indicates
that the dynamics of quarks necessarily involves the color degree of freedom in
some manner. It is standard to assume that the potential energy is a sum of two-
body interactions. Although there exists no unique specification of the interquark
potential Vcolor from QCD, the following features are often adopted:

(1) a spin-and flavor-independent long-range confining potential,

(2) a spin-and flavor-dependent short-range potential,

(3) basis mixing in the baryon and meson sectors, and

(4) relativistic corrections.

We shall discuss specific models of the potential energy function in Sect. XIII–1.
They all have in common the color dependence in which the two-particle potential
is twice as strong in mesons as it is in baryons,

Vcolor(rij ) =
{
V (rij ) (mesons),

1
2 V (rij ) (baryons).

(2.4)

We shall describe a simple empirical test for such behavior at the end of this
section. To appreciate its theoretical basis, note that the quark–antiquark pair in
a meson must occur in the 1 representation of color, whereas any two quarks in a
baryon must be in a 3∗ representation (in order that the three-quark composite be a
color singlet),

Vcolor ∝
{
F(3) · F(3∗) (mesons),

F (3) · F(3) (baryons),

∝
{
(F 2(1)− F 2(3)− F 2(3∗))/2 = −4/3 (mesons),

(F 2(3∗)− 2F 2(3))/2 = −2/3 (baryons),
(2.5)

where Fa(R) is a color generator for SU(3) representation R. Thus, the color
dependence in Eq. (2.4) is that which one would naturally associate with the inter-
action between two quarks or a quark–antiquark pair.

https://doi.org/10.1017/9781009291033.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.012


300 Phenomenological models

Table XI–3. Quantum numbers of
QQ̄ composites.

L Singlet Triplet

0 1S0(0−+) 3S1(1−−)
1 1P1(1+−) 3P0,1,2(0++, 1++, 2++)
2 1D2(2−+) 3D1,2,3(1−−, 2−−, 3−−)
3 1F3(3+−) 3F2,3,4(2++, 3++, 4++)

Mesons

For the two-particleQQ̄ system, it is straightforward to remove the center-of-mass
dependence. In the center-of-mass frame the Schrödinger equation becomes(

p2

2M
+ V (r)

)
ψα(r) = Eαψα(r), (2.6)

where r= rQ − rQ̄ and M−1=M−1
Q +M−1

Q̄
is the inverse reduced mass. The LS

coupling scheme is typically employed to classify the eigenfunctions of this prob-
lem. One constructs the total QQ̄ spin, S= sQ + sQ̄, and adds the orbital angular
momentum L to form the total angular momentum J=S + L. There is an infinite
tower of eigenstates, each labeled by the radial quantum number n and the angular
momentum quantum numbers J, Jz, L, S.

The QQ̄ states are sometimes described in terms of spectroscopic notation
2S+1LJ (J

PC), where P is the parity and C is the charge conjugation,

P = (−)L+1, C = (−)L+S. (2.7)

Strictly speaking, although only electrically neutral particles like π0 can be eigen-
states of the charge conjugation operation, C is often employed as a label for
an entire isomultiplet, like π = (π+, π0, π−). The lowest QQ̄ orbital configu-
rations, expressed in 2S+1LJ (J

PC) notation, are displayed in Table XI–3. The
0+, 1−, 2+, . . . series of JP states is called natural, and has the same quantum
numbers as would occur for two spinless mesons of a common intrinsic parity. The
alternate sequence, 0−, 1+, 2−, . . . is referred to as unnatural. There are a num-
ber of JPC configurations, called exotic states, which cannot be accommodated
within the QQ̄ construction. For example, the 0−− state is exotic because any state
with J = 0 must have L= S, and according to the QQ̄ constraint of Eq. (2.7) must
therefore carry C=+. Likewise, the CP= − 1 sequence 0+−, 1−+, 2+−, . . . is
forbidden because theQQ̄model requires CP= (−)S+1, implying S= 0 and hence
J =L. Thus, one would obtain P = (−)J+1 in the QQ̄ model and not
P = (−)J .
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Baryons

Most applications of the quark model for Q3 baryons involve the light quarks. If,
for simplicity, we assume degenerate constituent mass M , the Schrödinger equa-
tion is

H0 = 1

2M

3∑
i=1

p2
i +

1

2

∑
i<j

V (rij ), (2.8)

where the prefactor of 1/2 in the potential energy term follows from Eq. (2.4). It is
convenient to define a center-of-mass coordinate R and internal coordinates λ and
ρ by

R = (r1 + r2 + r3)/3,

ρ = (r1 − r2)/
√

2,

λ = (r1 + r2 − 2r3)/
√

6. (2.9)

Because it is not possible to remove the three-particle center-of-mass dependence
for an arbitrary potential, the following approach is often followed [IsK 78]. The
potential V (rij ) is rewritten as

V (rij ) = Vosc(rij )+ U(rij ), (2.10)

where

Vosc = k

2
r2
ij , U ≡ V − Vosc. (2.11)

The Schrödinger equation is solved in terms of the oscillator potential and U is
evaluated perturbatively in the oscillator basis. Having removed the center-of-mass
coordinate, we are left with the following hamiltonian for the internal energy:

Hint =
(

p2
ρ

2m
+ 3k

2
ρ2

)
+
(

p2
λ

2m
+ 3k

2
λ2

)
, (2.12)

which is just that of two independent quantum oscillators each with spring con-
stant 3k. For later purposes, we write the number of excitation quanta for the two
oscillators as Nρ and Nλ (Nρ,λ= 0, 1, 2, . . . ) and let N ≡ Nρ + Nλ. The angular
momentum for the three-quark system is found in a similar manner as for the QQ̄
mesons, J=L + S. The total quark spin is S= ∑ si , the orbital angular momen-
tum is given by L=Lρ + Lλ, and the parity is P = (−)
ρ+
λ . The ground-state
wavefunction has the form

ψgnd(r1, r2, r3) =
(
α2

π

)3/2

eiP.Re−α
2(�2+λ2)/2, (2.13)
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where α2= (3km)1/2. A cautionary remark is in order. One should not misinterpret
the use of an oscillator potential – it is not the intent to model the observed baryon
spectrum as that of a system of quantum oscillators because such a picture would
fail. For example, the oscillator spectrum has EN ∼ N , whereas the baryon spec-
trum obeys the law of linear Regge trajectories (cf. Sect. XIII–2), E2

N ∼ N . The
oscillator potential provides a convenient basis for structuring the calculation and
nothing more.

Color dependence of the interquark potential

Short of doing a complete spectroscopic analysis, we can find experimental support
in the following simple example for the assertion that the two-particle interquark
potential is twice as strong in mesons as it is in baryons.

A potential model description for the meson and baryon mass splittings ρ(770)−
π(138) and�(1232)−N(939) is given by a QCD hyperfine interaction,Hhyp, akin
to the delta function contribution in the QED hyperfine potential of Eq. (V–1.16),

Hhyp = kα
∑
i<j

H̄ij si · sj δ(3)(r) (α = M,B), (2.14)

where the {H̄ij } are constants and, assuming the color dependence is that given by
Eqs. (2.4), (2.5), kM = 1 for mesons and kB = 1/2 for baryons. We shall discuss in
Sect. XIII–2 how this effect could arise from gluon exchange. Although there is
ordinarily dependence on quark mass in the {H̄ij }, it suffices to treat the {H̄ij } as
an overall constant since the hadrons in this example contain only light nonstrange
quarks. The point is then to see whether the condition kM = 2kB is in accord with
phenomenology. Noting that for mesons the spin factors yield

s1 · s2 = 2S2 − 3

4
=
{

1/4 (S = 1),

−3/4 (S = 0),
(2.15a)

whereas for baryons one has∑
i<j

si · sj = 4S2 − 9

8
=
{

3/4 (S = 3/2),

−3/4 (S = 1/2),
(2.15b)

we find after taking expectation values that

mρ −mπ

m� −mN

= 2kM
3kB

|ψM(0)|2
|ψB(0)|2 �

2kM
3kB

(Volume)B
(Volume)M

� 2kM
3kB

[ 〈r2〉B
〈r2〉M

]3/2

. (2.16)

The measured values (cf. Eq. (1.13)) of the proton and pion charge radii imply that
kM/kB � 2. This example, along with others, lends credence to the assumed color
dependence of Eq. (2.4).
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At this point we shall temporarily leave our discussion of the potential model to
consider other descriptions of hadronic structure. We shall return to the potential
model for the discussion of hadron spectroscopy in Chaps. XII–XIII.

