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Tensor Products and Transferability
of Semilattices
G. Grätzer and F. Wehrung

Abstract. In general, the tensor product, A ⊗ B, of the lattices A and B with zero is not a lattice (it is only a
join-semilattice with zero). If A ⊗ B is a capped tensor product, then A ⊗ B is a lattice (the converse is not
known). In this paper, we investigate lattices A with zero enjoying the property that A⊗ B is a capped tensor
product, for every lattice B with zero; we shall call such lattices amenable.

The first author introduced in 1966 the concept of a sharply transferable lattice. In 1972, H. Gaskill defined,
similarly, sharply transferable semilattices, and characterized them by a very effective condition (T).

We prove that a finite lattice A is amenable iff it is sharply transferable as a join-semilattice.
For a general lattice A with zero, we obtain the result: A is amenable iff A is locally finite and every finite

sublattice of A is transferable as a join-semilattice.
This yields, for example, that a finite lattice A is amenable iff A ⊗ F(3) is a lattice iff A satisfies (T), with

respect to join. In particular, M3 ⊗ F(3) is not a lattice. This solves a problem raised by R. W. Quackenbush
in 1985 whether the tensor product of lattices with zero is always a lattice.

1 Introduction

The tensor product, A ⊗ B, of the {∨, 0}-semilattices A and B is defined in a very clas-
sical fashion, as a free (universal) object with respect to a natural notion of bimorphism,
see G. Fraser [3], G. Grätzer, H. Lakser, and R. W. Quackenbush [9], and G. Grätzer and
F. Wehrung [10]. Unfortunately, the tensor product of two lattices with zero is, in general,
not a lattice.

Let A and B be lattices with zero. If the tensor product, A ⊗ B, satisfies the very natural
condition of being capped, introduced in [10], then A⊗B is always a lattice. Capped tensor
products have many interesting properties. The most important one is the main result of
[10]: If A ⊗ B is a capped tensor product, then Conc(A ⊗ B) and Conc A ⊗ Conc B are
isomorphic. For finite lattices this was proved in G. Grätzer, H. Lakser, and R. W. Quack-
enbush [9].

In this paper, we study the connections between A ⊗ B being a lattice and A ⊗ B being
capped, for lattices A and B with zero. We do not have the answer to the most obvious
question whether these two conditions are equivalent (see Problem 1 in Section 9). We
prove, however, that these two conditions are equivalent provided that A is finite (or locally
finite), see Theorem 3.

Since we cannot handle the general problem, when is A ⊗ B a lattice, we universally
quantify one of the variables: Let us call the lattice A with zero amenable, if A ⊗ B is a
capped tensor product, for any lattice B with zero. Then from Theorem 3 we obtain the easy
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corollary that for a (locally) finite lattice A with zero, A is amenable iff A ⊗ B is a lattice,
for any lattice B with zero. This leads to the central problem of this paper: characterize
amenable lattices.

The technique to handle this problem comes from an unexpected source.
The first author introduced in 1966 the concept of sharp transferability for lattices (see

[7]). A finite lattice A is sharply transferable, if whenever A has an embedding ϕ into Id L,
the ideal lattice of a lattice L, then A has an embedding ψ into L satisfying ψ(x) ∈ ϕ(y)
iff x ≤ y. In 1972, H. Gaskill [5] characterized sharply transferable semilattices by a very
effective condition (T). For a lattice A, as usual, we shall denote by (T∨) the condition (T)
for 〈A;∨〉. Finite lattices satisfying (T∨) are well-understood. In particular, they are exactly
the finite, lower bounded homomorphic images of finitely generated free lattices, see the
survey by R. Freese, J. Ježek, and J. B. Nation [4], from which we shall borrow a number of
results.

We characterize finite amenable lattices as follows:
For a finite lattice A, the following conditions are equivalent:

(i) A is amenable.
(ii) A⊗ B is a lattice, for every lattice B with zero.
(iii) A as a join-semilattice is sharply transferable.
(iv) A⊗ F(3) is a lattice.
(v) A satisfies (T∨).

Our main result (see Corollary 5.4 and Theorem 5) characterizes amenability for general
lattices:

For a lattice A with zero, the following conditions are equivalent:

(i) A is amenable.
(ii) A is locally finite and A⊗ B is a lattice, for every lattice B with zero.
(iii) A is locally finite and A⊗ F(3) is a lattice.
(iv) A is locally finite and every finite sublattice of A satisfies (T∨).

The finite case trivially follows from the general result.
Since M3 fails (T∨), it follows that M3 ⊗ F(3) is not a lattice. This answers a problem

raised by R. W. Quackenbush in 1985 whether the tensor product of lattices with zero is
always a lattice. By a different approach, this was also answered in our paper [11], where
we produce two different examples of lattices A and B with zero such that A ⊗ B is not a
lattice: in the first example, A and B are planar; in the second, A and B are modular.

Sections 2 and 3 are introductory. In Section 2, we review the basic facts about tensor
products with special emphasis on the representation by some hereditary subsets of A × B
and the representation by antitone maps, as in J. Anderson and N. Kimura [1]. Section 3
introduces transferability and the technical tools we inherit from transferability: minimal
pairs, the condition (T), and the adjustment sequence of a map. Section 3 introduces lower
bounded homomorphisms as well, together with some required technical tools, such as the
lower limit table.

In Section 4, we recall the definition of a capped tensor product, and we establish a
number of technical results; applying a theorem of [10], we prove, for instance, that if
A⊗B is a capped tensor product, then so is (A/α)⊗ (B/β), where α is a lattice congruence
of A and β is a lattice congruence of B.
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Amenable lattices are introduced in Section 5, where we characterize amenable locally
finite lattices. In Section 6, we prepare the ground for studying capped tensor products
via adjustment sequences of maps. Not all maps can be considered, but only those that
we call step functions, which are “measurable” finite joins of characteristic functions. In
Section 7, we utilize the concepts introduced in Sections 3 and 6 to characterize capped
tensor products A⊗ B, with A and B arbitrary lattices with zero.

In Section 8, we characterize amenable lattices, as locally finite lattices with zero in which
every finite sublattice satisfies (T∨). Section 9 concludes the paper discussing some related
results and stating some open problems.

2 Tensor Products

2.1 The Basic Concepts

We shall adopt the notation and terminology of our paper [10]. In particular, for a {∨, 0}-
semilattice A, we use the notation A− = A− {0}. Note that A− is a subsemilattice of A.

Let A and B be {∨, 0}-semilattices. We denote by A ⊗ B the tensor product of A and B,
defined as the free {∨, 0}-semilattice generated by the set A− × B− subject to the relations
〈a, b0〉∨〈a, b1〉 = 〈a, b0∨b1〉, for a ∈ A−, b0, b1 ∈ B−; and symmetrically, 〈a0, b〉∨〈a1, b〉 =
〈a0 ∨ a1, b〉, for a0, a1 ∈ A−, b ∈ B−.

It follows directly from the definition that the sum distributes over tensor product; since
the sum for {∨, 0}-semilattices is the direct product, we get the formula:

(A× B)⊗C ∼= (A⊗C)× (B⊗C).(2.1)

The following two statements on tensor products are taken from Corollary 3.7(iv) and
Corollary 3.9 of [10]. For a lattice L, we denote by Con L the congruence lattice of L.

Lemma 2.1

(i) Let A and B be lattices with zero, let α ∈ Con A and β ∈ Con B. If A ⊗ B is a lattice,
then (A/α)⊗ (B/β) is also a lattice.

(ii) Let A, A ′, B, B ′ be lattices with zero such that A is a sublattice of A ′ and B is a sublattice
of B ′. If A ′ ⊗ B ′ is a lattice, then A⊗ B is a lattice.

2.2 The Set Representation

In [10], we used the following representation of the tensor product.
First, we introduce the notation:

⊥A,B = (A× {0}) ∪ ({0} × B).

