THE ALGEBRA OF DIMENSION- LINKING OPERATORS

R.H. Bruck

1. Introduction. In the course of preparing a book on
group theory [1] with special reference to the Restricted
Burnside Problem and allied problems I stumbled upon the
concept of a dimension-linking operator. Later, when I
lectured to the Third Summer Institute of the Australian
Mathematical Society [2], G.E. Wall raised the question
whether the dimension-linking operators could be made into
a ring by introduction of a suitable definition of multiplication.
The answer was easily found to be affirmative; the result was:
that the theory of dimension-linking operators became exceed-

ingly simple.

My purpose in the present note is to develop the theory
of dimension-linking operators in some detail. Then I shall
give a brief indication (without proof) of the natural role of
these operators in group theory.

2. The operators. If R is an associative ring and n

is a positive integer, we shall denote by

R(n) = RX... XR (n factors)

the nth set-power of R.

By a dimension-linking operator, f, we mean an operator
defined for every associative ring R and having the following

properties:

(A) For every associative ring R and for each n > 1,

f induces a single-valued mapping f(n) from R(n) into R:

-

f(n) : (r, ,r g i el

- f i
1 2 rn) (r1r

Moreover (where we write r(it) instead of r )
- 1
t

203

https://doi.org/10.4153/CMB-1965-016-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-016-4

(2.1) f(ri,.. . ,rn) = c(i1, - ,in) r(ii). . r(in)

where the c's are integers independent of R and where the

sum is over the n! arrangements ii'”"i of 4,...,n.
-

(B) For every associative ring R and for each n > 2,

1)
the mappings f(n), f(n-1) induced by f on R(n), R(n ) are

linked by n-1 commutation rules as follows:

. 2 T g oire ) = H 0w 1 1 it it I 5 5555
(2.2) foorpr, e ) st ry v d e [ 1)
for 1 =13 <n-1. Here [r,s] is a ring-commutator:

(2. 3) [r,s] = rs - sr

for all r,s in R.

To illustrate the rule (A), we may note that, for example,

f(r) = ar ,
f(r,s) = brs+ b'sr ,
f(r,s,t) = crst+ c'rts + dsrt + d' str + etrs + e'tsr

for every (associative) ring R and for all r,s,t in R, where
the coefficients a,b,c,c',d,d',e,e' are integers depending
only on f (and not upon R). The commutation rules (B) allow
‘a '""collection process'. This is because, in (2. 2), the first two
terms concern f(n) while the last concerns f(n-1). For
example, if n =2 we have

(2.4) f(s,r) = f(r,s) + f([s,r]),
and if n =3 we have

(2.5) f(t,r,s) = f(r,t,s)+ f([t, r], s)
f(r, s,t) + f(r,[t.s]) + £(s,[t,r]) + £([t,r, 8]) .

1]

Here we have used the standard abbreviation

[t,r,8] = [[t.r].s].
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The rules (B) - and this is equally important - also allow an
"unfolding process'. For example,

f([r,s], [t,u]) = f(r,s,t,u) - f(r,s,u,t) - f(s,r,t,u) + f(s,r,u,t) .

When we combine (A), (B), it becomes clear that the
integers C(ii" i ,in) in (2.1) must satisfy many conditions.

For example, when we write out (2. 4) in terms of the coefficients
a,...,e' given above, we find that

brs + b'sr = bsr + b'rs + a[s, r]
or
(b-b'+a) [s,r] = 0.
This suggests - what turns out to be correct - that we must have
b-b"+a = 0.
Similarly, (2.5) gives rise to further conditions.

At this point one might wonder whether there are operators,
other than the zero operator, which satisfy (A) and (B); but
there is a simple example at hand, namely the operator T
defined by

siss s =
> n) 1'11'2 rn

(2. 6) T(ri,r
for every n > 1, every associative ring R, and all

ri,rz,...,rn in R.

The condition (A) on dimension-linking operators f tells
us that we may consider each such operator f as a sequence of
polynomials in associative but non-commutative indeterminates.
Then we may define f as an operator by substitution. For this
reason we now specialize the ring R.