XI–3 Bag model

A superconductor has an ordered quantum mechanical ground state which does
not support a magnetic field (Meissner effect) and which is brought about by a
condensation of dynamically paired electrons (Cooper pairs). An order parameter
for this medium is provided by the Landau–Ginzburg wavefunction of a Cooper
pair. Even at zero temperature, a sufficiently strong magnetic field, Bcr, can induce
a transition from the superconducting phase to the normal phase. For example,
in tin the critical field is Bcr(tin)� 3.06 × 10−2 tesla, and the energy density of
superconducting pairing (condensation energy ) is Usuper/V � 373 J/m3.

Chromodynamics exhibits similar behavior, and this is the basis for the bag
model [ChJJTW 74]. The QCD ground state evidently does not support a chromo-
electric field, and is thus analogous to the superconducting state, although a com-
pelling description of the QCD pairing mechanism has not yet been provided. In the
bag model, the analog of the normal conducting ground state is called the pertur-
bative vacuum. The vacuum expectation value of the quark bilinear q̄q(q = u, d, s)
plays the role of an order parameter by distinguishing between the two
vacua,

QCD〈0|q̄q|0〉QCD < 0, pert〈0|q̄q|0〉pert = 0. (3.1)

Hadrons are represented as color-singlet ‘bags’ of perturbative vacuum occupied
by quarks and gluons. The bag model employs as its starting point the lagrange
density [Jo 78]

Lbag = (LQCD − B) θ(q̄q), (3.2)

where the θ function (which vanishes for negative argument) defines the spatial vol-
ume encompassed by the perturbative vacuum. B is called the bag constant, and
is often expressed in units of (MeV)4. Physically, it represents the difference in
energy density between the QCD and perturbative vacua. Phenomenological deter-
minations of B yield B1/4 � 150 MeV, which translates to a QCD condensation
energy of UQCD/V � 1.0 × 1034 J m−3. Although huge on the scale of the con-
densation energy for superconductivity, this value appears less remarkable in more
natural units, B � 66 MeV fm−3.
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Static cavity

To obtain the equations of motion and boundary conditions for the bag model, we
must minimize the action functional of the theory. We shall consider at first a sim-
plified model consisting of a bag which contains only quarks of a given flavor q and
mass m. The equations of motion that follow from the lagrangian of Eq. (3.2) are

(i/∂ −m)q = 0, (3.3)

within the bag volume V and

inμγμq = q, (3.4a)

nμ∂
μ(q̄q) = 2B (3.4b)

on the bag surface S, where nμ is the covariant inward normal to S. Eq. (3.3)
describes a Dirac particle of mass m moving freely within the cavity defined by
volume V . Since the order parameter q̄q vanishes at the surface of the bag, the
linear boundary condition in Eq. (3.4a) amounts to requiring that the normal com-
ponent of the quark vector current also vanish at the surface. Thus, quarks are
confined within the bag. The nonlinear boundary condition represents a balance
between the outward pressure of the quark field and the inward pressure of B.

Spherical-cavity approximation

In principle, the bag surface should be determined dynamically. However, the only
manageable approximation for light-quark dynamics is one in which the shape of
the bag is taken as spherical with some radius R. For such a static configuration,
the nonlinear boundary condition becomes equivalent to requiring that the energy
be minimized as a function of R. The static-cavity hamiltonian is

H =
∫
V

d3x
[
q†(−iα ·∇)q + q†βmq + B] . (3.5)

Observe that B plays the role of a constant energy density at all points within the
bag. As in Eq. (1.1), the normal modes of the cavity-confined quarks and antiquarks
provide a basis for expanding quantum fields. They are determined by solving the
Dirac equation Eq. (3.3) in a spherical cavity. We characterize each mode in terms
of a radial quantum number n, an orbital angular momentum quantum number 
 (as
would appear in the nonrelativistic limit), and a total angular momentum, j . Only
j = 1/2 modes are consistent with the nonlinear boundary condition since the rigid
spherical cavity cannot accommodate the angular variation of j > 1/2 modes.
Such nonspherical orbitals can be treated only approximately, by implementing the
nonlinear boundary condition as an angular average or by minimizing the solution
with respect to the energy. In addition, since neither p1/2 modes nor radially excited
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s1/2 modes are orthogonal to a translation of the ground state, they must be admixed
with some of the j = 3/2 modes to construct physically acceptable excitations. For
these reasons, the bag model has been most widely applied in modeling properties
of the ground-state hadrons rather than their excited states.

Let us consider the s1/2 case in some detail. Even with the restriction to a single
spin-parity state, there are still an infinity of eigenfrequencies ωn. Each ωn is fixed
by the linear boundary condition, expressible as the transcendental equation

tan pn = − pn

ωn +mR − 1
(n = 1, 2, . . . ), (3.6)

where pn ≡
√
ω2
n −m2R2. For zero quark mass, the lowest eigenfrequencies are

ω= 2.043, 4.611, . . . . For light-quark mass (mR ≤ 1) the lowest mode frequency
is approximated by ω1 � 2.043+ 0.493mR, and in the limit of heavy-quark mass
(mR 
 1) becomes ω1 →

√
m2R2 + π2. The spatial wavefunction which accom-

panies destruction of an s1/2 quark with spin alignment λ and mode n is

ψn(x) = 1√
4π

(
ij0(pnr/R)χλ

−εj1(pnr/R)σ · r̂χλ
)
, (3.7)

while for creation of an s1/2 antiquark we have

ψn̄(x) = 1√
4π

(−iεj1(pnr/R)σ · r̂ χ̄λ
j0(pnr/R)χ̄λ

)
, (3.8)

where ε ≡ ((ωn − mR)/(ωn + mR))1/2, χλ is a two-component spinor, and χ̄λ ≡
iσ2χλ. The full quark field q(x), expanded in terms of the s1/2 modes, is given by

q(x) =
∑
n

N(ωn)
[
ψn(x)e−iωnt/Rb(n)+ ψn̄(x)eiωnt/Rd†(n̄)

]
, (3.9)

where

N(ωn) =
(

p4
n

R3(2ω2
n − 2ωn +mR) sin2 pn

)1/2

(3.10)

is a normalization factor which is fixed by demanding that the number operator
Nq =

∫
bag d

3x q†(x)q(x) for quark flavor q have integer eigenvalues.
By computing the expectation value of the hamiltonian in a state of N quarks

and/or antiquarks of a given flavor, one obtains

〈H 〉 = Nω/R + 4πBR3/3− Z0/R. (3.11)

In the final term, Z0 is a phenomenological constant that has been used in the
literature to summarize effects having a 1/R dimension, most notably the effect
of zero-point energies, which for an infinite-volume system would be unobserv-
able. However, just as the Casimir effect is present for a finite-volume system
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(a) (b)

Fig. XI–3 Quarks in a bag.

with fixed boundaries, such a term must be present in the static cavity bag model
[DeJJK 75]. Unfortunately, a precise calculation of this effect has proven to be
rather formidable, and so one treats Z0 as a phenomenological parameter.