Second, we introduce a partial binary operation on A× B: let 〈a0, b0〉, 〈a1, b1〉 ∈ A× B;
the lateral join of 〈a0, b0〉 and 〈a1, b1〉 is defined if a0 = a1 or b0 = b1, in which case, it is
the join, 〈a0 ∨ a1, b0 ∨ b1〉.

Third, we define bi-ideals: a nonempty subset I of A × B is a bi-ideal of A × B, if it
satisfies the following conditions:
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(i) I is hereditary;
(ii) I contains⊥A,B;
(iii) I is closed under lateral joins.

The extended tensor product of A and B, denoted by A ⊗̄B, is the lattice of all bi-ideals of
A× B.

It is easy to see that A ⊗̄B is an algebraic lattice. For a ∈ A and b ∈ B, we define
a⊗ b ∈ A ⊗̄B by

a⊗ b = ⊥A,B ∪ {〈x, y〉 ∈ A× B | 〈x, y〉 ≤ 〈a, b〉}

and call a ⊗ b a pure tensor. A pure tensor is a principal (that is, one-generated) bi-ideal.
Using this notation, the isomorphism (2.1) can be established by the map

〈a, b〉 ⊗ c 7→ 〈a⊗ c, b⊗ c〉.(2.2)

Now we can state the representation:
The tensor product A ⊗ B can be represented as the {∨, 0}-subsemilattice of compact ele-

ments of A ⊗̄B.
For every positive integer m, denote by F(m) the free lattice on m generators x0, . . . ,

xm−1. One can evaluate any element p of F(m) at any m-tuple of elements of any lattice,
thus giving the notation p(a0, . . . , am−1). Let pd be the dual of p.

The following purely arithmetic formulas are due to G. A. Fraser [3]. They are easiest to
prove using the above representation of tensor products.

Lemma 2.2 Let A and B be {∨, 0}-semilattices. Let a0, a1 ∈ A, and b0, b1 ∈ B be such that
a0 ∧ a1 and b0 ∧ b1 both exist.

(i) The intersection (meet) of two pure tensors is a pure tensor, in fact,

(a0 ⊗ b0) ∩ (a1 ⊗ b1) = (a0 ∧ a1)⊗ (b0 ∧ b1).

(ii) The join of two pure tensors is the union of four pure tensors, in fact,

(a0 ⊗ b0) ∨ (a1 ⊗ b1)

= (a0 ⊗ b0) ∪ (a1 ⊗ b1) ∪
(
(a0 ∨ a1)⊗ (b0 ∧ b1)

)
∪
(
(a0 ∧ a1)⊗ (b0 ∨ b1)

)
.

(iii) Let A and B be lattices with zero, let n be a positive integer, let a0, . . . , an−1 ∈ A, and let
b0, . . . , bn−1 ∈ B. Then∨

(ai ⊗ bi | i < n) =
⋃(

p(a0, . . . , an−1)⊗ pd(b0, . . . , bn−1) | p ∈ F(n)
)
.

(iv) Let A and B be lattices with zero. Then∨
(ai ⊗ bi | i < n) ∧

∨
(c j ⊗ d j | j < m)

=
⋃(

p(a0, . . . , an−1) ∧ q(c0, . . . , cm−1)
)
⊗
(

pd(b0, . . . , bn−1) ∧ qd(d0, . . . , dm−1)
)
,

where pd and qd are the duals of p and q, respectively, and where the union is for all
p ∈ F(n) and q ∈ F(m).
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Note that in (iii) (and similarly, in (iv)) the right side is an infinite union, for n > 2.
For any subset X of a lattice L, let X∧ (resp., X∨) denote the meet-subsemilattice (resp.,

join-subsemilattice) of L generated by X. We also write X∧∨ = (X∧)∨, X∨∧ = (X∨)∧, and
so on. We define inductively an increasing sequence of finite join-subsemilattices Sn(m) of
F(m) as follows:

(i) S0(m) = {x0, . . . , xm−1}∧∨.
(ii) Sn+1(m) = Sn(m)∧∨.

In particular, all the Sn(m) are finite and their union equals F(m).
The following lemma readily follows from Lemma 2.2(iii).

Lemma 2.3 Let A and B be lattices with zero, let m be a positive integer, let a0, . . . , am−1 ∈
A, and let b0, . . . , bm−1 ∈ B. Then the following conditions are equivalent:

(i) The finite join
∨

(ai ⊗ bi | i < m) is a finite union of pure tensors.
(ii) There exists a positive integer n such that the following finite union:⋃(

p(a0, . . . , am−1)⊗ pd(b0, . . . , bm−1) | p ∈ Sn(m)
)

belongs to A⊗ B.

2.3 Representation by Homomorphisms

Let A and B be {∨, 0}-semilattices. Note that Id B, the set of all ideals of 〈B;∨〉, is a semilat-
tice under intersection. So we can consider the set of all semilattice homomorphisms from
the semilattice 〈A−;∨〉 into the semilattice 〈Id B;∩〉,

A~⊗B = Hom(〈A−;∨〉, 〈Id B;∩〉),

ordered componentwise, that is, f ≤ g iff f (a) ≤ g(a) (that is, f (a) ⊆ g(a)), for all
a ∈ A−. The arrow indicates which way the homomorphisms go. Note that the elements
of A~⊗B are antitone functions from A− to Id B; indeed, if a ≤ b, then a ∨ b = b and so
f (a) ∩ f (b) = f (b), that is, f (a) ⊇ f (b).

With any element ϕ of A~⊗B, we associate the subset ε(ϕ) of A× B:

ε(ϕ) = {〈x, y〉 ∈ A× B | y ∈ ϕ(x)} ∪ ⊥A,B.

Proposition 2.4 The map ε is an isomorphism between A~⊗B and A ⊗̄B. The inverse map,
ε−1, sends H ∈ A ⊗̄B to ε−1(H) : A− → Id B, defined by

ε−1(H)(a) = {x ∈ B | 〈a, x〉 ∈ H}.

Proof We leave the easy computation to the reader.

For a ∈ A and b ∈ B, we can describe ξ = ε−1(a⊗ b) : A− → Id B as follows

ξ(x) =

{
(b], if x ≤ a;

{0}, otherwise.

If A is finite, then a homomorphism from 〈A−;∨〉 to 〈Id B;∩〉 is determined by its re-
striction to J(A), the set of all join-irreducible elements of A.

This representation of the tensor product is also utilized in [11] and [12].
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3 Sharply Transferable Lattices

In this section, we introduce sharply transferable lattices and semilattices, minimal pairs,
the condition (T), the D-relation, and the adjustment sequence of a map. For more infor-
mation on these topics, the reader is referred to [4] and [6].

3.1 Sharp Transferability

We start with the definition of sharp transferability (see [7]). We get a definition that is
easier to utilize by using choice functions (P(Y ) is the power set of Y ):

Definition 3.1 Let X and Y be sets and let ϕ : X → P(Y ) be a map. Then a choice function
for ϕ is a map ξ : X → Y such that ξ(x) ∈ ϕ(x), for all x ∈ X.

Definition 3.2 A lattice S is sharply transferable, if for every embedding ϕ of S into Id T,
the ideal lattice of a lattice T, there exists an embedding ξ of S into T such that ξ is a choice
function for ϕ satisfying ξ(x) ∈ ϕ(y) iff x ≤ y.

Equivalently, ξ(x) ∈ ϕ(x) and ξ(x) /∈ ϕ(y), for any y < x.
The motivation for these definitions comes from the fact that the well-known result:

a lattice L is modular iff Id L is modular, can be recast: N5 is a (sharply) transferable lattice.
The reader should find it easy to verify that N5 is a sharply transferable lattice. It is

somewhat more difficult to see the negative result: M3 is not a sharply transferable lattice.

