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Abstract

A geometric mass concerning supersingular abelian varieties with real multiplications is formulated and
related to an arithmetic mass. We determine the exact geometric mass formula for superspecial abelian
varieties of Hilbert-Blumenthal type. As an application, we compute the number of the irreducible
components of the supersingular locus of some Hilbert-Blumenthal varieties in terms of special values of
the zeta function.

2000 Mathematics subject classification: primary 11F41; secondary: 11E41.
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1. Introduction

For a reductive group G over Q which is RL-anisotropic and an open compact sub-
group K of G(A/), one can define the mass of (G, K). The attached mass is a
weighted class number. It measures the size of K as well as the class number; but
more importantly it behaves well when the group G or the level K varies. The im-
portance of the mass formula is its uniform way to organize arithmetic objects and
the measurement of these arithmetic objects. The computation of the mass formula
has a long history, dating from the pioneers Smith, Minkowski, and Siegel. There are
many important contributions to the Tamagawa numbers due to the works of Weil,
Ono, Langlands, Harder, Lai and Kottwitz, and to the exact formulas due to those of
Shimura, Hashimoto-Ibukiyama, Prasad, Gross, Gan-Yu and many others.

For a small class of groups G, the mass can also arise from special abelian varieties
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in characteristic p. The celebrated Deuring mass formula says

y ^ 1 =P~l

^#AutE 24 '

where E runs over the isomorphism classes of supersingular elliptic curves. The goal
of this paper is to establish the connection between the geometrically defined mass
and the arithmetically defined mass. Then one can either access the existing mass
formulas, or verify a (arithmetic or geometric) mass formula by a different (geometric
or arithmetic) method.

In this paper we show that the mass for certain special polarized abelian varieties
with real multiplications can be an arithmetic mass for some (G, K); see Corollary 2.5.
The features are: these are supersingular points and need not to be superspecial; the
polarizations can be inseparable; and the formulation does not require the existence
or definition of the moduli space. The latter indicates that there is no new difficulty to
establish such connection even when the moduli space either has bad reduction or is
not well-behaved.

We use Shimura's exact mass formula [9] to express the geometric mass in term
of special values of the zeta function up to precise local terms; see equation (3) and
Theorem 2.7. The special case when the totally real number field F is Q, the abelian
varieties are superspecial, and the polarizations are principal, the geometric mass
formula reduces to a result of Ekedahl and van der Geer [3] obtained by the geometric
method. Our formulation can be generalized to basic points in arbitrary PEL-Shimura
variety modulo p (with modification due to the Hasse principle). Doing that will
require much more work and we plan to carry it out in a subsequent paper.

In a part of this paper we determine the remaining local terms in the case of
superspecial abelian varieties of Hilbert-Blumenthal type; see Theorem 3.7. Using this
geometric mass formula, we can determine the number of the irreducible components
of the supersingular locus, following the methods in [6] and [11]. In the last section
we determine this number in some restricted cases, particularly when p is totally
ramified in F; see Theorem 4.4. We note that our approach gives an explanation
of the interesting result of Bachmat and Goren [1] on the supersingular locus of
Hilbert modular surfaces. Finally we note that there is an interesting connection of
supersingular points with the theory of modular forms modulo p\ see [4] and [8].

2. Supersingular points and the mass formula

2.1. Shimura's exact mass formula Let B be a quaternion division algebra over a
totally real number field F, and let a denote the standard involution of B. Let V be a
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left 5-module of rank m, and let <p be a quaternion Hermitian form on V, that is,

<p : V x V-> 5

such that #>(•*, y) = ^(y,*)" and cp(ax,by) = a(p(x,y)ba for all x,y 6 V and
a, b e B. Let C denote the unitary group attached to cp. It is a reductive group over
F and we will regard it as a reductive algebraic group over Q via the Weil restriction
of scalars from F to Q. Assume that G^R) is compact. For any open compact
subgroup K of G*'(A/), the mass of K is defined as follows. Let {cu c2, • •., ch] be
a (complete) set of representatives of the double coset space Gtp(Q.)\G'p(Af)/K, and
let T, := G*"(Q) n c.-ATcf1. Note that each T, is finite by the assumption of GV(R).
The mass of K is defined to be

* 1
mass(/O := ^ ^T-

, = i ffl '•

For the general definition of the mass of K (without the compactness assumption),
we refer to [9, Introduction, page 67]. It follows easily from the definition that for
two open compact subgroups K\ C K2, one has mass(^i) = [K2 : K{] mass(^2)-

Choose a maximal order OB of B. Let L be an CB-lattice in V which is maximal
along the lattices on which cp takes its value in OB- Let Ko be the maximal compact
subgroup of G("(A/) which stabilizes the adelic lattice L <g>z 1. In [9, Introduction,
page 68] Shimura gives an explicit formula

m

(1) massCKo) = \DF f ]\ {D^ 2 [(2* -

where DF is the discriminant of F over Q, d is the degree of F, and {p,}i<,<s are the
primes of OF at which B is ramified.