Upon solving the condition ∂〈H 〉/∂R= 0, we obtain expressions for the bag
radius

R4 = 1

4πB
(Nω − Z0), (3.12)

and the bag energy

E = 4

3
(4πB)1/4(Nω − Z0)

3/4. (3.13)

The bag energy E is not precisely the hadron mass. Although the bag surface
remains fixed in the cavity approximation, the quarks within move freely as inde-
pendent particles. Thus, at one instant, the configuration of quarks might appear
as in Fig. XI–3(a), whereas at another time, the quarks occupy the positions of
Fig. XI–3(b). As a result, there are unavoidable fluctuations in the bag center-of-
mass position. The bag energy is thus E=〈√p2 +M2〉, where M is the hadron
mass and p represents the instantaneous hadron momentum. Although the average
momentum vanishes (〈p〉= 0), the fluctuations do not, (〈p2〉 �= 0). For all hadrons
but the pion, it is reasonable to expand the bag energy in inverse powers of the
hadron mass,

E = M + 〈p2〉/2M + · · · . (3.14)

For the pion, one should instead expand as

E = 〈|p|〉 +M2
π 〈|p|−1〉/2+ · · · . (3.15)

One can employ the method of wave packets, to be explained in Sect. XII–1, to esti-
mate that 〈|p|〉 � 2.3R−1, 〈|p|−1〉 � 0.7R for the pion bag, and 〈p2〉 � Nω2

1R
−2

for a bag containing N quarks and/or antiquarks in the s1/2 mode.
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Gluons in a bag

Any detailed phenomenological fit of the bag model to hadrons must include the
spin–spin interaction between quarks. One way to incorporate this effect is to posit
that gluons, as well as quarks, can exist within a bag. With only gluons present, the
lagrangian is taken to be [Jo 78]

Lgluon
bag =

[
−1

4
Fa
μνF

aμν − B
]
θ
(−Fa

μνF
aμν/4− B) , (3.16)

and the Euler–Lagrange equations are

∂μF a
μν = 0 (3.17)

in the bag volume V , and

nμF a
μν = 0 (3.18a)

Fa
μνF

aμν = −4B (3.18b)

on the bag surface S. In the limit of zero coupling, the gluon field strength becomes
Fa
μν = ∂μAaν − ∂νA

a
μ. The field equations in V are sourceless Maxwell equations

with boundary conditions x · Ea = 0 and x × Ba = 0 on S, where Ea and Ba are
the color electric and magnetic fields, respectively. It is convenient to work directly
with the gluon field Aa(x), and with a gauge choice to restrict the dynamic degrees
of freedom to the spatial components. In mode n, these obey[∇2 + (kn/R)2

]
Aa
n = 0, (3.19)

and

∇ · Aa
n = 0 (3.20)

within the bag. The gluon eigenfrequencies kn are determined by the linear bound-
ary condition

r× (∇ × Aa
n

) = 0. (3.21)

Restricting our attention to modes of positive parity, we have for the gluon field
operator

Aa(x) =
∑
n,σ

NG(kn)
(
j1(knr/R)X1σ (�)a

a
n,σ + h.c.

)
, (3.22)

where X1σ is a vector spherical harmonic. The gluon normalization factor is obtained,
analogously to N(ωn) for quarks, by constraining the gluon number operator to be
integer-valued and we find

[NG(kn)]
−2 = [3(1− sin(2kn)/2kn)− 2(1+ k2

n) sin2(kn)
]
R2. (3.23)
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The quark–gluon interaction

In the following, we shall work with the lowest positive parity mode, for which
k1= 2.744. The quark hyperfine interaction in hadron H can be computed from
the second-order perturbation theory formula,

Ehyp = 〈H |Hq−g(E0 −H0 + iε)−1Hq−g|H 〉, (3.24)

where the unperturbed hamiltonian H0 is given in Eq. (3.5) and Hq−g is the quark-
gluon interaction

Hq−g = −g3

∫
V

d3x Ja(x) · Aa(x), (3.25)

defined in terms of the quark color current density

Ja(x) = 1

2
q̄i(x)γλ

a
ij qj (x). (3.26)

Implicit in Eq. (3.24) is an infinite sum over all intermediate states. In practice, the
sum can be well approximated by the lowest-energy intermediate state, and we find
for hadron H

Ehyp = 〈H |Hhyp|H 〉 = αshHR
−1, (3.27)

where

hH = −0.177〈H |
∑
i<j

σ i · σ j Fi · Fj |H 〉. (3.28)

The numerical factor arises from an overlap integral of quark and gluon spatial
wavefunctions, and Fi , σ i are, respectively, the color and spin operators for quark
i. It is straightforward to demonstrate that hπ = 0.708, hN = − h�=hπ/2, and
hρ = − hπ/3.

We have described the primary ingredients of the bag model. Fits to the masses
of the ground-state hadrons can be accomplished within this framework, for exam-
ple in [DeJJK 75, DoJ 80]. These reproduce many of the features of these particles,
and we return to baryon properties in the next chapter.

XI–4 Skyrme model

In Chap. X, we explored the Nc → ∞ limit of QCD. In some respects the world
thus defined is not unlike our own. Mesons and glueballs exist with masses which
are O(1) as Nc → ∞. To lowest order, these particles are noninteracting because
their coupling strength is O(N−1

c ). What becomes of baryons in this world? It
takes Nc quarks to form a totally antisymmetric color-singlet composite, so baryon
mass is expected to be O(Nc). Note the inverse correlation between interparticle
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coupling O(N−1
c ) and baryon mass O(Nc). This is reminiscent of soliton behavior

in theories with nonlinear dynamics.

Sine–Gordon soliton

An example is afforded by the Sine–Gordon model, defined in one space and one
time dimension by the lagrangian,

LSG = 1

2
(∂μϕ)

2 − α

β2
(1− cos βϕ), (4.1)

where α and β are constants. For small-amplitude field excitations, an expansion
in powers of ϕ,

LSG = 1

2
(∂μϕ)

2 − α

2
ϕ2 + αβ2

4! ϕ
4 +O

(
β4ϕ6

)
, (4.2)

identifies the parameter α as the boson squared mass and β as a coupling strength.
For β → 0 we recover the free field theory. The Sine–Gordon lagrangian has also
a nonperturbative static solution,

ϕ0(x) = 4

β
tan−1

(
exp
(√
αx
))
, (4.3a)

with energy

E0 = 8
√
α/β2. (4.3b)

This solution is a Sine–Gordon soliton. The natural unit of length for the soli-
ton is α−1/2, and the energy E0 diverges as the coupling is turned off (β → 0).
The potential energy in this theory has an infinity of equally spaced minima, with
ϕ(n)= 2πn/β (n= 0,±1,±2, . . . ). As the coordinate x is varied continuously
from−∞ to+∞, the soliton amplitude ϕ0(x), starting from the minimum ϕ(0)= 0,
moves to the adjoining minimum ϕ(1)= 2π/β. An index�N , the winding number,
counts the number of minima shifted. It can be expressed as the charge associated
with a current density,

Jμ = β

2π
εμν ∂νϕ, (4.4)

such that

�N =
∫ ∞

−∞
dx J 0(x) = β

2π
[ϕ(+∞)− ϕ(−∞)] . (4.5)

For ϕ=ϕ0 as in Eq. (4.3a) we see that �N = 1. The current density is conserved,
∂μJ

μ= 0. Thus its charge, the winding number �N , does not change with time.
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This is an example of a topological conservation law, whose origin lies in the non-
trivial boundary conditions (viz. Eq. (4.5)) which a given field configuration is
constrained to obey.

Chiral SU(2) soliton

Let us now seek a soliton solution for an SU(2)L × SU(2)R invariant theory in a
spacetime of dimension four. It is natural to consider first the lowest-order chiral
lagrangian L2,

L2 = F 2
π

4
Tr
(
∂μU∂

μU †
)
, (4.6)

where U is an SU(2) matrix which transforms as U → LUR−1 under a chiral
transformation for L ∈ SU(2)L and R ∈ SU(2)R. Unfortunately, L2 cannot sup-
port an acceptable soliton, as the soliton would have zero size and zero energy.
To see why, recall that the Sine–Gordon soliton has a natural unit of length α−1/2.
Suppose there is an analogous quantity, R, for the chiral soliton. Then we can write
the radial variable as r = r̃R, where r̃ is dimensionless. For a static solution, the
energy becomes

E =
∫
d3x H = −

∫
d3x L = F 2

π

4

∫
d3x Tr

(∇U ·∇U †
)
. (4.7)

Upon expressing the integral in terms of the dimensionless variable r̃ , we find
E= aR, where a is a nonnegative number. The energy is minimized at R= 0 to
the value E= 0. This trivial solution is unacceptable, and thus the model must be
extended.