3.2 Minimal Pairs

Let P be a poset and let X and Y be subsets of P. Then the relation X is dominated by Y , in
notation, X � Y , is defined as follows:

X � Y iff for all x ∈ X there exists y ∈ Y such that x ≤ y.

The relation� defines a quasi-ordering on the power set of P, and it is a partial ordering
on the set of antichains of P.

The following definition is from H. Gaskill [5]:

Definition 3.3 Let A be a finite join-semilattice. A minimal pair of A is a pair 〈p, I〉 such
that p ∈ J(A), I ⊆ J(A), and the following three conditions hold:

(i) p /∈ I.
(ii) p ≤

∨
I.

(iii) For all J ⊆ J(A), if J � I and p ≤
∨

J, then I ⊆ J.

If 〈p, I〉 is a minimal pair, then I is an antichain of J(A). If I is an antichain of J(A) and
〈p, I〉 satisfies conditions 3.3(i), 3.3(ii), then condition 3.3(iii) is equivalent to the following
condition:

(iii ′) For all J ⊆ J(A), if J � I and p ≤
∨

J, then I � J.
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“Minimal pairs” are minimal in two ways. Firstly, if 〈p, I〉 is a minimal pair, then p ≤∨
I and an element of I cannot be replaced by a set of smaller join-irreducible elements

while retaining that their join is over p. Indeed, if i ∈ I can be replaced by X ⊆ J(A) with
X ∩ I = ∅, that is, p ≤

∨
J, where J = (I − {i}) ∪ X, then J � I, hence by (iii), I ⊆ J,

a contradiction. Secondly, the collection of all minimal pairs is the minimal information
necessary to describe the join structure of the finite lattice.

If A is a finite join-semilattice and p ∈ J(A), then we shall define

M(p) = {I ⊆ J(A) | 〈p, I〉 is a minimal pair}.

3.3 The Condition (T)

For the following definition, see H. Gaskill [5].

Definition 3.4 A finite join-semilattice A satisfies (T), if J(A) has a linear order E such
that for every minimal pair 〈p, J〉 of A, the relation p E j holds, for any j ∈ J.

A finite lattice A satisfies the condition (T∨), if the semilattice 〈A;∨〉 satisfies (T).
One can define sharply transferable semilattices by changing “lattice” to “semilattice”

in Definition 3.2. H. Gaskill [5] proved that (T) characterizes finite sharply transferable
semilattices.

An interpretation of (T∨) for finite lattices can be found in [4]. Let A be a finite semilat-
tice. For p ∈ J(A), let p∗ denote the unique element covered by p. The dependency relation
is the binary relation D defined on J(A) as follows

p D q iff p 6= q and there exists x ∈ A such that p ≤ q ∨ x and p � q∗ ∨ x.

Lemma 3.5 Let A be a finite lattice and p, q ∈ J(A). Then p D q iff there exists I ∈ M(p)
such that q ∈ I.

Corollary 3.6 A finite lattice L satisfies (T∨) iff J(L) has no D-cycle.

3.4 Lower Bounded Homomorphisms; the Lower Limit Table

We recall in this section some classical concepts about lower bounded homomorphisms,
due to A. Day, H. S. Gaskill, B. Jónsson, A. Kostinsky, and R. N. McKenzie, which are
presented in Chapter 2 of R. Freese, J. Ježek, and J. B. Nation [4].

Let K and L be lattices. If h : K → L is a lattice homomorphism, we say that h is lower
bounded, if the set h−1[a) has a least element, for all a ∈ L.

Let us assume that K is finitely generated and let X be a finite generating set of K. We
put H0 = X∧ ∪ {1K}, and Hn = X∧(∨∧)n

, for all n > 0. We note that 〈Hn | n ∈ ω〉 is
an increasing sequence of finite meet-subsemilattices of K, and that their union is K. For
n ∈ ω and a ∈ L, we denote by βn(a) the least element x of Hn such that a ≤ x, if it
exists. Note that, for n ∈ ω, βn(a) is defined iff a ≤ h(1K ). If this holds, then βn(a) can be
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computed by the following formulas, see Theorem 2.3 in [4] (h[X] denotes the image of X
under h):

β0(a) =
∧(

x ∈ X | a ≤ h(x)
)
,(3.1)

βn+1(a) = βn(a) ∧
∧(∨

βn[S] | S ∈ C∗(a),
∨

S ≤ h(1K )
)
,(3.2)

where an empty meet in K equals 1K and

C∗(a) =
{

S ⊆ K | S is finite nonempty, x ≤
∨

S, and x /∈ (S]
}
,

for all a ∈ K.
The sequence 〈βn | n ∈ ω〉 is called the lower limit table of h. It is uniquely determined

by h and X. The homomorphism h is lower bounded iff, for all a ≤ h(1K ), there exists n ∈ ω
such that βn(a) = βn+1(a). In that case, βn(a) is the least element of h−1[a).

A finitely generated lattice L is lower bounded, if there exists a surjective, lower bounded
lattice homomorphism from a finitely generated free lattice onto L. We recall the following
characterization of lower bounded lattices, see Theorem 2.13 in [4]:

Proposition 3.7 For a finitely generated lattice L, the following are equivalent:

(i) L is lower bounded.
(ii) For every finitely generated lattice K, every lattice homomorphism from K to L is lower

bounded.

Finite lower bounded lattices have a number of characterizations. The following result
states one of them. For a proof, we refer to Corollary 2.39 in [4].

Proposition 3.8 A finite lattice is lower bounded iff it satisfies (T∨).

We recall that another characterization of (T∨) is given by Corollary 3.6.
We shall also need the following result, see the proof of Theorem 2.6 in [4]:

Proposition 3.9 Let K be a finitely generated lattice, let L be a lattice, and let h : K � L be a
surjective lattice homomorphism. Let X be a finite generating subset of K, and let 〈βn | n ∈ ω〉
be the associated lower limit table of h. Let n ∈ ω, and let us assume that βn = βn+1. Then
L = h[X]∧(∨∧)n

, so that L is finite. Furthermore, h is lower bounded.

The proof of of Proposition 3.9 is easy to outline. We note first that βn(a) ∈ X∧(∨∧)n
,

for all a ∈ L. Since βn = βn+1, it follows that βn(a) is the least element of h−1[a), for all
a ∈ A−. In particular, h is lower bounded. Since h is surjective, the equality a = h

(
βn(a)

)
holds. It follows that a ∈ h[X]∧(∨∧)n

.
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4 Capped Tensor Products of Lattices

In [10] (see Definition 7.1), we introduced capped tensor products. We recall the definition
here:

Definition 4.1 Let A and B be lattices with zero. We say that A ⊗ B is a capped tensor
product, if every element of A⊗ B is a finite union of pure tensors.

It is easy to see by Lemma 2.2 that if A ⊗ B is a capped tensor product, then A ⊗ B is a
lattice (see Lemma 7.2 of [10]).

In this section, we shall establish some basic properties of capped tensor products. Most
of the results in this section are technical lemmas with the exception of Theorem 1, stating
that (A× B)⊗C is capped iff both A⊗C and B⊗C are capped.

Lemma 4.2 Let A and B be lattices with zero. Let n be a positive integer, let a0, . . . , an−1 ∈
A, and let b0, . . . , bn−1 ∈ B. Then

⋃
(ai ⊗ bi | i < n) ∈ A⊗ B

iff, for all i, j < n, i 6= j, the following two conditions hold:

(a) ai ∧ a j = 0 or there exists k < n such that ai ∧ a j ≤ ak and bi ∨ b j ≤ bk;
(b) bi ∧ b j = 0 or there exists k < n such that bi ∧ b j ≤ bk and ai ∨ a j ≤ ak.

Proof It is evident that the hereditary subset H =
⋃

(ai ⊗ bi | i < n) ⊆ A × B belongs
to A ⊗ B iff it is closed under lateral joins. The two conditions guarantee this. Now the
conclusion easily follows.