3. The algebra of operators. Let

(3.1) X, X oo, X ...
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be a countably infinite sequence of associative but non-commutative
indeterminates, and let & be the free associative algebra over
the ring of integers generated by the indeterminates (3.1). In
terms of &, a dimension-linking operator f can be charac-
terized by the following two properties, together with the usual
rule of substitution:

(A') For each n>1, f(X1,X ,...,X ) is either zero
——— == n

2
or a homogeneous polynomial, contained in &/, having degree
1 in each of Xl,. .., X and total degree n.
I n

(B') For each n>2, and for 1 <ign-1,

.2) f(..., X, s ) S, D P f(..., , oS )3
(3.2) & Xi Xi+1 ) ( Xi+1 Xi i [Xi Xi+1] )

Next we wish to define equality, addition and multiplication
of two dimension-linking operators f,g . The first two defini-
tions are obvious:

(3. 3) f:g@f(xi,...,xnhg(x s, X)), n=1,2,3,....

4 n

(3.4) (frgl(X o, X ) =6(X ..., X ) + g(X

gwss 5 2% g = 423, vess
, " 1 n) n=1 3

To define multiplication we need further concepts. By a
simple set, J, (of positive integers) we mean a finite non-empty
_sequence

T = {i(1),i(2), ..., j(m)}, m

v
.

of positive integers in (strict) ascending order. We denote by
XJ the ordered m-tuple

7 sy ¢ 2 Sy -

Now we define, for every ordered pair of dimension-linking
operators f,g and for all n > "

(3.5) (fg)(X,,....X ) = Z f(XJ)g(XK)
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where the pair J,K ranges over all ordered pairs of disjoint
simple subsets which partition the set

{1,2,...,n}

For example:

(fg)(Xi) 04

1

(fg)(Xi.XZ) f(X,) g(X,) + f(x,) g(X,) ;

(fe)(X,. X, X3) f(x,) 8(X,, X))+ (X)) (X, X, )+ f(X,) g(x1’X2)

+ f(xi’XZ) g(X3) + f(Xi, X3) g(XZ.) + f(XZ, X3) g(Xi).

Now we are ready for some theorems.

THEOREM 3.1. The set, &%, of dimension-linking
operators constitutes an associative algebra, (£, 45 =)
over the ring of integers.

Proof. Clearly it is enough to prove that if f, g are in Fad
then so is fg. Since fg certainly satisfies (A'), we may
restrict attention to (B'); thatis, to

(3.6) (fg)(... ,Xi,Xi+1,...) - (fg)(..., X,

yX;--. = ey 5
o Ko =R [X X

4

where 1 <i<n-1. If the first term on the left of (3. 6) is given
by (3.5), “then the second term on the left comes from (3. 5) by
interchanging i and i+1. The terms of the sum on the right
of (3.5) may be classified according to J,K as follows:

(a) J contains i and K contains it+1 .
(a') J contains i+1 and K contains i.
(b) J contains both i and i+1 .
(c) K contains both i and it1 .

We note that interchange of i, i1 simply interchanges the

terms of type (a) with the terms of type (a'). Hence, in com-
puting the left-hand side of (3. 6), we may ignore the terms of
(3.5) of type (a) or (a'). When (b) (or (c)) occurs, i must lie
directly to the left of it1 in J (or K). Thus, in computing
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the left-hand side of (3. 6), a term

(3.7) f(X ) g(X)

of (3.5) of type (b) is replaced by a term

f(X 4 g(X,)

where XJ* is obtained from XJ by replacing the adjacent

pair Xi’ Xi+1 by the commutator [Xi’ Xi+1]' Similarly, a

term (3.7) of type (c) is replaced by a term

f(XJ) g(XK*) .

It should now be clear that (3. 6) holds, and this completes the
proof of Theorem 3.1.

We repeat the definition of the operator T:

(3.8) ™MX ,...,X) = X....X , n>1.

1 n 1 n —

k
In view of Theorem 3.1, the positive powers, T , of T are
also dimension-linking operators. We need the following:

LEMMA 3.2. The polynomial

k
T(X ,...,X)

1 n

is zero if 1 < n < k and is the elementary symmetric function
in X ,...,X if n=k.
— 4 n

Proof. Since T (Xi) = T(Xi) = Xi' the lemma is correct

for k=1. We assume inductively that the lemma is correct
for some k >1, and we consider the operator

k+1 k
T =T T.