The Skyrme model [Sk 61] employs, in addition to L2, a quartic interaction of a
certain structure,

L = F 2
π

4
Tr
(
∂μU∂

μU †
)+ 1

32e2
Tr
[
∂μU U †, ∂νU U †

]2
, (4.8)

where e (not to be confused with the electric charge!) is a dimensionless real-
valued parameter. The above chiral lagrangian should look familiar, since it is
part of the general fourth-order chiral lagrangian used in Chap. VII. In particu-
lar, Eq. (4.8) is reproduced if 2Lr1+2Lr2+Lr3= 0, in which case (32e2)−1= (Lr2−
2Lr1 − Lr3)/4. The comparison with the phenomenology of Chap. VII is not com-
pletely straightforward, as the pion physics was treated to one-loop order while the
Skyrme lagrangian is used at tree level. We note, however, that the coefficients in
Table VII–1 give

2Lr1 + 2Lr2 + Lr3
Lr2 − 2Lr1 − Lr3

= 0.685, Lr2 − 2Lr1 − Lr3 = 0.0040. (4.9)
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The latter combination, which is independent of renormalization scale, numerically
gives e � 5.6. In the following development, we shall follow standard practice by
taking the parameter e as arbitrary.

We seek a static solution of the Skyrme model. Our strategy shall be to first
determine the energy functional of the theory, and then minimize it. Following the
procedure leading to Eq. (4.7), we can write the energy as

E =
∫
d3x Tr

[
F 2
π

4
XiX

†
i +

1

16e2
(εijkXiXj )(εabkXaXb)

†

]
, (4.10)

where Xμ ≡ U∂μU
† and Xμ= − X†

μ. It is necessary that Xi → 0 as |x| → ∞
in order that the energy be finite. Thus, U must approach a constant element of
SU(2), which we are free to choose as the identity I . For the mesonic sector of
the theory, the vacuum state corresponds to U(x)= I for all x. In this state, both
the field variable Xi and the energy E vanish. The form U � I + iπ · τ/Fπ , used
extensively in earlier chapters, corresponds to small-amplitude pionic excitations
of the vacuum.

To see that the Skyrme model does support a nontrivial soliton, we cast the
energy integrals of Eq. (4.10) in terms of a natural length scale R and find

E = aR + bR−1, (4.11)

where a, b are nonnegative. For a, b �= 0, the energy is minimized at nonzero R
and nonzero E. Thus, the quartic term of Eq. (4.8) is seen to have the desired effect
of inducing soliton stability. Moreover, for arbitraryU a lower bound on the energy
is provided by applying the Schwartz inequality to Eq. (4.10),

E ≥ Fπ

4e

∫
d3x|Tr εijkXiXjXk|. (4.12)

It is not hard to show that the integrand of Eq. (4.12) is proportional to the zeroth
component of a four-vector current,

Bμ = εμναβ

24π2
Tr XνXαXβ, (4.13)

which is divergenceless, ∂μBμ = 0, and thus has conserved charge

B =
∫
d3x B0(x). (4.14)

It turns out that the current Bμ can be identified as the baryon current density and
B is the baryon number of the theory. Note that this is consistent with our prescrip-
tion U(x)= I for the meson vacuum, where we see from Eq. (4.13) that B = 0.
Interestingly, B turns out to have an additional significance. It is the topological
winding number for the Skyrme model, analogous to �N for the Sine–Gordon
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model. The point is, by having associated spatial infinity with a group element of
SU(2) to ensure that the field energy is finite, we have placed the elements of phys-
ical space into a correspondence with the elements of the compact group SU(2).
The parameter space of each set is S3, the unit sphere in four dimensions, and it is
precisely the field U which implements the mapping. The mappings from S3 to S3

are known to fall into classes, each labeled by an integer-valued winding number.
In this context, B serves to measure the number of times that the set of space points
covers the group parameters of SU(2) for some solution U of the theory.

The Skyrme soliton

The Skyrme ansatz for a chiral soliton (skyrmion) has the functional form [BaNRS
83, AdNW 83]

U0(x) = exp
[
iF (r)τ · x̂]. (4.15)

The unknown quantity is the skyrmion profile function F(r). To specify it, we first
determine the energy functional by substituting U0 into Eq. (4.10),

E[F ] = 4π
∫ ∞

0
dr r2

[
F 2
π

2

(
F ′2 + 2

sin2 F

r2

)
+ 1

2e2

sin2 F

r2

(
sin2 F

r2
+ 2F ′2

)]
, (4.16)

where a prime signifies differentiation with respect to the argument. For a static
solution, the minimization of the energy generates an extremum of the action, and
is hence equivalent to the equations of motion. The variation δE/δF = 0 generates
a differential equation for F ,(

r̃2

4
+ 2 sin2 F

)
F ′′ + r̃

2
F ′ + F ′2 sin 2F − sin 2F

4
− sin2 F sin 2F

r̃2
= 0, (4.17)

as expressed in terms of a dimensionless variable r̃ = r/R, with R−1 ≡ 2eFπ .
This nonlinear equation must be solved numerically, subject to certain boundary
conditions. The condition U = I at spatial infinity implies F(∞)= 0. The bound-
ary condition at r = 0 is fixed by requiring that the soliton corresponds to baryon
number 1. For the Skyrme ansatz, the baryon-number charge density is

B0(r) = − 1

2π2

F ′ sin2 F

r2
, (4.18)

and corresponds to a baryon number
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Fig. XI–4 Radial profile of the skyrmion.

B = 1

2π
[2F(0)− 2F(∞)− sin 2F(0)+ sin 2F(∞)]. (4.19)

This leads to the choice F(0)=π . Although the profile F(r) cannot be determined
analytically over its entire range, it is straightforward to show that

F(r) ∼
{
π − const. r (r → 0),

const. r−2 (r →∞).
(4.20)

We display F(r) in Fig. XI–4. Insertion of the solution to Eq. (4.17) into the
energy functional E[F ] yields the mass M of the skyrmion, and from a numeri-
cal integration we obtain M � 73 Fπ/e. There is an important point to be realized
about the skyrmion – it represents a use of chiral lagrangians outside the region
of validity of the energy expansion. Recall that the full chiral lagrangian is writ-
ten as a power series, L=L2 + L4 + · · · in the number of derivatives. When
matrix elements of pions are taken, terms with n derivatives produce n powers
of the energy. Hence, at low energy, one may consistently ignore operators with
large n, as their contributions to matrix elements are highly suppressed. However,
in forming the skyrmion one employs only L2 and a subset of L4. The relative
effects of the two are balanced in the minimization of the energy functional, and
as a result both contribute equally. In an extended model containing L6, one would
expect the import of L6 to be analogously comparable to L4, etc. Higher-derivative
lagrangians thus will contribute to skyrmion matrix elements, and the result cannot
be considered a controlled approximation. However, this is not sufficient cause for
abandoning the skyrmion approach. It simply becomes a phenomenological model
rather than a rigorous method, and thus has a status similar to potential or bag
models.
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Quantization and wavefunctions

The analysis done thus far is at the classical level, and merely shows that the chiral
soliton satisfies the equations of motion. To determine the quantum version of the
theory, we shall follow a canonical procedure. An analogy with quantization of the
rigid rotator may help in understanding the process. A classical solution consists of
the rotator being at any fixed angular configuration {θ, ϕ}. To obtain the quantum
theory, one allows the rotator to move among these solutions, and describes its
motion in terms of the angular coordinates and their conjugate momenta {pθ, pϕ}.
The quantum states are those with definite angular momentum quantum numbers
{
,m}, and have wavefunctions given by the spherical harmonics,

〈θ, ϕ|
,m〉 = Y
,m(θ, ϕ). (4.21)

The classical skyrmion solutions consist not only of U0 (cf. Eq. (4.15)), but also
of any constant SU(2) rotation thereof, U ′0=AU0A

−1 with AεSU(2). A particu-
larly simple approach to quantization is then to allow the soliton to rotate rigidly in
the space of these solutions,

U = A(t)U0A
−1(t), (4.22)

where now A(t) is an arbitrary time-dependent SU(2) matrix. One proceeds to
define a set of coordinates {ak}, their conjugate momenta {πk ≡ ∂L/∂ak}, and a
hamiltonian constructed via Legendre transformation

H = πkȧk − L. (4.23)

We shall presently describe how to choose quantum numbers and determine the
associated wavefunctions. Note that this approach is approximate in that it neglects
the possibility of spacetime-dependent excitations such as pion emission. As such,
it would be most appropriate for a weakly coupled theory (as occurs for Nc →∞)
where the soliton rotates slowly, but is only approximate in the real world.