Corollary 4.3 Let A, A ′, B, and B ′ be lattices with zero, let f : A → A ′ and g : B →
B ′ be lattice homomorphisms. Let n be a positive integer, let a0, . . . , an−1 ∈ A, and let
b0, . . . , bn−1 ∈ B.

(a) If f and g are 0-preserving, then
⋃

(ai ⊗ bi | i < n) ∈ A⊗ B implies that

⋃(
f (ai)⊗ g(bi) | i < n

)
∈ A ′ ⊗ B ′.

(b) If f and g are lattice embeddings, then
⋃(

f (ai)⊗ g(bi) | i < n
)
∈ A ′ ⊗ B ′ implies that

⋃
(ai ⊗ bi | i < n) ∈ A⊗ B.

Corollary 4.4 Let A, A ′, B, and B ′ be lattices with zero, let f : A → A ′ and g : B →
B ′ be lattice homomorphisms. Let n be a positive integer, let a0, . . . , an−1 ∈ A and let
b0, . . . , bn−1 ∈ B.

(i) Let f and g be 0-preserving. If
∨

(ai ⊗ bi | i < n) is a finite union of pure tensors in
A⊗ B, then

∨(
f (ai)⊗ g(bi) | i < n

)
is a finite union of pure tensors in A ′ ⊗ B ′.
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(ii) Let f and g be lattice embeddings. If
(

f (ai) ⊗ g(bi) | i < n
)

is a finite union of pure
tensors in A ′ ⊗ B ′, then

∨
(ai ⊗ bi | i < n) is a finite union of pure tensors in A⊗ B.

Now we are ready to state our first preservation results about capped tensor products:

Proposition 4.5 Let A⊗B be a capped tensor product of the lattices A and B with zero. Then
the following holds:

(i) Let α ∈ Con A and β ∈ Con B. Then (A/α)⊗ (B/β) is a capped tensor product of A/α
and B/β.

(ii) Let A ′ ⊆ A and B ′ ⊆ B be lattices with zero. Then A ′ ⊗ B ′ is a capped tensor product of
A ′ and B ′.

Note that we do not assume in (ii) that 0A = 0A ′ or that 0B = 0B ′ .

Proof (i) follows immediately from Corollary 4.4(i), while (ii) follows from Corol-
lary 4.4(ii).

Proposition 4.6 Let A and B be lattices with zero, and let (Ai | i ∈ I) be a directed family of
lattices with zero. Suppose that, with appropriate transition maps that are 0-lattice homomor-
phisms, A = lim−→ iAi , and that all Ai ⊗ B are capped tensor products. Then A⊗ B is a capped
tensor product.

Now we present the result on direct products:

Theorem 1 Let A, B, and C be lattices with zero. Then (A × B) ⊗ C is a capped tensor
product iff both A⊗C and B⊗C are capped tensor products.

Proof If (A × B) ⊗C is a capped tensor product, then both A ⊗C and B ⊗C are capped
tensor products by Proposition 4.5(i).

Conversely, let us assume that both A ⊗ C and B ⊗ C are capped tensor products. Let
H ∈ (A × B) ⊗ C . We have to prove that H is a finite union of pure tensors. By (2.1), we
take instead H ∈ (A⊗C)× (B⊗C).

Let 〈u, v〉 ∈ (A⊗C)× (B⊗C); then u is a finite union of pure tensors a⊗ c ∈ A⊗C and
v is a finite union of pure tensors b ⊗ c ∈ B⊗C . So 〈u, v〉 is a finite union of pure tensors
of the form 〈a⊗ c1, b⊗ c2〉 ∈ (A⊗C)× (B⊗C). Since

〈a⊗ c1, b⊗ c2〉 = 〈a⊗ c1, 0〉 ∨ 〈0, b⊗ c2〉,

by formula (ii) of Lemma 2.2, 〈a ⊗ c1, b ⊗ c2〉 is a union of (at most) four pure tensors;
therefore, (A× B)⊗C is a capped tensor product.

By using Proposition 4.6, we deduce immediately the following:

Corollary 4.7 Let (Ai | i ∈ I) be a family of lattices with zero and let A be the discrete direct
product of this family. Then, for any lattice B with zero, if Ai ⊗ B is a capped tensor product,
for all i ∈ I, then A⊗ B is a capped tensor product.
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5 Amenable Lattices

Now we come to the central concept of this paper:

Definition 5.1 A lattice A with zero is amenable, if A⊗ L is a capped tensor product, for
every lattice L with zero.

In other words, A is amenable iff A ⊗ L is always capped; it follows that then A ⊗ L is
always a lattice.

Theorem 2 The class of amenable lattices with zero is preserved under the following opera-
tions:

(i) the formation of sublattices,
(ii) the formation of quotient lattices,
(iii) finite direct products,
(iv) direct limits.

It follows from known results on lower bounded lattices that Theorem 5 is stronger than
Theorem 2. However, Theorem 2 is more elementary, and it can easily be generalized to
V-amenable lattices, for any variety V of lattices, see Definition 9.3.

We shall see, in Corollary 8.3, that the class of amenable lattices is not closed under
arbitrary direct products; in particular, it is not a variety. However, the following result
holds:

Corollary 5.2 Let V be a variety generated by an amenable finite lattice. Then every lattice
with zero in V is amenable.

Proof Let A be an amenable finite lattice generating V. Let B ∈ V and let U be a finitely
generated, say, n-generated, {0}-sublattice of B. Let FV(n) be the free lattice on n gen-
erators in V. Since U belongs to V and U is n-generated, there exists a surjective lattice
homomorphism π : FV(n) � U . But FV(n) embeds into AAn

(this is a classical result of
universal algebra). Since A is amenable and An is finite, it follows from Theorem 2 that
FV(n) is amenable. Since U is a quotient of FV(n), U is amenable, again by Theorem 2.

Finally, B is the direct union of all its finitely generated {0}-sublattices, so the conclusion
follows by Proposition 4.6.

Again, Corollary 5.2 can easily be generalized to W-amenable lattices, for any variety W
of lattices.

In Example 8.4, we show that “amenable finite lattice” cannot be replaced by “amenable
locally finite lattice” in Corollary 5.2.

Corollary 5.3 Every distributive lattice with zero is amenable.

If A is an amenable lattice with zero, then A ⊗ L is a lattice, for every lattice L with
zero. We do not know whether the converse is true in general (see Problem 1 in Section 9),
however, we can settle this problem for locally finite lattices:
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Theorem 3 Let A and B be lattices with zero. Let A be locally finite. Then A⊗ B is a lattice
iff A⊗ B is a capped tensor product.

Proof We prove the nontrivial direction; so we assume that A⊗ B is a lattice.

First Case: A is finite. Let H ∈ A ⊗ B; we have to prove that H is a finite union of pure
tensors. Let ξ : 〈A−;∨〉 → 〈Id B;∩〉 be the antitone map associated with H, as defined in
Section 2.3. Then H =

⋃(
a ⊗ ξ(a) | a ∈ A−

)
(where a ⊗ ξ(a) is the set of all a ⊗ x,

x ∈ ξ(a)), so it suffices to prove that all ξ(a), a ∈ A−, are principal ideals of B.
For all a ∈ A−,

ξ(a) =
⋂(

ξ(p) | p ∈ J(A) and p ≤ a
)
;

thus it suffices to prove that ξ(p) is a principal ideal of B, for every p ∈ J(A).
Let uB ∈ B such that H ⊆ 1A ⊗ uB; this element uB exists because H is compact.
In Proposition 4.3 of [10], we noted that if a tensor product is a lattice, then the set

representation is closed under intersection. Hence

U = H ∩ (p∗ ⊗ uB),

V = H ∩ (p ⊗ uB)

belong to A⊗ B. Since U ⊆ V , there exists a decomposition of V of the form

V = U ∨
∨

(ai ⊗ bi | i < n),(5.1)

where n is a nonnegative integer, and 0A < ai and 0B < bi ≤ uB, for all i < n. The
inequality ai ⊗ bi ≤ V holds in A ⊗ B, for all i < n. Since ai and bi are nonzero, ai ≤ p,
therefore, ai ≤ p∗ or ai = p. But if ai < p, then ai ⊗ bi ≤ U , by the definition of U , so
that ai ⊗ bi is absorbed by U in the decomposition (5.1). In other words, in (5.1) we may
assume that ai = p, for all i < n.