Note that the maximality of L is a local property. That is, L is maximal if and only
if each Lp is maximal for all primes p of F.

2.2. One can express the exact formula in terms of special values of zeta functions
at negative integers. Let F be a totally real field of degree d. Set

AF(s) := A T ( J / 2 ) ^ ( J ) , A :=

Then one has the functional equation
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It gives

Let s = 2k, one gets

1 ( A C ;

On the other hand, one has

-2k)/2) ( -D t g 9^
(it - 1)! (2k - 1)!

The factor in the middle of (1) can be rewritten as follows.

(2) Df [(2k - l)\(2ny2k]" KF(2k)

Hence we get

(3)
t=i IL -I J /=i t=i

2.3. If F = Q and B is the quaternion algebra which is ramified at {oo, p], then
we have

(_l)m(m+\)/2 i )

(4) mass(/s:o) = ^ - ^ f [ ^ ( 1 " 2k) Y\ W + ( -

If m = 1 and B is ramified only at the primes over p and infinite places, then we
have

(5) mass(*0) = T^-j fr(-l) f ] {(/V(p,) + (-1)}.

2.4. In the following, the ground field k is algebraically closed of characteristic p.
Let x — {Ao, k0, t0) be a supersingular polarized abelian Of-variety over ft of dimen-
sion g = md. Let Gx denote the group scheme over Spec Z whose group of /?-points,
for each commutative ring R, is GX(R) = [</>€ (EndOf (Ao) <8> R)x\<p'(p = 1}, where
the map <j> t-> 0' is the Rosati involution induced by XQ.

Let Ax denote the set of the isomorphism classes of polarized abelian Of-varieties
(A, X, i) of dimension g over k such that
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(i) the Dieudonne module M(A) is isomorphic to A/(A0) as quasi-polarized
Dieudonne OF ® Zp-modules, and

(ii) the Tate module 7](A) is isomorphic to 7](A0) as non-degenerate alternating
OF ® 2;-modules for all / ^ p.

The condition (i) implies that A is supersingular. Let A^ be the subset of A* that
consists of objects (A, A., t) such that

(iii) there exists an element (j> e HomOF(A0, A) <g> Q such that <p*k = Ao.

THEOREM 2.1 ([11, Theorem 10.5]). There is a natural bijection of pointed sets
between A'x and Gx(Q)\Gx(Af)/ GX(I).

PROPOSITION 2.2. Let (A,, A.,-, t,-), / = 1,2 be two supersingular polarized abelian
Op-varieties over k. Then there exists <p e Hom^(Aj , A2) <S) Q such that <p*A.2 = k\.
That is, the condition (iii) of Subsection 2.4 is automatic.

PROOF. Choose an isogeny (p : Ai -> A2. By Noether-Skolem's theorem, <p can
be chosen to be Of-linear. Let A.', := <p*A.2 and *] and *', be the Rosati involutions
induced by A,i and A', on £, := End(A0 ® Q, respectively. By [12, Satz 1.1], there
exists a positive element c e £,* with c = c*1 such that x*'' = c~lx*1 c for all x e E\.
Asx e F,c lies in C := EndOf (Ai) <g> Q.

Let P be the the algebraic variety over Q defined by {X e C;X*lX = c}. It is
a torsor under the algebraic group G\ :— [g G Cx;g*'g — 1} over Q by left action.
Hence it forms an element % in Hl(Q, Gx). By [5,Lemma 2.11], P(R) ^ 0 . Since Gi
is semi-simple and simply-connected, Hl(Qp, Gi) = 0. Therefore £ is locally trivial
everywhere. By the Hasse principle for G{, £ is trivial. Then there exists an element
g e C(Q) such that g*'g = c. Replacing <p by <pg, we have *t = *'p hence that
X\ — qX\ for some q e Q*. Note that q is positive. This follows from the fact
that the polarizations lie in the positive cone of the Neron-Severi group NS(Ai) <g> R.
Therefore q is a norm of C and we can find a <p e HomOF(Ai, A2) ® Q such that
(p*X2 — Ai. This completes the proof. •

COROLLARY 2.3. A^ = Ax.