For any n> 1, we have
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k
(3.9) T (X,--':X)—ZT(XJ)T(XK)

where the pair J,K range over all ordered pairs of simple sets
which partition

{1,2,...,n}

If n<k, then, on the right-hand side of (3.9), since J has
length at most k-1,

k
T (XJ) =0

for every choice of J. Hence the left-hand side of (3.9) is zero
in this case. If n = k+1, then, on the right-hand side of (3. 9),
we may drop all terms except those in which J has length k
and K has length 1. But then we see easily that

k+1
T X, -, X
( 1 k+1)

is the elementary symmetric function of X1, N XkH' This

proves Lemma 3.2. As some examples of Lemma 3.2,
T2 =0 ; TZ(X X)=XX_ + X X ;
(X)) =0 TS A T A A

3 3
= ’ ) :01
T (Xl) 6, T (X1 XZ)

3
, , =X X X + X X X, + X
T(X1 X X3) 1 3 " X1X + X, XX

2 2 32 2 3 2 3 1

+ .
X?’X1X2 + X3XZX1

THEOREM 3.3 (David Walkup). The algebra, (L3, +, ),
of dimension-linking operators is isomorphic to the algebra of

formal power-series without constant term in one indeterminate

over the ring of integers. More explicitly, every element., f,
of L has the form

(3.10) f = %X c T
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where the ¢ are integers uniquely determined by . Con-
versely, every operator of form (3. 10), where the oy, B

integers. is in of}.

Remark. Note that if f has form (3.10), then, by Lemma
3.2,

3:11 f = , > 1
( ) (X1 Xn) CkT (X1 Xn) n >

Proof. In view of the Remark, we need only show that if
f isin &, then f has form (3.10). We do this inductively,
using (3.11) as a guide. By (A'")

(X,) = aX

for some integer a. Hence (3.11) holds for n=1 provided we
take c1 =a. Now suppose, inductively, that (3. 11) holds for

some n > 1 and for fixed integers Cprr e C We define
i k

(3.12) g = f- chT
k=1

and note that g is in ¥ and satisfies

(3.13) g(X ,...,X) =0

1 n

for the given value of n. In view of (3.13) and the commutation
rules (B'), the polynomial

remains unchanged when any two adjacent X's are interchanged,
and therefore when the X's are permuted arbitrarily. By this
and Lemma 3.2,

n+1
3.14 s R = 3 B 3.0
( ) elX, Rgal 5 S T U "t
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where the integer c 24 is the (uniquely defined) coefficient
n

of the monomial

in the left-hand side of (3.14). Now, by combining (3. 14),
(3.12), we get (3.11) with n replaced by n+1. This completes
the inductive proof of Theorem 3. 3.

Next we assign to each f in 3 a formal power- series

0
(3.15) H(f;X) = =

s(f;n) _n
n=1 =

X ’

where s(f;n) denotes the sum of the coefficients of f(Xi, o, X))
n
and where X is an indeterminate over the field of rationals.
Clearly
n
(3.16) s(tm)X = f{3X, ... +:X) (n arguments X) .

Hence, by the definitions of addition and multiplication in ‘@',
(3.17) H(f+g;X) = H(f;X) + H(g;X) ,

(3.18) H(fg;X) = H(f;X) H(g;X)

for all f,g in L, Since, in particular, H(T;n) =1, n> 1,
we see that, by (3.18),

(3.19) H(Tk;X):(eX-i)k: T (-1) ‘(_)e. , k>1.

LEMMA 3. 4.

k oy m e
(i) (Dwight Paine) The sum, s(T ;n), of the coefficients

of Tk( X1 ,...,X ) is equal to the number of ordered partitions
e n

of the first n natural numbers into k non-empty (unordered)

k i i
subsets. Hence s(T ;n) is divisible by k!
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(ii) We have

-

(3.20) S(Tk;n) e B (.1)k '( ) i
i=0

k
Proof. To prove (ii) we take f=T in (3.15) and compare
the result with (3.19). To prove (i) we need only consider the

k
form of T (Xi' ..., X ) when expressed in terms of k factors
n
T. (Here we must generalize (3.5) to a formula for k factors.)