Set b =
∨

(bi | i < n); then

V = U ∨ (p ⊗ b),

and we define V ′ = U ∪ (p ⊗ b). We claim that V ′ is a bi-ideal. It is obvious that V ′ is a
hereditary subset of A⊗ B containing⊥A,B. We show that V ′ is closed under lateral joins.

Let 〈x0, y〉 and 〈x1, y〉 in V ′. Without loss of generality, we can assume that x0, x1, and
y are nonzero, and 〈x0, y〉 ∈ U , 〈x1, y〉 ∈ p ⊗ b. Then x0 ∨ x1 ≤ p and y ≤ b, so that
〈x0 ∨ x1, y〉 ∈ V ′.

Let 〈x, y0〉 and 〈x, y1〉 in V ′. Without loss of generality, x, y0, and y1 are nonzero, and
〈x, y0〉 ∈ U , 〈x, y1〉 ∈ p ⊗ b. Since U ≤ p∗ ⊗ uB, it follows that x ≤ p∗, so

〈x, y0 ∨ y1〉 ∈ H ∩ (p∗ ⊗ uB) = U ≤ V ′.

This proves that V ′ belongs to A⊗ B, hence V = V ′. Therefore,

V = U ∪ (p ⊗ b).
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It follows that, for all y ∈ B,

y ∈ ξ(p) iff p ⊗ y ⊆ H,

iff p ⊗ y ⊆ V,

iff p ⊗ y ∈ U ∪ (p ⊗ b),

iff y ≤ b.

This proves that ξ(p) = (b], a principal ideal, thus completing the proof of the finite case.

Second Case: A is locally finite. Then A can be written as the direct union of all of its
finite {0}-sublattices. By Lemma 2.1, the tensor product U ⊗ B is a lattice, for each of
those lattices U . Thus by the first case, U ⊗ B is a capped tensor product. Therefore, by
Proposition 4.6, A⊗ B is a capped tensor product.

Corollary 5.4 Let A be a locally finite lattice with zero. Then the following conditions are
equivalent:

(i) A is amenable.
(ii) A⊗ L is a lattice, for every lattice L with zero.
(iii) A⊗ F(3) is a lattice.

Proof The equivalence of (i) and (ii) follows immediately from Theorem 3. (ii) implies (iii)
is trivial.

Finally, assume (iii). For every set X, denote by F(0)(X) the free {0}-lattice on the gen-
erating set X. By a result of P. M. Whitman [16] (see Theorem VI.2.8 in [8]), F(0)(ω)
embeds into F(3) as a {0}-sublattice (ω denotes the set of all natural numbers). Thus, by
Lemma 2.1(ii), A ⊗ F(0)(ω) is a lattice. For every infinite set X, F(0)(X) is a direct limit of
0-lattices each one isomorphic to F(0)(ω); thus A⊗F(0)(X) is a lattice. But every lattice with
zero is a quotient of some F(0)(X), so we conclude the argument by Lemma 2.1(i).

We have not yet seen a finite lattice that is not amenable. The smallest example is M3, as
we shall see it in the next few sections.

6 Step Functions and Adjustment Sequences

The referee informed us that some of the arguments in this section date back to A. Kostin-
sky’s unpublished 1971 thesis, which is unavailable to us.

Let A and B be lattices with zero. We shall put (a]• = (a] ∩ A−, for all a ∈ A. We
shall denote by Int A the Boolean lattice of P(A−) generated by all sets of the form (a]•,
or a ∈ A−. Furthermore, we shall denote by Int∗ A the ideal of Int A consisting of all
X ∈ Int A with X ⊆ (a]•, for some a ∈ A. For every subset U of A−, we denote by Max U
the set of all maximal elements of U .
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6.1 Step Functions

We start with the following very simple lemma:

Lemma 6.1 Let U ∈ Int∗ A. Then the following two properties hold:

(i) Every element of U is contained in an element of Max U .
(ii) Max U is finite.

Proof The elements of Int∗ A are the finite unions of subsets of the form U = (b]• − X,
where b ∈ A− and X is a finite union of principal ideals of A−. For such a subset U ,
the properties (i) and (ii) above are obvious, with Max U = ∅, if X = (b]•, Max U =
{b}, otherwise. Furthermore, the set of all subsets U of A− satisfying (i) and (ii) above is
obviously closed under finite union. Therefore, it contains Int∗ A.

Definition 6.2 A map ξ : A− → B is a step function, if the range of ξ is finite, and the
inverse image ξ−1{b} belongs to Int∗ A, for all b ∈ B−.

If ξ : A− → B is any map, a support of ξ is an element a of A such that ξ(x) > 0 implies
x ≤ a, for all x ∈ A−. By Lemma 6.1, every step function has a support.

The following lemma establishes a useful compactness property of step functions:

Lemma 6.3 (Compactness of step functions) Let η : A− → B be a step function, let D be
an upward directed set of antitone maps from A− to B. If for all a ∈ A−, there exists ξ ∈ D,
with η(a) ≤ ξ(a), then there exists an antitone map ξ ∈ D such that η ≤ ξ.

Proof Put U =
⋃

(Max η−1{b} | b ∈ η[A−] − {0}). Since η is a step function, it follows
from Lemma 6.1 that U is finite. For all a ∈ U , there exists, by assumption, an element ξa

of D such that η(a) ≤ ξa(a). Since D is upward directed and U is finite, there exists ξ ∈ D

such that ξa ≤ ξ, for all a ∈ U . Now let a ∈ A−; we prove that η(a) ≤ ξ(a). This is trivial
if η(a) = 0. Now assume that η(a) > 0. Since η−1{η(a)} belongs to Int∗ A, there exists, by
Lemma 6.1(i), x ∈ Max η−1{η(a)} such that a ≤ x. Note that x ∈ U . Therefore,

η(a) = η(x) (since x ∈ η−1{η(a)})

≤ ξx(x) (since x ∈ U )

≤ ξ(x) (by the definition of ξ)

≤ ξ(a) (since a ≤ x and ξ is antitone).

This holds for all a ∈ A−, thus η ≤ ξ.

The following lemma provides us with a large supply of step functions:

Lemma 6.4 Let n ∈ ω, let a0, . . . , an−1 ∈ A, let b0, . . . , bn−1 ∈ B. Then the map ξ : A− →
B defined by

ξ(x) =
∨

(bi | i < n, x ≤ ai),(6.1)
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for all x ∈ A−, is an antitone step function. Furthermore,

〈x, ξ(x)〉 ∈
∨

(ai ⊗ bi | i < n),

for all x ∈ A−.

Proof Everything in the statement of the lemma is obvious except for the fact that ξ is a
step function. Put

S(x) = {i < n | x ≤ ai},

for all x ∈ A−. If b ∈ B−, then, for all x ∈ A−, ξ(x) = b iff there exists a nonempty subset
I of n such that

∨
(bi | i ∈ I) = b and I = S(x). Therefore, to prove that ξ−1{b} belongs to

Int∗ A, it suffices to prove that the set

XI = {x ∈ A− | I = S(x)}

belongs to Int∗ A, for all nonempty I ⊆ n. But it is easy to verify that

XI =
(∧

(ai | i ∈ I)
]
•
−
⋃(

(a j]• | j ∈ n− I
)
,

which belongs to Int∗ A since I is nonempty.