LEMMA 2.4. Let (A,X, 1) e Ax and [c] be the corresponding double coset. Then
Aut(A, A, 0 ~ r o where Tc := GX(Q) D cGx(l)c~\

PROOF. Let G be the group scheme over Spec Z attached to (A, A, 1) defined as in
Subsection 2.4. That is, for any commutative ring R,

G'(R) = [a 6 (EndOf (A) ® R);a'a = 1},
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where the map or H> a' is the Rosati involution induced by A..
Choose a map 0 e HomOf.(A0, A) ® Q such that (j>*k = k0. Then the element

c 6 Gx (A/) has the property

(*) 4>ci 6 Isom((A0(/), Ac t0), (A(/), A, t)), V/.

Note that a e Aut(A ,'k,i) if and only if a e G (Q) and a( e Aut(A (/), X, i) for all I.
The map <j> gives an isomorphism GX(Q) -> G'(Q) which sends /J to <f>B<f>~x =: a.

From (*), we have a 6 G'(Z) if and only if (<pc)-xa(4>c) e GX(I)- Hence, a 6 G'(l)
if and only if c~x$c e Gx (Z). This completes the proof. •

v-^ 1
COROLLARY 2.5. mass(A,) := > = mass(G^(Z)).

^-^ #Aut(A,A,i)

2.5. The semi-simple algebra Cx := EndOF(A0) ® Q is the centralizer of F in
the simple algebra M^(End°(£)), where £ is a supersingular elliptic curve. We have
Cx ~ Mm(B), where B is a quaternion algebra over the totally real field F ramified at
all real places and unramified at all primes not dividing p. Since the local invariants of
the commutant Cx coincides with those of F<S>oEnd0(E), we have B ~ F®QEnd°(£).
Therefore,

C, ® R ~ Mm(H), C, ® Q , ~M2m(F<g>Q,), l^p

p|p,gp:odd p|p,«p:even

where gp := [Fp : Qp] . The Rosati involution induces the standard involution on
Mm(H) and Mm(Bp), which we will denote by *. It also induces the symplectic
involution on M2m{F <g> Q;) and M^iFp). Therefore, we have

*g = \}, G , ( Q , ) ~ S p 2 m ( F ® Q , ) , l£p

where Gp = {g € Mm(Bp)\g*g = 1}. We will choose such isomorphisms and replace
~ b y = .

LEMMA 2.6. 7/iere exwr a left B-module V, a quaternion Hermitian from cp on V,
and a maximal lattice L in the sense of Shimura (see Subsection 2.1) such that
Gv — Gx over Q and KQ defined in Subsection 2.1 is

l£p p\p,gf:odd p|p. gp:even

where Ov is the ring of integers in Fp and KOp = {g € Mm(OBp); g*g = 1}.

PROOF. Let V = B®g with <p(x_, y) = J2xi9i a n d l e t L = °T-
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2.6. The computation of mass(G^(2)) is to relate with the mass of the standard
one, Ko, and then to apply Shimura's mass formula.

For any two open compact subgroups Ki, K2 of Gx (A/), of Gx (Qp), or of Gx (Q/),
we define a rational number ix.(K2/Kx) with • = / , p or / in three respective cases,
by

= [K\ • Ki n K2Y\K2 : Kx n K2].

We have the following properties

(l) n.(K2/Ki) = {

(ii) If Ki = Y\i Ki.i and K2 = fl ; K2,i, where / runs over all primes of Q, then

(iii) mass(^i) = /x/ (K2/K

From Corollary 2.5, we have

(6) mass(Ax) = nf (K0/Gx(l)) mass(K0).

If / is prime to the degree of the polarization A.o, then Gx (2() is isomorphic to a product
of Sp2m(0v) and ixi(KOti/Gx(Zi)) = 1. Therefore, we have

(7) mass(A,)= ]J Hi(K0J/Gx(lt))
[l=p, or/ldegXo J

THEOREM 2.7. Let notation be as above. Ifm = 1 or degko is a power ofp, thenwe
have the simplified mass formula mass(A^) = fj,p(Ko p /KM 0 ) mass(ATo), where KM0

is the group of automorphisms of the quasi-polarized Dieudonne OF ® Zp -module MQ
attached to x.

As a consequence, the following corollary is a generalization of the Deuring mass
formula. Recently, Ekedahl and van der Geer [3] compute the intersections of cy-
cle classes on the moduli space srfr They obtained this as a consequence of the
Hirzebruch-Mumford proportionality principle.