In general, an SU(2)matrix likeA can be written in terms of three unconstrained
parameters {θk} as

A(t) = exp(iτ · θ) = I cos θ + iτ · θ̂ sin θ. (4.24)

However, we can equivalently employ the four constrained parameters,

a0 = cos θ, a = θ̂ sin θ, (4.25a)

where
3∑
k=0

a2
k = 1. (4.25b)
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Substitution of the rotated quantity U into Eq. (4.7) and evaluation of the spatial
integration yields

L = −M + λTr (∂0A
†∂0A) = −M + 2λ

3∑
k=0

ȧ2
k , (4.26)

where λ=π/3e3Fπ , with

 =
∫
dr̃ r̃2 sin2 F

[
1+ 4

(
F ′2 + sin2 F/r̃2

)] � 50.9. (4.27)

As written in terms of the conjugate momenta πk = 4λȧk, the hamiltonian is

H = M + 1

8λ

3∑
k=0

π2
k . (4.28)

Adopting the canonical quantization conditions

[ak, πl] = iδkl, (4.29)

we see that the canonical momenta can be expressed as differential operators,
πk = − i∂/∂ak. Thus, the hamiltonian has the form

H = M − 1

8λ
∇2

4, (4.30)

where ∇2
4 is the four-dimensional laplacian restricted to act on the three-sphere by

the constraint of Eq. (4.25b).
We can determine the eigenvalues and eigenvectors of H by working in analogy

with the more familiar three-dimensional laplacian,

∇2
3 =

∂2

∂r2
+ 2

r

∂

∂r
− 1

r2
L2. (4.31)

If constrained to the unit two-sphere by the condition
∑3

k= 1 x
2
k = r2= 1, the three-

dimensional laplacian ∇2
3 reduces to−L2. As is well known, the three components

of L are operators L1, L2, L3 which satisfy

[Lj, Lk] = iεjklLl, (4.32)

and generate rotations in the 2–3, 3–1, 1–2 planes respectively. The underlying
symmetry group is SO(3), and the eigenfunctions are the spherical harmonics.

The four-dimensional problem is treated by analogy. Upon adding an extra dimen-
sion labeled by the index 0, we encounter the additional operators K1,K2,K3,
which generate rotations in the 0–1, 0–2, 0–3 planes. The full set of six rotational
generators can be represented as

Lk = εijkaiπj , Kk = a0πk − akπ0. (4.33)
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The extended symmetry group is SO(4) and the commutator algebra of the rotation
generators is[

Lj, Lk
] = iεjklLl,

[
Lj, Kk

] = iεjklKl,
[
Kj, Kk

] = iεjklLl. (4.34)

The mathematics of this algebra is well known, underlying, for example the sym-
metry of the Coulomb hamiltonian in nonrelativistic quantum mechanics. By the
substitutions

T = (L−K)/2, J = (L+K)/2, (4.35)

we arrive at operators T and J, which generate commuting SU(2) algebras. We
associate T with the isospin and J with the angular momentum. The explicit oper-
ator representations,

Tk = i(−εijkai∂j + a0∂k − ak∂0),

Jk = i(−εijkai∂j − a0∂k + ak∂0), (4.36)

follow immediately from Eq. (4.33), and the Skyrme hamiltonian becomes

H = M + (T2 + J2
)
/4λ. (4.37)

It follows from the commutator algebra of Eq. (4.34) that T2= J2. Thus, the quan-
tum spectrum consists of states with equal isospin and angular momentum quantum
numbers, T = J . This is no surprise. After all, in the Skyrme ansatz of Eq. (4.15),
the isospin and spatial coordinates appear symmetrically, and we expect the quan-
tum spectrum to respect this reciprocity. Our final form for the hamiltonian,

H = M + J2/2λ, (4.38)

has the eigenvalue spectrum

E = M + J (J + 1)/2λ, (4.39)

where in general J = 0, 1/2, 1, 3/2, . . . .
By analogy with the usual spherical harmonics, the eigenfunctions ofH are seen

to be traceless symmetric polynomials in the {ak}. However, both {ak} and {−ak}
describe the same solution U (cf. Eq. (4.22)). In the quantum theory, eigenfunc-
tions thus fall into either of two classes, ψ({−ak})= ± ψ({ak}). Since fermions
correspond to the antisymmetric choice, we select only the half-integer values in
Eq. (4.39). In the Skyrme model, the N and � baryons will have wavefunctions
which are respectively linear and cubic in the {ak}. To construct such states, it is
convenient to employ the differential representations of Eq. (4.36) to prove

L3(a1 ± ia2) = ±(a1 ± ia2),

K3(a0 ± ia3) = ±(a0 ± ia3),

L3a0,3 = 0,
K3a1,2 = 0.

(4.40)
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From these and Eq. (4.36), the T3= J3= 1/2 eigenstate of a proton with spin up is
found to be

〈A| p↑〉 = 1

π
(a1 + ia2). (4.41)

The normalization of this state is obtained from the angular integral over the three-
sphere

1 = 〈p↑| p↑〉 =
∫
d�3 〈p↑|A〉〈A| p↑〉 = 1

π2

∫
d�3

(
a2

1 + a2
2

)
, (4.42)

where the angular measure is∫
d�3 =

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ π

0
dχ sin2 χ, (4.43)

and spherical coordinates in four dimensions are defined by

a1 = sinχ sin θ cosϕ,
a3 = sinχ cos θ,

a2 = sinχ sin θ sinϕ,
a0 = cosχ.

(4.44)

The remaining nucleon states can be found by application of the spin and isospin
lowering sperators

J− = [(a1 − ia2)∂3 − (a3 + ia0)∂1 + (−a0 + ia3)∂2 + (a2 + ia1)∂0]/2,
T− = [(a1 − ia2)∂3 + (−a3 + ia0)∂1 + (a0 + ia3)∂2 − (a2 + ia1)∂0]/2, (4.45)

where ∂k ≡ ∂/∂ak. The T = J = 3/2 � states are formed by employing analogous
ladder operations on

〈A| �++3/2〉 =
i
√

2

π
(a1 + ia2)

3. (4.46)

It is remarkable that fermions can be constructed from a chiral lagrangian which
contains nominally bosonic degrees of freedom. However, the presence of a nonzero
fermion quantum number can be easily verified by direct calculation.

The wavefunctions for the eigenstates (the equivalents of Y
,m(θ, ϕ) for the rigid
rotator) are given by SU(2) rotation matrices with half-integer values. These are
defined by the transformation properties of states under an SU(2) rotation A,

|T , T ′3〉 =
∑
T3

D(T )

T ′3T3
(A)|T , T3〉. (4.47)

The simplest case is then just the T = 1/2 representation, which we know is rotated
by the matrix A,

D(1/2)
ij (A) = Aij =

(
(a0 + ia3) i(a1 − ia2)

i(a1 + ia2) (a0 − ia3)

)
ij

. (4.48)
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Comparison with Eq. (4.41) and with the results of Eq. (4.47) shows that the prop-
erly normalized nucleon wavefunctions are

〈A| NT3,S3〉 =
1

π
(−)T3+1/2 D(1/2)

−T3,S3
(A). (4.49)

The general case for a nonstrange baryon B of isospin T and spin S (S= T ) is
given by

〈A| BT,T3,S3〉 =
[

2T + 1

2π2

]1/2

(−)T+T3 D(T )
−T3,S3

(A), (4.50)

of which the � states are specific examples.
Finally, the N and � masses are

MN = M + 3/8λ = 73Fπ/e + e3Fπ/45.2π,

M� = M + 15/8λ = 73Fπ/e + 5e3Fπ/45.2π. (4.51)

If the measured N,� masses are used as input, one obtains e= 5.44 and
Fπ = 65 MeV. Alternatively, from the empirical value for Fπ and the determination
e � 5.6 from pion–pion scattering data, the model impliesMN � 1.27 GeV,M� �
1.80 GeV. In either case, agreement between theory and experiment is at about the
30% level. The next state in the spectrum would have quantum numbers
T = J = 5/2 and is predicted by the first of the above fitting procedures to have
mass M5/2=M + 35/8λ � 1.72 GeV. There is no experimental evidence for such
a baryon.