Finally we wish to relate dimension-linking operators to the
elementary symmetric functions

(3.21) S (X, su::;X )5
n 1 n

The polynomial (3. 21) is the sum of the n! monomials

in which Y1,Y Y are X ,X.,...,X 1in some order.
n

g ¥ R
In particular, S 1is not a dimension-linking operator, although
n

(by Lemma 3.2),

(3.22) Tn(Xi,..‘,X):S(X,...,X), a1,
n n 1

n ==

It will be convenient to use the following inductive definition of
an elementary ring commutator:

(a) Each indeterminate X, is an elementary ring com-
i
mutator.

(b) If r,s are elementary ring commutators, so is

[r,s]=rs - sr.

LEMMA 3. 4. E k,n are positive integers, with n > k;
and if p(n, k) is the product of the factorials t! , k+1 <t<n,
then

k
(3.23) P(n, k) TH(X,...,X )
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is an algebraic sum of polynomials

(3.24) St(r1’r2""’rt)’ k<t<n,

where ri,r - i rt are elementary ring commutators.

2

Proof. By (3.22), the lemma is true with n =k, provided
we make the convention that

plk, k) =1 .

As a consequence, we may derive the proof by induction on n-k .

If Y ,...,Y 1is one of the n! arrangementsof X ,...,X ,
1 n 1 n

the commutation rule allows us to write

k k
(3.25) TUY .5 202 ¥ ) = T AKX 5050 X )¢ WY 5o.s0;Y )
1 n 1 n 1 n
where W(Y1""’Yp) is a sum of terms of form
k
2 T 30 0y
(3.26) CITRIE N

in which each of the n-1 elements r, is an elementary ring-
i

commutator. If we sum (3.25) over the n! arrangements, and
note that the corresponding left hand side is a symmetric function
of X sese:X 5 W€ gét

1 n

k k
(3.27) (T ,n) S (X, .., X )=n! T (X, ,..., X })+w,
n 1 n 1 n

where s(Tk,n) is given by (3.20) and w is a sum of terms
(3.26). The result now comes by multiplying (3.27) by p(n-1, k)
and applying the lemma for the case n-1,k. This proves
Lemma 3. 4.

If we note that, for t > k, the e\lementary symmetric
function St can be expressed in terms of the elementary sym-

metric function Sk' we may rephrase Lemma 3.4 as fol_lows:
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THEOREM 3.5. To each pair of positive integers k,n
with n > k there corresponds a (least) positive integer b(n, k)
such that

(3.28) b(n, k) Tk(X v X))
. 1 n

may be expressed in terms of the elementary symmetric function
S, as an algebraic sum of terms of form

k

3.2 : S v
( 9) M k(r1, r, rk)
where ri, rz,. NN rk are elementary ring-commutators and

where either M =1 or M is a non-empty monomial. Moreover,
the prime factors of b{n,k) are divisors of n'

We could, indeed, give Theorem 3.5 a sharper form in
terms of the concepts of basic ring-commutator and basic
product. But we shall ignore these concepts in the present note.

4. Two connections with group theory. Let P be the
algebra of all formal power series in the (associative but non-
commutative) indeterminates (3. 1) with integer coefficients.
We wish P to have the integer 1 as identity element. Hence
the elements of P are formal power series

(4.1) - - 7 c(0)+ T c(MM

where the components (or coefficients) ¢ are integers and where
M ranges over all (non-empty) monomials
(4.2) >

n =

= o : 21,
M Y1Y2 Y . n

A

with the Y's chosen from the indeterminates (3.1). Equality
and addition are componentwise. Multiplication is defined as
for ordinary power series - except that we must remember that
multiplication of monomials is associative but non-commutative.

It is easy to see that an element (4. 1) of P has a multi-

plicative inverse in P precisely when c(0) =1 or -1i. In
particular, the elements
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(4. 3) 1+ X , 1,855 wy

i
generate a multiplicative group F which turns out to be a free
group with the generators (4.2) as a free set of generators.

There are many cases - though it would take too long to
give a proper theory in this note - where a group-theoretic problem
can be rephrased as a problem concerning the free group F or
the algebra P relative to an ideal of P. We shall be content
to sketch two cases where a study of ideals of P defined by
dimension-linking operators is appropriate. What we shall omit
to establish is the exact connection between the properties of the
ideals and the appropriate group-theoretical property.