COROLLARY 2.8. Let A be the set of the isomorphism classes of principally polar-
ized superspecial abelian varieties over k of dimension g. Then

-2*) M l {(?* + (-]
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PROOF. Take x = (Ao, Xo) to be a principally polarized superspecial abelian variety
over it of dimension g. Note that the Dieudonne module Mo of x is isomorphic to the
product of g copies of separably quasi-polarized rank two supersingular Dieudonne
modules. It follows that A = A* and the group KMo of the automorphisms of Mo

is KMo = [a e Mg(OBp);a*a = 1}, where Bp is the quaternion division algebra
over Q p . Therefore, we obtain mass(A) = mass(AT0) and finish the proof by (4). •

3. Superspecial points of HB type and the mass formula

We keep the notations in the previous section, except that we denote the totally
real field by F and reserve the symbol F for the Frobenius operator on a Dieudonne
module. Let p be a prime of OF over p, and let ep and / p denote the ramification degree
and residue degree of p, respectively. In the rest of this paper, we will only treat the
Hilbert-Blumenthal cases, namely m = 1 and d = g. Let 6 := OF ® 2P = ©P|P^P.

3.1. We first recall the classification of superspecial quasi-polarized Dieudonne
^"-modules [10]. Let x = (Ao, kQ, t0) be a superspecial polarized abelian Op-variety
over k and let Mo be its covariant Dieudonne module. We have Mo = ®P\PMV and
will describe Mp for each p.

Let e be the Lie type of Mp and a be the a-type of Mp. We recall their definitions
in [10, Section 1] below:

e(Mp) = ({e{, 4 } ) , W p Z <=> Lie(Mp) ~

a(Mp) = ({a[,a'2})i€l/fpl <=> MP/(F, V)MP ~

where n is a uniformizer of Op and the right-hand sides are isomorphisms of Op <g>Zp

k — ®jez/fezk[7t]/(7Te'')-modu\es.
As A/p is superspecial, e is equal to a and it has the form

( { e u e 2 } , {ep - e u ep - e2], [ e u e2], . . . )

for some integers eu e2 with 0 < e\ < e2 < ep\ see [10, Section 2]. When/ P is odd,
it satisfies an additional condition ex + e2 = ep. We say Mp is of type (e\, e2) for
convenience.

Let @~l = (n~d) be the inverse of the different of 6P over 2P. There is a
unique W <g> ^-bilinear pairing (•, •) : Mp x Mp ->• W ® t?p such that (x, y) =
T*w®et/w{n-d(x, v)). We have Op ® W = ©,eZ//pz W by the action of &£ and this
also gives the decomposition Mp = ©,€
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LEMMA 3.1. (1) Iffpis even, then there is a W-basis X,, Yt for M'p for each
i e l/fpl such that

(0 <X,,K,) = P ifi

yn»+ep-e1-e2 if { is even<

for all i e l/fpl and some n el.
/•••» J7v ( -^"^+1 if Us odd; \vne2Xi+l if Us odd;
(U) t A j = i _ t li — <

[— ne* eiYi+\ if i is even, yvn'* e'Xi+i if i is even,
where vn"* = p.
(2) Iffp is odd, then there is a W-basis Xt, Yj for Mpfor each i e 1/fp1 such

that

(i) (X,-, Yt) = n" for some n el.
(ii) FXi = -ne' Yi+l,FYi = vne2 Yi+l for i e 2/fpl, where vne> = p.

(3) In particular, if the pairing (•, •) is perfect and Mp satisfies the Rapoport con-
dition (in this case, Mp is of type (0, ep)), then there exists a W'-basis [Xh Yt) ofM'p
for each i 6 l/fpl such that

(i) Yie(VM)'and(XhYi) = l,
(ii) FX, = -Yi+u FYi=pXl+l,

for all i e l/fpl.

PROOF. See [10, Lemmas 4.5-4.6]. •

Let F'p be the unique quadratic unramified extension of Fp and x be the generator
ofGal(F'p/Fp).

LEMMA 3.2. Let KMf be the group of automorphisms of the quasi-polarized Dieu-

donne Op-module Mp.

(1) If the residue degree fp is even, then

(2) If the residue degree fp is odd, then

PROOF. Let 0 e KMp. Choose a W'-basis [Xt, Y(] for M'p as in Lemma 3.1. Write

U
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It follows from (0(X,-), <j>{Yi)) = (Xh Yt) that A, e SL2(W
(). Note that we have

F2(Xi) = -pXi+2 and F2(Y() = -p Yi+2 for all i. The condition <pF2 = F2<f> gives
A,+2 = A[2) for all i e 1/fpI, where we write A(n) for A"\

(1) If/p is even, then {A/} are determined by Ao and Alt and Ao, Ai e SL2(OFP) .