Although the development of the skyrmion and its quantization have been moti-
vated by large-Nc ideas, we know of no proof that requires the skyrmion to come
arbitrarily close to the baryons of QCD in theNc →∞ limit. An oft-cited counter-
example is the existence of a one-flavor version of QCD. Such a theory still con-
tains baryons, such as the�++. However, it makes no sense to speak of a one-flavor
Skyrme model, as an SU(2) group is required for the underlying soliton U0. The
Skyrme model remains an interesting picture for nucleon structure because it is in
many ways orthogonal to the quark model, and thus offers opportunities for new
insights.

XI–5 QCD sum rules

Low-energy QCD involves a regime where the degrees of freedom are hadrons,
and where it is futile to attempt perturbative calculations of hadronic masses and
decay widths. Contrasted with this is the short-distance asymptotically free limit
in which quarks and gluons are the appropriate degrees of freedom, and in which
perturbative calculations make sense. The method of QCD sum rules represents an

https://doi.org/10.1017/9781009291033.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.012


XI–5 QCD sum rules 319

attempt to bridge the gap between the perturbative and nonperturbative sectors by
employing the language of dispersion relations [ShVZ 79a].

The existence of sum rules in QCD is quite general, and some might dispute
the classification on these sum rules as a phenomenological method. However, in
practice, to utilize the sum rules involves the introduction of various approxima-
tions and heuristic procedures. Like quark model methods, these are motivated
by physical intuition but are not always rigorous consequences of QCD. As a
result, there remains a certain degree of uncontrollable approximation in their use.
Nonetheless, they have been employed in a large number of applications; some
early reviews are [ReRY 85, Na 89] and for somewhat more recent entries see
[Ra 98, CoK 00, Sh 10].

Correlators

It is convenient to approach the subject by considering the relatively simple two-
point functions. Thus, we consider the quark bilinear,

J�(x) = q1(x)�q2(x), (5.1)

where � is a Dirac matrix, and analyze the correlator,

i

∫
d4x eiq·x〈0|T (J�(x)J †

�(0))|0〉. (5.2)

Such quantities can be expressed in terms of invariant functions ��(q
2) and atten-

dant kinematical factors, e.g., as for the correlators of pseudoscalar currents (JP )
and of conserved vector currents (JV ),

�P(q
2) = i

∫
d4x eiq·x〈0|T (JP (x)JP (0)) |0〉, (5.3a)

(qμqν − q2gμν)�V (q
2) = i

∫
d4x eiq·x〈0|T (JμV (x)J νV (0)) |0〉. (5.3b)

Analogous structures occur for other currents.
There are several means for analyzing a quantity like ��(q

2). One is to write
a dispersion relation based on its singularity structure in the complex q2 plane.
The singularities are just those imposed by unitarity. For example, by inserting
a complete set of intermediate states into Eq. (5.3a) for the pseudoscalar function
�P(q

2) and invoking the constraints of Lorentz invariance and positivity of energy,
we obtain

�P(q
2) =

∫ ∞

s0

ds
ρP (s)

s − q2 − iε ,

θ(q0)ρP (q
2) = (2π)3

∑
n

δ4(pn − q)|〈0|JP (0)|n〉|2, (5.4)

https://doi.org/10.1017/9781009291033.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.012


320 Phenomenological models

where s0 is the threshold for the physical intermediate states. Such considerations,
together with the application of Cauchy’s theorem in the complex q2 plane, imply
a dispersion relation for ��(q

2),

��(q
2) = (q2)N

π

∫ ∞

s0

ds
Im ��(s)

sN(s − q2 − iε) +
N−1∑
n=0

(q2)nan, (5.5)

where the {an} are N subtraction constants.4 One attempts to introduce a phe-
nomenological component to the dispersion relation by expressing Im ��(s) in
terms of measureable quantities, e.g., with cross section-data as in the case of the
charm contribution cγ μc to the vector current,

Im �
(chm)
V = 1

12πe2
c

σe+e−→ charm

σe+e−→ μ+μ−
= 9s

64π2α2
σe+e−→ charm, (5.6)

where ec is the c-quark electric charge and s is the squared center-of-mass energy. If
such data are not available, another means must be found for expressing Im ��(s)

in the range s0 ≤ s <∞.
To approximate the low-s part of Im ��(s), one usually employs one or more

single-particle states. As an illustration, let us determine the contribution to�P(q
2)

of a flavored pseudoscalar meson M , which is a bound state or a narrow-width res-
onance of the quark–antiquark pair q1q2. In this instance, we take the pseudoscalar
current in the form of an axial-vector divergence, JP → ∂μA

μ
−, with

∂μA
μ
− = i(m1 +m2)q1γ5q2,

〈0|∂μAμ−(0)|M〉 =
√

2FMm
2
M, (5.7)

wheremM and FM are the meson’s mass and decay constant. Then Eq. (5.4) implies

θ(q0)ρp(q
2) = (2π)3

∫
d3p

(2π)32ωp
2F 2

Mm
4
Mδ

4(p − q)
= 2F 2

Mm
4
Mδ(q

2 −m2
M)θ(q0), (5.8)

which yields ρp(q
2) = 2F 2

Mm
4
Mδ(q

2 −m2
M) for the spectral function or

Im �p|meson= 2F 2
Mm

4
Mπδ(s −m2

M) (5.9)

for the dispersion kernel. Thus, bound-state or narrow-resonance contributions give
rise to delta-function contributions. It is not difficult to take resonant finite-width
effects into account if desired. One or more of these single-particle contributions
are then used to represent the low-s part of the dispersion integral.

4 The number of subtraction constants needed depends on the behavior of Im ��(s) in the s →∞ limit, with
��(q

2) ∼ q2N ln q2 requiring N subtractions.

https://doi.org/10.1017/9781009291033.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.012


XI–5 QCD sum rules 321

Table XI–4. Local operators of low dimension.

d: 0 4 4 6 6 6

On: 1 mqqq Ga
μνG

μν
a q�qq�q mqσμν

λa

2 qG
μν
a fabcG

a
μνG

νλ
b G

μc
λ

Proceeding to higher s values in the dispersion integral, one enters the continuum
region, where multiparticle intermediate states become significant and the bound-
state (or resonance) approximation breaks down. Although, as described below, one
ordinarily attempts to suppress the large-s part of Im ��(s) by taking moments
or transforms of the dispersion integral, it has been common to add to the low-s
contribution a ‘QCD continuum’ approximation,

Im ��(s) −→
large-s

θ(s − sc)Im �cont(s), (5.10)

taken from discontinuities of QCD loop amplitudes and their O(αs) corrections. In
Eq. (5.10), sc parameterizes the point where the continuum description begins and
the form of Im �cont depends on the specific correlator. Experience has shown
that this ‘parton’ description can yield reasonable agreement of scattering data
even down into the resonance region, provided the resonances are averaged over
(duality).

Operator-product expansion

A representation for correlators which is distinct from the above phenomenologi-
cal approach can be obtained by employing an operator-product expansion for the
product of currents,

i

∫
d4x eiq·x T

(
J�(x)J

†
�(0)

)
=
∑
n

C�n (q2)On. (5.11)

The {On} are local operators and the {C�n (q2)} are the associated Wilson coeffi-
cients. As usual, the {On} are organized according to their dimension and, aside
from the unit operator I , are constructed from quark and gluon fields. Table XI–4
exhibits the operators up to dimension six which might contribute to the correlator
of Eq. (5.2).

Although one may naively expect all the operators but the identity to have van-
ishing vacuum expectation values (as is the case for normal-ordered local operators
in perturbation theory), nonperturbative long-distance effects like those discussed
in Sect. III–5 generally lead to nonzero values. Most often, the operator-product
approach contains vacuum expectation values like 〈αs

π
Ga
μνG

μν
a 〉0 ≡ 〈αs

π
G2〉0 and
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(a)

X X X X X X X X

(b)

g

g g
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Fig. XI–5 Contributions to coefficient functions.