6.2 The Adjustment Sequence of a Step Function

The basic technical tool of transferability, see Section 3.1, is the adjustment sequence: we
adjust a map to closer reflect the structure. Similar ideas come up in connection with
projective lattices (B. Jónsson, first published in [13]) and bounded homomorphisms
(R. N. McKenzie [14]); see also the adjustment sequence of the n-modular identity in [11].
The following definition of the adjustment sequence takes into account that the lattices may
be infinite. Note that we can only adjust maps with finite range.

For all a ∈ A−, we shall denote by C(a) the set of all nonempty, finite subsets X of A−

such that a ≤
∨

X.

Definition 6.5 Let ξ : A− → B be a map with finite range. The one-step adjustment of ξ
is ξ(1) : A− → B defined by

ξ(1)(x) =
∨(∧

ξ[S] | S ∈ C(x)
)
,(6.2)

for all x ∈ A−.

Note that since the range of ξ is finite, the right hand side of the equation (6.2) is well-
defined.
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Remark 6.6 Since {x} ∈ C(x), for all x ∈ A−, the inequality ξ ≤ ξ(1) always holds. Let
us assume, in addition, that ξ is antitone. Then the expression (6.2) for ξ(1)(x) takes on the
following form:

ξ(1)(x) = ξ(x) ∨
∨(∧

ξ[S] | S ∈ C∗(x)
)
,(6.3)

where C∗(x) denotes the set of all S ∈ C(x) such that x /∈ (S], see Section 3.4.

Let us further assume that A is finite. Then every map ξ : A− → B is a step function,
and the one-step adjustment of ξ takes, on the join-irreducible elements of A, the following
form:

ξ(1)(p) = ξ(p) ∨
∨(∧

ξ[I] | I ∈M(p)
)
,

for all p ∈ J(A).

Lemma 6.7 Let ξ : A− → B be a step function. For every subset X of ξ[A−], we define a
subset Cov(ξ; X) of A− as follows:

Cov(ξ; X) = {x ∈ A− | ξ[S] = X, for some S ∈ C(x)}.

Then for all a ∈ A, Cov(ξ; X) ∩ (a]• belongs to Int∗ A.

Proof Let R = ξ[A−] and define Ub = ξ−1{b} ∩ (a]•, for all b ∈ R. Since ξ is a step
function, ξ−1{b} belongs to Int∗ A, for all b ∈ R − {0}, while ξ−1{0} belongs to Int A.
Thus, Ub belongs to Int∗ A, for all b ∈ R.

Furthermore, U =
⋃

(Max Ub | b ∈ R) is a finite set, by Lemma 6.1(ii). Let x ∈
Cov(ξ; X) ∩ (a]•, that is, x ∈ A−, x ≤ a, and there exists S ∈ C(x) such that ξ[S] = X. For
all s ∈ S, Uξ(s) belongs to Int∗ A and it contains s as an element. By Lemma 6.1(i), there
exists s∗ ∈ Max Uξ(s) such that s ≤ s∗. Put T = {s∗ | s ∈ S}. Then T ∈ C(x), ξ[T] = X,
and T ⊆ U . Hence, we have proved the equality

Cov(ξ; X) ∩ (a]• = {x ∈ (a]• | ξ[T] = X, for some T ∈ C(x) with T ⊆ U},

which can be written, by the definition of C(x), as

Cov(ξ; X) ∩ (a]• =
⋃((

a ∧
∨

T
]
•

∣∣∣ T ⊆ U , ξ[T] = X

)
.

Since U is finite, Cov(ξ; X) ∩ (a]• belongs to Int∗ A.

Lemma 6.8 Let ξ : A− → B be a map with finite range. Then ξ(1) is antitone and has finite
range. Furthermore, ξ(1) = ξ iff ξ is a semilattice homomorphism from 〈A−;∨〉 to 〈B;∧〉.

Proof Since x ≤ y implies that C(y) ⊆ C(x), ξ(1) is obviously antitone. If ξ is a semilattice
homomorphism from 〈A−;∨〉 to 〈B;∧〉, then

∧
ξ[S] ≤ ξ(x), for all x ∈ A− and all S ∈

C(X), thus ξ(1)(x) ≤ ξ(x). Since ξ ≤ ξ(1), we obtain that ξ = ξ(1). Conversely, suppose that
ξ = ξ(1). Let x, y ∈ A−. Since {x, y} ∈ C(x ∨ y), the inequality ξ(1)(x ∨ y) ≥ ξ(x) ∧ ξ(y)
holds. Since ξ = ξ(1) and ξ(1) is antitone, we obtain that ξ(x ∨ y) = ξ(x) ∧ ξ(y).

https://doi.org/10.4153/CJM-1999-034-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1999-034-6


808 G. Grätzer and F. Wehrung

Lemma 6.9 Let ξ : A− → B be a map with finite range. Then ξ and ξ(1) have the same
supports.

Proof Since ξ ≤ ξ(1), every support of ξ(1) is a support of ξ. Conversely, let a be a support
of ξ. Let x ∈ A− such that x � a. For all S ∈ C(x), there exists s ∈ S such that s � a
(otherwise, x ≤

∨
S ≤ a), thus

∧
ξ[S] = ξ(s) = 0; whence ξ(1)(x) = 0. Hence a is a

support of ξ(1).

We now state the main result of this section:

Proposition 6.10 Let ξ : A− → B be a step function. Then the one-step adjustment ξ(1) of
ξ is an antitone step function.

Proof The fact that ξ(1) is antitone with finite range has been established in Lemma 6.8.
So, to complete the proof that ξ(1) is a step function, it suffices to prove that (ξ(1))−1{b}
belongs to Int∗ A, for all b ∈ B−. Let a0 be a support of ξ. Then, by Lemma 6.9, a0 is also a
support of ξ(1). Put R = ξ[A−], and let I be the set of all nonempty subsets of P(R)−{∅}.
Note that I is finite. For all a ∈ I, define

ba =
∨(∧

X
∣∣∣ X ∈ a

)
,

Ua = {x ∈ (a0]• | a = {ξ[S] | S ∈ C(x)}}.

We claim that the following equality holds:

(ξ(1))−1{b} =
⋃

(Ua | a ∈ I, ba = b).(6.4)

Indeed, if x belongs to the right hand side of (6.4), then there exists a ∈ I such that ba = b
and x ∈ Ua. Hence a = {ξ[S] | S ∈ C(x)}, so that

ξ(1)(x) =
∨(∧

ξ[S]
∣∣∣ S ∈ C(x)

)
=
∨(∧

X
∣∣∣ X ∈ a

)
= ba = b.(6.5)

Conversely, let us assume that ξ(1)(x) = b. Since b > 0 and a0 is a support of ξ(1), it follows
that x ≤ a0 and a = {ξ[S] | S ∈ C(x)} belongs to I, so that x ∈ Ua, by definition. By an
argument similar to (6.5), we see that ba = b. This completes the proof of (6.4).

To complete the proof of Proposition 6.10, it suffices to prove that Ua belongs to Int∗ A,
for all a ∈ I. By the definition of Ua, an element x of A− belongs to Ua iff the following
three conditions are satisfied:

(i) x ≤ a0;
(ii) for all X ∈ a, there exists S ∈ C(x), satisfying ξ[S] = X;
(iii) ξ[S] 6= Y holds for all Y ∈ P(R)− a and S ∈ C(x).

Therefore, we obtain that

Ua =
⋂(

(a0]• ∩ Cov(ξ; X) | X ∈ a
)
−
⋃(

(a0]• ∩ Cov(ξ; Y ) | Y ∈ P(R)− a
)
,

which belongs to Int∗ A, by Lemma 6.7.