We have

(F(X0)\ _ / % \ _ / 0 - T T ^

The condition F(j> = <j)F gives 7]Ai = A^J\ and / o ^ = 'Wo- These give the
relations

We see that Ax is determined by Ao and c0 = 0 mod ne2~e>.
(2) If/p is odd, then {A,} are determined by Ao and Ao e SL2(OF'P). We have

(F(X0)\ _ (Xl\ / 0 -

Applying F(p = 4>F, we have JAX = A(
o
nJ. As Ax = A^p+1>, this equation gives

As —v is a norm of some element in O^, (over 0% ), we choose an isomorphism

This completes the proof. D

3.2. It remains to compute the local term ixp{KOp/KMt). We write q for N(p), the
cardinality of the residue field &(p).

When/p is even, KMf = T0(7ie2'ei) is an open compact subgroup of SL2(FP). If
e, = e2, then ixp(K0,p/ KMf) — 1; if e2 > e,, then

f p p Jn*1-'1) = qe2~ei'l(q + 1).

Consider now the case where / p is odd. Put
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If n is odd, then K(n) is an open compact subgroup of the group B*l of reduced
norm one and K(l) = KOp. If n is even, then K(n) is an open compact subgroup of
SL2(FP).

For e — 0 or 1, we define a ring A( as follows. Let B( be the F'p-algebra generated
by 1 , | with relations £2 = n( and %a = ar£ for all a € F'p, and let Ae be the
Off -lattice generated by 1 and £. Note that Af is endowed with the usual reduced
norm and trace. For d > 1, let Afd := [a + ndb%] c A( be a subring. We have
(Af),

x = K(e) and (Af J)* ~ AT(2rf + e), where ()i denotes the set of elements of
reduced norm one. It is clear that

hence that

(8) #(1 + nkAtYJ(\ + nk+lA()* = q\

If e = 1, then {Ae/n)^ ~ (Orp/7t)* x {Orv/n) and its has g2(^ + 1) elements.
When € = 0, (AJn)* ~{a,be OrJn;N{a) - N(b) = 1}. Write a = N(a) and
P = N(b). There are q + 1 solutions for (a, p) = (1, 0) or (0, -1) and (<? + I)2

solutions for others. This group has (q + 1)2 + (q — 2)(q + I)2 = q(q2 — 1) elements.
Namely, we have

[ - l ) e = 0 ,

and hence that

On the other hand, (A(id/n
dA()* ~ (Orp/n

d)* and it has qd~l(q + 1) elements. We
conclude

LEMMA 3.3. Notation being as above, then

where q is N(p), the cardinality of the residue field k(p).

Finally we need to compute fj,p(K0p/K(0)) when ep is even.

LEMMA 3.4. Notation being as above, let Op^ = OFP [\/C] for some non-square
residue c in O£ . Then for e = 0,

A f ~ " e M 2 ( f t p ) ; a s i mod 2, p = y mod 2 .
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In particular, if the residue characteristic p is not 2, then K(0) ~ S L 2 ( 0 F P ) and

HP(KO,P/K(O)) = 1.

PROOF. The 0 F P -order Ae is generated by x, £ with relations x2 = c, £2 = 1, and

%x = -x%. Choose an isomorphism A <g>Fp ~ M 2 (F P ) with x i-»- ( ° 0 ) , £ i-> ( 0 _ i ) .

Then the image of A f in M 2 (F P ) is

K
cand the assertion follows. •

LEMMA 3.5. Iffp is odd, ep is even, and p — 2, then

PROOF. It is clear that (A f/2)* ~ (OK P /2) 1
X , hence that this group has qe'~^{q + \)

elements. It follows from the equality #SL2(OFl>/2) = q3(e'-l)(q + l)(q2 - q) that
q2e>-1(q-l). D

PROPOSITION 3.6. Notation is as above.

(1) lffp is even, then

I I = e •

qe2~e'-l(q+ 1) ex < e2.
(2) / / / p is odd, then

f2~ei~l ep is odd;

?p ep is even and e\ = e2;

qe2~e'~l(q — l ) o p ep is even and e\ < e2,

where

Op = I
I q ' (q — 1) p = 2.

THEOREM 3.7. Let x = (Ao, A.o, to) be a superspecial polarized abelian Of-variety
and let Ax be the set defined in Subsection 2.4. The attached Dieudonne module Mo

decomposes as (Bp\pMp and suppose that each Mp has type (eip , e2,p) (see Subsec-
tion 3.1). Then

p|p
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where

1 / p is even, eUp = e 2 p ;

qep" e ' p {qp + 1) / p is even, e\p < e2,p;

<7p2p l p (qp — 1) / p w odd, ep is odd;

1 / p is odd, ep is even, ehp = e 2 p ;

Qp (<7P - 1) / p « odd, ep is even, e l p < e 2 p .

and

(qp — 1) / p 15 odd, ep is even, and p = 2;

otherwise.