〈mqqq〉0 as universal parameters, ‘universal’ in the sense that the same few parame-
ters appear repeatedly in applications. Calculation reveals that the quantity 〈αs

π
G2〉0

is divergent in perturbation theory, so the perturbative infinities must be subtracted
off if one is working beyond tree-level. In principle, all the vacuum expectation
values should be computable from lattice gauge theory once the renormalization
prescriptions are specified. At present, the only theoretically determined combina-
tions are the products

〈m̂(uu+ dd)〉0 � −2F 2
πm

2
π , 〈msss〉0 � −F 2

πm
2
K, (5.12)

which follow from the lowest-order chiral analysis in Chap. VII. We caution that
only the product mψψ is renormalization-group invariant (the gluon condensate
〈αs
π
G2〉0 does not, however, depend on scale). It is difficult to separate out the quark

masses uniquely, and values for input parameters like quark masses and conden-
sates tend to vary throughout the literature.

Use of the short-distance expansion must be justified. We have seen in previous
chapters how a given hadronic system is characterized in terms of the energy scales
of confinement () and quark mass ({mq}). Given these, it is indeed often possible
to choose the momentum q such that short-distance, asymptotically free kinematics
obtain. Two situations which have received the most attention are the heavy-quark
limit (m2

q 
 2, q2) and the light-quark limit (q2 
 2 
 m2
q). Once in the

asymptotically free domain, it is legitimate to apply QCD perturbation theory to
the C�n (q2), with the expansion being carried out to one or more powers of αs ,

C�n
(
q2
) = A�n

(
q2
)+ B�

n

(
q2
)
αs + · · · . (5.13)

Rather extensive lists of Wilson coefficients already appear in the literature.
Fig. XI–5 depicts contributions to a few of the Wilson coefficients. Denoting there
the action of a current by the symbol ‘×’, we display in (a)–(b) the lowest-order
and an O(αs) correction to operator I and in (c)–(d), the lowest-order contributions
to 〈αs

π
G2〉0 and to 〈mqq〉0, respectively.

Finally, as seen in Eq. (5.13), besides the vacuum expectation values, additional
parameters which generally occur in the operator-product representation are the
quark mass mq and the strong coupling αs . Since these quantities will depend on
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the momentum q, one must interpret them as running quantities whose renormal-
ization is to be specified. Due to asymptotic freedom, they too can be treated per-
turbatively, e.g., as in the familiar expression Eq. (II–2.78) for the running coupling
αs or Eq. (XIV–1.9) for the running mass m.

Master equation

The essence of the QCD sum rule approach is to equate the dispersion and the
operator-product expressions to obtain a ‘master equation’,

(q2)N

π

∫ ∞

s0

ds
Im ��(s)

sN
(
s − q2 − iε) + · · · =∑

n

C�
n

(
q2
) 〈On〉0. (5.14)

It is important to restrict use of this equation to a range of q2 for which both the
short-distance expansion and also any ‘resonance + continuum’ approximation to
Im �� are jointly valid. To satisfy these twin constraints, it is common practice
not to analyze Eq. (5.14) directly, but rather first to perform certain differential
operations leading to either moment or transform representations. The nth moment
M�
n (Q

2
0) is defined as

M�
n

(
Q2

0

) ≡ 1

n!
(
− d

dQ2

)n
��

(
Q2
) ∣∣∣∣
Q2=Q2

0

= 1

π

∫ ∞

s0

ds
Im ��(s)(
s +Q2

0

)n+1 , (5.15)

where, in the spacelike region q2 < 0, one usually works with the variable
Q2= −q2. By taking sufficiently many derivatives, one can remove unknown sub-
traction constants from the analysis and at the same time, enhance the contribution
of a single-particle state at low s in the dispersion integral.

Alternatively, one can express the dispersion integral as a kind of transform. The
Borel transform is constructed from the moment M�

n (Q
2) as

n Q2nM�
n

(
Q2
) −→
n,Q2→∞

1

πτ

∫ ∞

s0

ds e−s/τ Im ��(s), (5.16)

where Q2/n ≡ τ remains fixed in the limiting process and defines the transform
variable τ . To obtain the factor e−s/τ in the above dispersion integral, we note

n Q2n(
s +Q2

)n+1 =
n

s +Q2

(
1+ s/Q2

)−n −→
n,Q2→∞

e−s/τ

τ
. (5.17)

A slightly different version of exponential transform which has appeared in the
literature is defined analogously,
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Q2(n+1)M�
n

(
Q2
) −→
n,Q2→∞

1

π

∫ ∞

s0

ds e−sσ Im ��(s), (5.18)

where the transform variable is now σ = n/Q2. The transform method serves to
remove the subtraction constants and to suppress the contributions from operators
of higher dimension in the operator-product expansion.

Examples

Applications of the QCD sum rule approach generally proceed according to the
following steps.

(1) Choose the currents and write a dispersion relation for the correlator.
(2) Model the dispersion integrals with phenomenological input, usually some

combination of single-particle states and continuum.
(3) Employ the operator-product expansion, including all appropriate operators up

to some dimension at which one truncates the series.
(4) Obtain the Wilson coefficients as an expansion in αs .
(5) Use the moment or transform technique to extract information from the master

equation.
(6) Vary the underlying parameters until stability of output is achieved.

Let us consider several examples, keeping the treatment on an elementary footing
to better emphasize the kinds of relationships which QCD sum rules entail. In fact,
modern calculations can be quite technical, involving issues such as optimizing
the organization of input data, inclusion of ever higher orders of both perturbation
theory and vacuum condensates.

(i) Rho meson decay constant fρ : This was among the first applications of the QCD
sum rule approach [ShVZ 79a]. The ρ isovector current J (ρ)μ and decay constant
fρ are

J (ρ)μ = ūγμu− d̄γμd
2

, 〈ρ0(p, λ)|J (ρ)μ |0〉 = ε†
μ(p, λ)

fρmρ√
2
. (5.19a)

The sum rule which gives fρ is [CoK 00]

f 2
ρ =

em
2
ρτ

τ

[
1

4π2

(
1− e−s0τ ) (1+ αs(τ

−1)

π

)
+ (mu +md)τ

2〈q̄q〉 + · · ·
]
, (5.19b)

where τ is the Borel parameter, s0 is threshold above which�ρ(s) is to be approx-
imated via perturbation theory and ellipses represent additional condensate contri-
butions. The variation of fρ vs. 1/τ turns out to display little variation in fρ for, say,
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0.6 ≤ τ−2(GeV2) ≤ 1.3; this is the Borel window of stability. The range of values
fρ ∼ 208 → 218 MeV which occur within the stability window is in accord with
the experimental determination cited in Eq. (V–3.14) for the equivalent quantity
gρ = fρmρ/

√
2.

(ii) Mass of the charm quark: We consider the correlator for the charm-quark vector
current J (chm)

μ = cγμc,(
qμqν − q2gμν

)
�
(chm)
V

(
q2
) = i

∫
d4x eiq·x〈0|T (J (chm)

μ (x)J (chm)
ν (0)

) |0〉,
(5.20a)

and the corresponding dispersion relation,

∂(−∂Q2
)�(chm)

V

(
Q2
) = 1

π

∫ ∞

s0

ds
Im �

(chm)
V (s)(

s +Q2
)2 . (5.20b)

Following the original treatment of this system [ShVZ 79a], we work at Q2 = 0
and employ a moment analysis of the short-distance expansion containing just the
identity and gluon contributions. The experimental input is obtained from

M(expt)
n =

∫
ds

sn+1

σe+e−→ cc̄(s)

σe+e−→ μ−μ+(s)
, (5.21a)

whereas the theory side involves

M(thy)
n = 12π2e2

c

n! · d

dq2n
�
(chm)
V (q2 = 0). (5.21b)

The moments M(thy)
n can be determined in terms of an operator-product expansion,

which is dominated by the QCD-perturbative contribution provided the value of
n is not too large, i.e., mc/n > QCD. Perturbative contributions have long been
studied and a library of exact results is now available (see [DeHMZ 11]):

(1) O(α0
s ) and O(α1

s ): known for all n.
(2) O(α2

s ): known up to n= 30.
(3) O(α3

s ): known up to n= 3.