By Proposition 6.10, we can state the following definition:
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Definition 6.11 Let ξ : A− → B be a step function. The adjustment sequence of ξ is the
sequence 〈ξ(n) | n ∈ ω〉 defined inductively by ξ(0) = ξ, and ξ(n+1) = (ξ(n))(1), for all n ∈ ω.

As an immediate consequence of Proposition 6.10, we obtain the following:

Corollary 6.12 Let ξ : A− → B be a step function. Then the adjustment sequence of ξ is
increasing, that is, ξ(n) ≤ ξ(n+1) for all n. Furthermore, if n > 0, then ξ(n) is an antitone step
function.

7 Capped Tensor Products and Homomorphisms To Ideals

In this section, we establish equivalent conditions under which a tensor product of two
lattices with zero is capped. These conditions are stated in terms of adjustment sequences
and choice functions (see Section 2.3).

Theorem 4 Let A and B be lattices with zero. Then the following statements are equivalent:

(i) A⊗ B is a capped tensor product.
(ii) Let ϕ : 〈A−;∨〉 → 〈Id B;∩〉 be a semilattice homomorphism, let ξ : A− → B be a step

function. If ξ is a choice function for ϕ, then there exists a step function η : A− → B such
that the following conditions hold:

(ii1) ξ(a) ≤ η(a) ∈ ϕ(a), for all a ∈ A−.

(ii2) The map η is a semilattice homomorphism from 〈A−;∨〉 to 〈B;∧〉.

(iii) The adjustment sequence of any step function ξ : A− → B is eventually constant.

Proof Throughout this proof, we shall denote by ε : A~⊗B→ A ⊗̄B the canonical isomor-
phism (see Section 2).

(i) implies (ii). We claim that

H =
∨(

a⊗ ξ(a) | a ∈ A−
)
∈ A ⊗̄B

belongs to A⊗ B. Indeed, it follows from Lemma 6.1(i) that the equality

∨
(a⊗ b | a ∈ ξ−1{b}) =

∨
(a⊗ b | a ∈ Max ξ−1{b})

holds, for all b ∈ ξ[A−]− {0}. Thus, the equality

H =
∨(

a⊗ ξ(a) | b ∈ ξ[A−]− {0}, a ∈ Max ξ−1{b}
)
∈ A⊗ B(7.1)

holds, and the right hand side of (7.1) is a finite join, by Lemma 6.1(ii). Hence H belongs
to A⊗ B.

Since A⊗ B is a capped tensor product, H is a finite union of pure tensors. Thus all the
values of the map α = ε−1(H) are principal ideals of B, say, α(a) = (η(a)], for all a ∈ A−.
Since α ∈ A~⊗B, the map η is a homomorphism from 〈A−;∨〉 to 〈B;∧〉. Furthermore,
〈a, ξ(a)〉 ∈ H for all a ∈ A−, thus ξ ≤ η. Put K = ε(ϕ). For all a ∈ A−, the pair 〈a, ξ(a)〉
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belongs to K; thus H ⊆ K. It follows that ε−1(H) ≤ ε−1(K), that is, η(a) ∈ ϕ(a), for all
a ∈ A−. Thus η is a choice function for ϕ.

(ii) implies (iii). Let ξ : A− → B be any step function. We associate with ξ its adjustment
sequence, 〈ξ(n) | n ∈ ω〉. For all a ∈ A−, we define ϕ(a) as the ideal of B generated by
the set {ξ(n)(a) | n ∈ ω}. By Corollary 6.12, all the maps ξ(n) are antitone, for n > 0,
thus x ≤ y implies ϕ(x) ⊇ ϕ(y), for x, y ∈ A. Furthermore, if x, y ∈ A−, then, since
{x, y} ∈ C(x∨ y), the inequality ξ(n+1)(x∨ y) ≥ ξ(n)(x)∧ξ(n)(y) holds, for all n. Therefore,
ϕ(x∨ y) ⊇ ϕ(x)∩ϕ(y); since ϕ is antitone, ϕ(x∨ y) = ϕ(x)∩ϕ(y). Thus ϕ is a semilattice
homomorphism from 〈A−;∨〉 to 〈Id B;∩〉. Since ξ is a choice function for ϕ, there exists,
by assumption, a step function η : A− → B such that ξ ≤ η and η is a choice function
for ϕ.

For all a ∈ A−, by the definition of ϕ, there exists n > 0 such that η(a) ≤ ξ(n)(a). For
n > 0, since the ξ(n) are antitone and since η is a step function, it follows from Lemma 6.3,
applied to D = {ξ(n) | n > 0}, that there exists m > 0 such that η ≤ ξ(m). On the
other hand, ξ ≤ η and η is a homomorphism from 〈A−;∨〉 to 〈B;∧〉, thus, by Lemma 6.8,
ξ(n) ≤ η(n) = η, for all n ∈ ω. It follows that η = ξ(m) = ξ(m+1).

(iii) implies (i). Let H ∈ A⊗ B. We prove that H is a finite union of pure tensors. Write

H =
∨

(ai ⊗ bi | i < n),

where n ∈ ω and 〈ai, bi〉 ∈ A × B, for all i < n. Consider the function ξ : A− → B given
by the formula (6.1). By Lemma 6.4, ξ is an antitone step function. By assumption, there
exists m ∈ ω such that ξ(m) = ξ(m+1). Put η = ξ(m). By Lemma 6.8, η is a homomorphism
from 〈A−;∨〉 to 〈B;∧〉. In particular, the set

K =
⋃(

a⊗ η(a) | a ∈ A−
)

is a bi-ideal of A× B. Thus, since ξ ≤ η and ξ(ai) ≥ bi , for all i < n, K contains H.
Put ϕ = ε−1(H). By Lemma 6.4, 〈x, ξ(x)〉 ∈ H, for all x ∈ A−, thus ξ is a choice

function for ϕ. Since ϕ ∈ A~⊗B, all the ξ(n), n ∈ ω, are choice functions for ϕ. In
particular, η is a choice function for ϕ. This means that 〈a, η(a)〉 ∈ H, for all a ∈ A−, that
is, K is contained in H. Finally, K = H.

Since η is both a step function and a homomorphism from 〈A−;∨〉 to 〈B;∧〉, the set
η−1{b} has, by Lemma 6.1, a largest element, say, ab, for all b ∈ η[A−] − {0}. It follows
that

H = K =
⋃

(ab ⊗ b | b ∈ η[A−]− {0}),

a finite union of pure tensors.

8 Amenability and (T∨)

In this section, we characterize amenable lattices. We start with a sufficient condition.

Proposition 8.1 Let A be a finite lattice. If A satisfies (T∨), then A is amenable.
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Proof Let A be a finite lattice satisfying (T∨). Since A satisfies (T∨), J(A) = {p1, . . . , pn}
so that pi D p j implies that i > j, for all i, j in {1, . . . , n}. We verify Condition (iii) of
Theorem 4 for A. So let B be any lattice with zero, and let ξ : A− → B be any map. We
prove that the adjustment sequence of ξ is eventually constant. By replacing ξ by ξ(1), we
may assume, without loss of generality, that ξ is antitone.

Claim Let 0 < j < i ≤ n + 1. Then ξ(i)(p j) = ξ( j)(p j).

Proof of Claim We prove the Claim by induction on i. The Claim is vacuously true for
i = 0. Let 0 < j < i + 1 ≤ n + 1, and let us assume that the induction hypothesis holds
for i.

By definition,

ξ(i+1)(p j) = ξ
(i)(p j) ∨

∨(∧
ξ(i)[I] | I ∈M(p j)

)
.(8.1)

If j ≤ 2, then M(p j) = ∅ (because if 〈p, I〉 is a minimal pair, then I has at least two
elements), thus, by the induction hypothesis,

ξ(i+1)(p j) = ξ
(i)(p j) = ξ

( j)(p j).