3.3. We say (Ao, k0, to) is minimal if it reaches the minimal mass among all the
types of superspecial points. In this case the mass formula above is simplified as

Pip, «P:odd pip

where op is as above.

4. Supersingular locus

4.1. Let p be a fixed prime number. Let J$W denote the moduli stack over
Specif , of polarized abelian Op-varieties (A, A, t) of dimension g = [F : Q] with
the polarization k of prime-to-/? degree. It is a separated Deligne-Mumford algebraic
stack over Spec 1(P) locally of finite type. In [2], Deligne and Pappas showed that
the algebraic stack ^ ^ is flat and a locally complete intersection over Spec Z^j of
relative dimension g, and that the closed fiber ^#(A>) <g) Fp is geometrically normal and
has singularities of codimension at least two. It follows from Deligne-Pappas's results
and the compactification of Rapoport [7] that the irreducible components of geometric
special fiber ^#(/>) ® fp are in bijection correspondence with those of geometric
generic fiber Jt^ <8> Q. Those are parameterized by the isomorphism classes of non-
degenerate skew-symmetric Op-modules Hi(A(C), T) for all (A, A., t) €

4.2. Let n be an integer such that n > 3 and (n, p) = 1 and we choose a
primitive n-th root of unity £„ in Q c C. For any geometric point Specfc ->
SpecZ(p)[£n], the choice of £„ determines a (1 + nZ(/<))x-orbit of isomorphisms a(k) :
jU>) 2+ Yli^p H-i°°(k). Let 5 be a connected Z^j^J-scheme and (A, X, i) be polarized
abelian Op-scheme over 5. A (full) symplectic level-n structure on (A, k, i) w.r.t. £„
we understand is a n\(S, s)-invariant ^n-orbit of OF ® Z^'-linear isomorphisms
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^ Y\i*P Ti(As) for some non-degenerate skew-symmetric 0F-module
(V?, IA. 0 s u c n that the pull-back of the Weil pairing is a(k(s)) o \jr, where A"n is the
kernel of G(Zlp)) -> G(I/nl), G is the automorphism group scheme Auto^V*, i/0
over Spec 1 and j is a geometric point of 5. Note that (Vz <g> Z[ l /p ] , i//, i) is uniquely
determined by (A, A., t) by the strong approximation. When deg A. is prime to n, it is
the same to an Op/w 0F-isomorphism Vi/nVi P> A[n](S) such that the pull-back of
the Weil pairing is a o \j/.

4.3. Let Jt^ be the moduli stack over Spec l(p)[^n] of objects in Jt^ together
with a symplectic level-n structure w.r.t. £„, and let jftn be an irreducible component
oiotf^. \iMn is the one that classifies the principally polarized objects in Jt^\ then
it is the connected (and irreducible) component of the moduli space M%* denoted in
[2, Section 2] by the choice of the element £„ in Isom(/xn, 1/ri).

Let (Vz, \(r, i) be the non-degenerate skew-symmetric Op-module corresponding
to J(n. Let G denote the automorphism group scheme Aut^CVz, V0 over 1. We
have ^#n(C) ~ r (n) \G(R)/5O 2 (R)*, where T(/i) is the kernel of the map G(l) -*•

PROPOSITION 4.1. Any ^ n is isomorphic to ^?{L, L+]nfor some (L, L+), where
(L, L+) is a projective rank one Of-module together with a notion of positivity,
and JM\L, L+] is the Deligne-Pappas space corresponding to the class (L, L+).
Conversely, any Deligne-Pappas space ^#[L, L+]n is isomorphic to some ^fn.

PROOF. Recall that M\L, L+] classifies the objects (A, i, i), where (A, t) is an
abelian OF-variety, and i : (L, L+) -> ( ^ ( A ) , ^ ( A ) + ) such that the L ® A = A'
(the DP condition). By the weak approximation, there is k0 6 L+ such that
(#L/Ofk0, p) = 1. The map (A,/, t, rj) i-> (A, i(A0), i, J?) gives a morphism
^?[L, L+]n —>• ^ ^ \ which factors through an irreducible component jftn by the
irreducibility of M\L, L+]n. It follows from Aut(A, i, i, r)) = Aut(A, i'(X0), t, rj)
that it is isomorphic.