Below, we cite two specific O(α3
s ) determinations of the charm quark mass

[KuSS 07], [DeHMZ 11]. Both adopt the gluon condensate value 〈αs
π
G2〉0= 0.006±

0.012 GeV4 (each analysis obtains only a minor effect for this term). The results
obtained in MS renormalization are

mc(mc) = (1.286± 0.013) GeV [KuSS 07],

mc(mc) = (1.277± 0.026) GeV [DeHMZ 11], (5.22)
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whereas the value mc(mc)= (1.275± 0.025) GeV is cited in [RPP 12]. The issue
of how to assign uncertainty in QCD-sum-rule-determinations of charm mass,
especially involving the data side of the calculation, is currently a topic of some
interest,

(iii) Weak decay constant of the D+ meson: Consider first the axial-current diver-
gence and correlator associated with a heavy quark Q and a light antiquark q,
respectively of mass mQ and mq , which comprise a heavy meson MQ,

∂μA
μ
− = i(mQ +mq)qγ5Q,

�P (q
2) = i

∫
d4x eiq·x〈0|T (∂μAμ−(x)∂νAν†

− (0))|0〉. (5.23)

A transformation with Borel variable τ yields

�P(τ) =
∫ ∞

(mQ+mq)2
ds e−sτ ρpert(s, μ)+�pwr(τ,mQ,μ) (5.24)

where ρ= Im �/π and ρpert(s, μ) and �pwr(τ,mQ,μ) represent respectively, the
perturbative and nonperturbative contributions.

Let us now consider specifically the decay constant of the D+, where symbol-
ically D+ ∼ (cū). The experimental value, fD ≡

√
2FD = 206.7 ± 8.9 MeV is

found from D+ → μ+νμ via decay formulas akin to the tree-level Eq. (VII–1.24)
or radiatively corrected Eq. (VII–1.34) for pion leptonic decay. On the theory side,
it is shown in [LuMS 11] that a straightforward QCD sum rule approach yields

f 2
D+M

4
D+e

−M2
D+ τ =

∫ seff(τ )

(mc+mu)2
ds e−sτ ρpert(s, μ)+�pwr(τ,mQ,μ), (5.25)

where the condensate values adopted are

〈qq〉(μ) = −(267± 17 MeV)3,
〈αs
π
G2
〉
= (0.024± 0.012)GeV4, (5.26)

with μ= 2 GeV being the MS renormalization scale. The most novel part of the
expression in Eq. (5.25) is the presence of an ‘effective continuum threshold’
seff(τ ). The τ -dependence of seff supplants the traditional form of Eq. (5.10) in
which a constant cut-off sc is used to describe the onset of continuum contribu-
tions. We leave a detailed discussion of the effective threshold to [LuMS 11] and
simply state the final result,

f
(thy)
D = (206.2± 7.3(OPE) ± 5.1(sys)

)
MeV,

which is consistent with the experimental finding shown above.

(iv) Nucleon mass: It is not necessary to restrict oneself to mesonic currents as in
Eq. (5.1). Here, we consider a current ηN (and its correlator), which carries the
quantum numbers of the nucleon,
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ηN = εijku
iCγ μujγ5γμd

k,

�(q2) = �1(q
2)+ /q�2(q

2) = i

∫
d4x eiq·x〈0|T (ηN(x)ηN(0)) |0〉, (5.27)

where C is the charge-conjugation matrix. The simplest approximation to the dis-
persion integral comes from the nucleon pole,

�
(
q2
) |pole = λ2

N

MN + /q
q2 −M2

N

, (5.28)

where the coupling λ2
N is proportional to the ‘nucleon decay constant’, i.e., the

probability of finding all three quarks within the nucleon at one point. Upon making
a simple approximation to the operator-product expansion,

�1
(
q2
) � − q2

4π2
ln
(−q2

) 〈qq〉0, �2
(
q2
) � q4

64π2
ln
(−q2

)
, (5.29)

and employing a Borel transform, one obtains an amusing relation between nucleon
mass and quark condensate [Io 81],

MN =
(−8π2〈qq〉0

)1/3 + . . . � 1 GeV, (5.30)

and implies the vanishing of the former with the latter. However, it should be
realized that this result is subject to important corrections in a more complete
treatment.

Each of the above examples has involved two-point functions. It is possible to
apply the method to three-point functions as well, where one can obtain coupling-
constant relations. The underlying principles are the same, but some technical
details are modified owing to the larger number of variables, e.g., one encounters
double-moments or double-transforms.

QCD sum rules work best when there is a reliable way to estimate the dispersion
integral, most often with ground-state single-particle contributions. However, the
method has its limitations. It is not at its best in probing radial excitations since
their dispersion effects are generally rather small. Even having a good approxi-
mation to the dispersion integral is not sufficient to guarantee success. For exam-
ple, the method has trouble in dealing with high-spin (J > 3) mesons because,
even with dispersion integrals which are dominated by ground-state contributions,
power corrections in the operator-product expansion become unmanageable.

Problems

(1) Velocity in potential models
Truly nonrelativistic systems have excitation energies small compared to the
masses of their constituents. However, fitting the observed spectrum of light
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hadrons requires excitation energies comparable to or larger than the con-
stituent masses.

Assuming nonrelativistic kinematics, consider a particle of reduced mass m
moving in a harmonic-oscillator potential of angular frequency ω. Expressing
ω in terms of the energy splitting E1 − E0 between the first-excited state and
the ground state, use the virial theorem to determine the ‘rms’ velocities of the
ground state (v(0)rms) and of the first-excited state (v(1)rms) in terms of E1 − E0.
Compute the magnitude of v(0)rms/c and v(1)rms/c using as inputs (i) mf2 − mρ �
500 MeV for light hadrons and (ii) mψ(2S) − mJ/ψ � 590 MeV for charmed
quarks.

Your results should demonstrate that the kinematics of quarks in light hadrons
is not truly nonrelativistic. However, one tends to overlook this flaw given the
potential model’s overall utility.

(2) Nucleon mass and the Skyrme model
(a) Use the Skyrme ansatz of Eq. (4.15) to derive the expression Eq. (4.16) for

the nucleon energy E[F ].
(b) Using the simple trial function F(r)=π exp(−r/R), scale out the range

factor R to put E[F ] in the form of Eq. (4.11), where a � 30.8F 2
π and

b � 44.7/e2 are determined via numerical integration.
(c) Minimize E[F ] by varying R and compare your result with the value

73Fπ/e determined with a more complex variational function.
(d) Using the numerical value of the nucleon mass, determine e and compare

with the value

1

32e2
· 4

F 2
π

∼ 1

(4πFπ)2

expected from chiral-scaling arguments.
(3) A ‘QCD sum rule’ for the isotropic harmonic oscillator

Consider three-dimensional isotropic harmonic motion with angular frequency
ω of a particle of mass m.
(a) Using ordinary quantum mechanics or more formal path-integral methods,

determine the exact Green’s function G(τ) for propagation from time t = 0
to imaginary time t = − iτ at fixed spatial point x= 0. G(τ) is the analog
of the ‘correlator’ for our quantum mechanical system.

(b) From the representationG(τ)=〈0,−iτ |0, 0〉, use completeness to express
G(τ) in terms of the S-wave radial wavefunctions {Rn(0)} evaluated at
the origin and the energy eigenvalues {En}. What values of n contribute?
This representation is the analog of the dispersion relation expression for a
correlator in which one takes into account an infinity of resonances.
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(c) Plot the negative logarithmic derivative −d[lnG(τ)]/dτ for the range 0 ≤
ωτ ≤ 5 and interpret the large ωτ behavior in terms of your result in
part (b).

(d) Obtain the first three terms in a power series for−d[lnG(τ)]/dτ , expanded
about τ = 0. This is the analog of the series of operator-product ‘power
corrections’ to −d[lnG(τ)]/dτ . Assume, as is the case in QCD, that you
know only a limited number of terms in this series, first two terms and then
four terms. Is there a common range of ωτ for which (i) your truncated
series reasonably approximates the exact behavior, and (ii) the approxima-
tion for keeping just the lowest bound state in part (b) is likewise reason-
able? It is this compromise between competing demands of the resonance
and operator-product approximations which must be satisfied in sucessfully
applying the QCD sum rules to physical systems.
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