If j > 2, then let I ∈M(p j) and let k satisfy pk ∈ I. In particular, k < j, thus k < i, and
so by the induction hypothesis,

ξ(i)(pk) = ξ(i−1)(pk) = ξ(k)(pk).

Therefore,
∧
ξ(i)[I] =

∧
ξ(i−1)[I]. Thus, applying (8.1) to i−1, we obtain that

∧
ξ(i)[I] ≤

ξ(i)(p j). Using (8.1) and the induction hypothesis,

ξ(i+1)(p j) = ξ
(i)(p j) = ξ

( j)(p j),

completing the proof of the Claim.

By applying the Claim for i = n + 1, we obtain that ξ(n) and ξ(n+1) agree on J(A), thus
ξ(n) = ξ(n+1). We have verified Theorem 4(iii) for A, so A is amenable.

Now we are ready for the characterization of amenable lattices:

Theorem 5 Let A be a lattice with zero. Then the following conditions are equivalent:

(i) A is amenable.
(ii) A is locally finite and every finite sublattice of A satisfies (T∨).

Proof (ii) implies (i). Let L be a lattice with zero. By Proposition 8.1, U ⊗ L is a capped
tensor product, for every finite {0}-sublattice U of A. By Proposition 4.6, A⊗L is a capped
tensor product.
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(i) implies (ii). It suffices to prove that for every finitely generated amenable lattice A
with zero, A is finite and it satisfies (T∨). Let X be a finite generating subset of A, and
let h : F(X) � A be the canonical surjective homomorphism. We shall consider the lower
limit table 〈βn | n ∈ ω〉 associated with h and X. The maps βn can be computed using the
formulas (3.1) and (3.2).

Now we shall use the fact that A⊗F(X) is a capped tensor product. We consider the step
function ξ : A− → F(X) defined by (6.1), see Lemma 6.4. That is,

ξ(a) =
∨

(x ∈ X | a ≤ x),

for all a ∈ A−. Let w 7→ wd denote the dualization map on F(X). We obtain, in particular,
that ξ(a) = β0(a)d.

Now we consider the adjustment sequence, 〈ξ(n) | n ∈ ω〉, of ξ. Let n ∈ ω, and let us
assume that we have proved that ξ(n)(a) = βn(a)d, for all a ∈ A−. We compute ξ(n+1)(a),
for a ∈ A−:

ξ(n+1)(a) = ξ(n)(a) ∨
∨(∧

ξ(n)[S] | S ∈ C(a)
)

= βn(a)d ∨
∨(∧

βn[S]d | S ∈ C(a),
∨

S ≤ h(1)
)

(the condition
∨

S ≤ h(1) is satisfied, because h(1) = 1)

= βn+1(a)d,

the last step by (3.2). It follows that ξ(n)(a) = βn(a)d, for all n ∈ ω and all a ∈ A−.
However, since A ⊗ F(X) is a capped tensor product, there exists, by Theorem 4, n ∈ ω
such that ξ(n) = ξ(n+1). It follows that βn = βn+1. By Proposition 3.9, A is finite and h is a
lower bounded homomorphism. By Proposition 3.8, A satisfies (T∨).

The smallest finite lattice that does not satisfy (T∨) is the diamond M3. Since M3 is a
quotient of F(3), one obtains, by Corollary 3.7 of [10], the following:

Corollary 8.2 Neither M3 ⊗ F(3) nor F(3)⊗ F(3) is a lattice.

Corollary 8.3 There exists a countable sequence 〈Sn | n ∈ ω〉 of finite amenable lattices
such that the product

∏
n∈ω Sn is not amenable.

Proof Denote by x0, x1, and x2 the generators of the free lattice F(3) on three generators.
The subset Sn = Sn(3) (see Section 2.2) of F(3) is a finite {∨, 0}-subsemilattice of F(3),
thus it is a lattice. Furthermore, by the end of the proof of Lemma 2.77 in [4], all Sn are
lower bounded. Therefore, by Proposition 3.8, all Sn satisfy (T∨). By Proposition 8.1, all Sn

are amenable.
On the other hand, the diagonal map embeds F(3) into the reduced product L =∏

F〈Sn | n ∈ ω〉, where F denotes the Fréchet filter on ω. Suppose that S =
∏

n∈ω Sn
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is amenable. Since L is a quotient of S and F(3) embeds into L, it follows from Theorem 2
that F(3) is also amenable, a contradiction by Corollary 8.2.

In fact, the proof above shows that M3 ⊗ S is not a lattice.

Example 8.4 The proof of Corollary 8.3 gives immediately a locally finite amenable lattice
S with zero such that M3 belongs to the variety generated by S (in fact, S generates the
variety L of all lattices): consider the semilattice direct sum

⊕
n∈ω Sn, where the Sn are the

finite lattices in the proof of Corollary 8.3. This shows that the hypothesis of Corollary 5.2
that B is finite cannot be weakened to B being locally finite.

In particular, the class of amenable lattices is not a variety.

9 Discussion

The most central open question is stated first:

Problem 1 Let A be a lattice with zero. If, for every lattice L with zero, A ⊗ L is a lattice,
is A amenable?

By Theorem 3, the answer to Problem 1 is positive for a locally finite lattice A. We believe
that in the general case the answer is in the negative.

Problem 2 Does there exist a nontrivial, simple, amenable lattice with zero?

As we will show in Corollary 9.2, there is no nontrivial simple amenable lattice with a
largest element.

We recall that a lattice L is join-semidistributive, if it satisfies the following condition:

(SD∨) x ∨ z = y ∨ z implies that x ∨ z = (x ∧ y) ∨ z, for all x, y, z ∈ L.

Proposition 9.1 Let S be a simple lattice with at least three elements. If S satisfies (SD∨),
then S does not have a largest element.

Proof If S has a largest element, then it has a maximal ideal, say, I. Then I is a prime
ideal of S. Indeed, if x, y /∈ I, then, by the maximality of I, there exists u ∈ I such that
x ∨ u = y ∨ u = 1. By (SD∨), (x ∧ y) ∨ u = 1, thus x ∧ y /∈ I (otherwise, 1 ∈ I, a
contradiction).

So I defines a lattice homomorphism from S to the two-element chain. Since S has at
least three elements, the kernel of this homomorphism is a non-trivial congruence of S,
which contradicts the simplicity of S.

It is known that every finite lattice satisfying (T∨) satisfies (SD∨), see, for example,
Theorem 2.20 in [4]. Since (SD∨) is preserved under direct limits, we obtain the following
corollary:

Corollary 9.2 Let S be a simple amenable lattice with zero. If S has at least three elements,
then S does not have a largest element.
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To formulate the next problem, let us introduce an additional terminology.

Definition 9.3 Let A be a lattice with zero and let C be a class of lattices. Then A is
C-amenable, if A⊗ L is a lattice, for every lattice with zero L in C.

Problem 3 Let V be a variety of lattices. Is the class of finite V-amenable lattices decidable?

For example, if M is the variety of all modular lattices, then M3 is M-amenable. It would
be desirable to obtain a combinatorial characterization of M-amenable lattices, as we did
in this paper for L-amenable lattices, where L is the variety of all lattices. On the other
extreme, if D is the variety of all distributive lattices, every lattice with zero is D-amenable.

Problem 4 Let A denote the variety of all Arguesian lattices. For a finite lattice A, prove
that A is M-amenable iff it is A-amenable.

By using a lattice constructed in [2], we can prove that M4 is not M-amenable, see [11]
for details. Furthermore, the corresponding counterexample is a lattice of subspaces of a
vector space, thus it is Arguesian. So one may expect, for every non M-amenable lattice A,
the existence of a lattice L of subspaces of some vector space such that A⊗ L is not a lattice.

We have proved in Theorem 5 that every amenable lattice is locally finite. This result can-
not be relativized to arbitrary varieties, as, for example, any lattice with zero is D-amenable.

Problem 5 Is every M-amenable lattice locally finite?
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