Conversely, let A be the universal family over J(n. By [10, Theorem 2.12],
the polarization sheaf ^ ( A ) is constant and A satisfies the DP condition. Take
(L, L+) = {&(A), &(A)+) and this finishes the proof. •

4.4. In the remaining part of this paper we treat the supersingular locus 5? of
Mn «g) Fp = : ^Knp in the restricted case that all residue degrees fp are one. The
method of computing the number of irreducible components and describing each
component has been documented in [6]. Based on loc. cit. and earlier works, the
work [11] indicates that one needs to find out all possible types of isogenies such that
models constructed have the right dimension. In this restricted case, on one hand,
we know the right dimension as the Grothendieck conjecture has been proved [10,
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Theorem 7.3]. On the other hand, the isogeny type of the generic supersingular point
is simple, just one step. Hence the recipe in [11] gives the direct connection to a class
number. Combining the Shimura mass formula and the computation of local factors
in the previous section, we express the number i r rd (^ ) of irreducible components
of 5? in terms of special values of the zeta function.

We assume fp = 1 for all p|p from Proposition 4.2 to Theorem 4.4.

PROPOSITION 4.2. The points that lie in the Rapoport locus are dense in each
Newton stratum

PROOF. We may assume that there is one prime over p as the problem is local. The
Lie stratum ^Vt of type [i, g — i] has dimension g — 2/ and each generic point has
slope sequence s(i) [10, Section 6], where

s(i) = {i/g, • • •, i/g, (g - i)/g, ..-,(g- i)/g)

(with multiplicity g). Let J/^ be the Newton stratum with slope sequence s(j)
in J/i. We know that each generic point of J/^ has a-type (i, [/"]). By [10,
Lemma 6.19], the codimension of ^Vi

(J) in jVt is not less than \j~\ — i, hence that
g-i-m. U

4.5. Let (A, A., i, r)) be a point in y(k) which satisfies the Rapoport condition (see
[10, Section 1]). Let M be the Dieudonne module of A and write M = ®v]pMv. By
[10, Proposition 4.4], we can choose a basis X, Y of Mp such that

FX-aX+Y, FY = ne'X.

As A is supersingular, we have ord^(a) > ep/2 [10, Section 6]. We compute the
Dieudonne modules appearing in the canonical isogenies attached to M (see [11,
Section 8]):
Case 1: ep is even, write ev = 2c.

Mo := Mp = W[n](X, Y),

(13) M, := (F, V)M0 = W[n]{Y, ncX),

M2 := (F, V)MX = W[n](7tcY, TT2CX).

One sees that M\/M2 — k[n]/nc © k[n]/nc, so M} is superspecial of type (c, c).
Case 2: ep is odd, write ep — 2c + 1.

Mo := Mp = W[ir](X, Y),

(14) M, := (F, V)M0 = W[n](Y, nc+lX),

M2 := (F, V)M, = W[7r]{nc+lY,7i2c+1X).

One sees that Mi/M2 — k[n]/7Tc®k[n]/nc+1, so M] is superspecial of type (c, c+1) .
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4.6. Let x = (Ao, A.o, to, %) be a polarized abelian Op-variety over it with a
symplectic level-n structure for (Vz, \j/, i) such that each factor Mp of the Dieudonne
module Mo of Ao is isomorphic to Mi above (that is, as described in (13) if ep is
even and in (14) if ep is odd). Let Gx be the automorphism group scheme of x (see
Subsection 2.4) and Ax be the set of objects defined as in Subsection 2.4 together with
a symplectic level-n structure.

It is clear that an element g e GX(JL) preserves rj0 if and only if g = 1 mod n. By
Theorem 2.1, we have

#A, = # G J t ( Q ) \ G x ( A / ) / * ( 1 = [G,(Z) : Kn] m a s s e d ) ) ,

where #„ is the kernel of the map Gx(l) -> Gx(l/nl). We can choose an isomor-
phism Ti(A0) ~ Vz <g> 2; compatible with the additional structure for each / ^ p, and
obtain an isomorphism Gx(l

(p)) ~ G(Z(P)). It follows that

[G,(Z) : *„] = [GX(Z^) : ATn
p] = [G(Z*>) : ffr)p] = [G(Z) : T(n)],

where T(n) is the closure of T(n) in G(Z). As the corresponding Dieudonne module
is minimal, we conclude that

(15) #A, = [G(Z) :r(n)]mass(Gx(Z))

where the formula mass(Gx(2)) is given in (12).

4.7. Let ? e A,, we consider the functor X? which classifies the isomorphism
classes of polarized 0F-linear isogenies <p : (A\, ku h, »?i) -+ (A0, A.o, io, rjo) over
^-schemes S such that

(i) ( A | , ^ , , i i , i ) i ) ~ ^ x S .
(ii) ker £> = ©p (ker <p)p is an a-group and the a-sheaf Lie((ker (p)'p) is a rank one

locally free Os ® k[n]/nu<'m-module.

Let a(^) denote the a-group of £. The isogeny <p gives a finite flat subgroup scheme
kerip of a ( | ) satisfying (ii). Conversely, given such finite flat subgroup scheme H,
one has an Op-linear isogeny <p : A] -»• Ai/ ' / / = : Ao. The condition (ii) implies that
H is isotropic for the Weil pairing of k\, hence the polarization descends to Ao. Since
the isogeny has a p -power degree, the symplectic level-n structure of Ax identifies
with that of Ao.

Let V& is the a-sheaf of the p-component of a(£) . One has that

° ~ ( = 2c.
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Then X? = Y\p\P Xp> where Xp classifies the quotient bundles J? of Vo <g> S such
that & is a rank one locally free Os <8> k[jr]/7r^e'm-module. The freeness is an open
condition, therefore Xp is representable by an quasi-projective scheme over k.

LEMMA 4.3. Xp is a smooth irreducible quasi-projective scheme of dimension

PROOF. Using duality, we may identify Xp with the space of subspaces W of Vo
such that W ~ k[n]/n[e<'/2\ The algebraic group H := Autt[jr]( Vo) acts naturally on
the space Xp. If ep = 2c, then H = Gls2(k[n]/nc), viewed as an algebraic group
over k. If ep =2c + 1, then

H = I \nnc d)'' M ] / ) . c ' d e k\*V*'*X' a' d : invertible

with the natural multiplication. Namely, we lift g\, g2 with entries in k[7t]/ne",
multiply them and project to quotient rings. It is clear that the group H is connected
and the action is transitive. Then the space Xp is a homogeneous space of H, hence
it is a smooth quasi-projective variety.

As Xp is smooth, the dimension can be computed by tangent spaces. Let Wo 6
Xp(/t), then the tangent space at Wo is given by Ylomk[n](Wo, V0/WQ), which has
dimension c. •

Let pr denote the projection that sends the objects in X$ to their targets. The
morphism pr : X? —*• J%n,p factors through the supersingular locus and we have

pr : \ \ X y

Let yR be the intersection of 5? with the Rapoport locus. For any x e yR(k),
there is a unique £ € Ax and y € X^(jt) such that pr(y) = x. By Proposition 4.2, the
morphism pr is dominant. It follows from the irreducibility of X| that #AX = i r rd (^ ) .
By (12) and (15), we have

THEOREM 4.4. Assume that fp = 1 for all primes p of Of over p. Then the number
of the irreducible components of the supersingular locus 5? of \Mn,p is

(16) [G(Z):r(n)]|^-j^F(-l) \ \ ( ? P -
•- - I p|p, gp.odd p|p

where qp = N (p) and

o _ \qp
f~\qp - 1) ep is even and p = 2;

I 1 otherwise.
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For ep = 1 and/p small, the description of the supersingular locus is given in [11].
The following theorem is a reformulation of the results in loc. cit. by the geometric
mass formula in Section 3.

THEOREM 4.5. Assume that ep = \andfp < 4 for all primes p ofOr over p.

(1) The number i r r d ^ ) of the irreducible components of the supersingular locus 5?
is

PlP

where qp = N(p), op is given in (17), and

n
PlP. gp-odd pip

c(p) =
2 / p = 2;

3 / p =3;

6 /p=4.

(2) Each irreducible component of'S? is isomorphic to I~[ %p> where

Xp ~

{point}

P1

P2 or

/ p = 1;

/ P = 2, 3;

/p=4.

With Theorems 4.4—4.5, it is natural to expect the following.

CONJECTURE 4.6. In the general case irrd(,y) has the form (18), where c(p) only
depends on ep andfp.

REMARK. (1) Specializing Theorems 4.4 and 4.5 to the case when g = 2 and
p ^ 2, one recovers the main results of Bachmat and Goren in [1]. All ingredients of
the method in loc. cit. are tied to the assumption that g = 2: Zagier's explicit formula
for quadratic zeta value t;F(-l), the explicit description of OF as l[(d + */d)/2\, the
fact that supersingular locus is codimension one, and the work of Katsura-Oort on
moduli space of abelian surfaces. For details, see loc. cit. and references therein.
Therefore, a different approach for the generalization of their theorem is required.
(2) It is not hard to see from the methods of the work [11] that irrd(^) is a sum of

some class numbers. Indeed, we consider the type of canonical isogenies for generic
points. The number of generic points with same type is the number of superspecial
points appearing in the canonical isogenies, which is a class number [11]. Therefore,
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is a sum of some class numbers. The point of Conjecture 4.6 says that the
superspecial points appearing in such canonical isogenies are minimal (12). If it is
true, then the number c(p) should have an interesting group-theoretic meaning. A
further computation (for/p < 8) suggests that

c(p) =

when ep = 1. This result and the analysis of the canonical isogenies will be published
elsewhere.
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