We will begin with the simpler case. (This is discussed
in great detail in [2].) Let k be a fixed positive integer and let

(4. 4) J(k)

be the smallest ideal of P containing all elements of P of form
k

(4.5) (x-1) , xe F .

In the study of the kth Engel condition in groups it is appropriate
to ask whether there exist positive integers n and b such that

(4. 6) bX X....X =0 mod J(k) .
1 2 n

When (4. 6) is true for some n, b, it remains true when the X,
- i

are replaced by arbitrary elements (4. 1) with c(0) =0 .
Consequently, (4. 6) is a type of nilpotency condition for the

ring P. Moreover, if (4. 6) is true for some n, b there will
exist a least positive integer n(k) and a least positive integer
b(k) such that (4. 6) is true for all n > n(k) and for every integral
multiple, b, of b(k). B

As a first step, we need to know more about J(k). First
let n be an arbitrary positive integer and set

(4.7) € = €(1)e(2) ... €(n)
where each €(i) is either 1 or -1. The element
215
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(1) (2) {n)

(4.8) x = (+x ) wex)) Y maex
1 2 n

is in F, and so is every element obtained by replacing one or
more of the Xi by 0. Consequently, if we compute (4. 5)

with x given by (4. 8), express the result as a formal power

series, and delete all monomial terms except those in which

each of Xi’ ..., X occurs at least once, the result must be
n

in J(k). This tells us (once we have thought our way through
the necessary calculations) that J(k) contains all elements of
form

i

(4.9) €T (Xi"“’Xn)“Fk,n(Xr""Xn)

k . - . :
where T is the dimension-linking operator discussed in
section 3 and where

i gt v

(4.40) F, (X, X ) = F (e ,.o¢ 5 X,

is a definite formal power series (4. 1) in which the coefficient
c(M) of a monomial M 1is zero unless M is a monomial of
degree at least one in each of Xi" Ce Xn and of total degree at

least nt+1. By contrast, the first term,

SLT

‘ k
eT (X,,...,X),
1 n

is the leading homogeneous part of (4.9}, being a polynomial of

degree 1 in each of Xi, R ,Xn and of total degree n.
It is, moreover, quite easy to see that J(k) is the smallest E

ideal of P containing all elements of form

k
.. Lo, € 3Y L0 Y
T (Yi'Y ’,Yn)‘+ Fk (E1 )

2’ ,n n’ 1 n

where n is a positive integer and the Y's are chosen from
the indeterminates (3.1).

As a simplification, it is convenient to introduce an ideal

¥
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(4.11) p*

defined as follows: P* is the set of all formal power series
(4.1) in which ¢(0) =0 and c(M) =0 except possibly when M
contains an indeterminate more than once. Then the enlarged
ideal

(4.12) J(k) + P*
is the smallest ideal containing P* and all polynomials

k
T (Y, younssyY )
1 n

where n is a positive integer and Yi' ..., Y are distinct
n

indeterminates chosen from (3. 1).

It turns out that the easier problem in which (4. 6) is
replaced by

(4.13) bX X....X =0 mod J(k) + P¥
1 2 n

not only has great group-theoretical importance in its own right
but is extremely difficult for k> 2. We shall say a little more
about this in the next section.

Finally, let us deal briefly with the Burnside Problem.
This concerns a positive integer N and all groups G subject
to the identical relation ‘

(4.14) x =1.

The original Burnside Problem for exponent N asks whether
all finitely generated groups subject to (4.14) are finite. The
Restricted Burnside Problem for exponent N and r generators
(r being a positive integer) asks whether among the finite groups
on r generators satisfying (4.14) there is one of maximal order.

In the study of the Burnside problems for exponent N it
is appropriate to consider the ideal

(4.15) B(N)
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of P defined as follows: B(N) is the smallest ideal of P
containing all elements of form

(4.16) xN-i, xe F .

Just as before, we are led to study the ideal P* +B(N). Here

k
the role of T 1is taken over by the dimension-linking operator

k

N
P ) T

(4.17) f_ = (N

N k=1 k

The fact that f _ is a dimension-linking operator can be
used to explain the known connection between the Restricted
Burnside Problem and the theory of Lie rings.

5. Permutation ideals. As in section 3, let (% be the
free associative algebra over the integers, generated by the
countably infinite set of indeterminates (3.1). Let k be a
fixed positive integer. By the permutation ideal,

(5.1) I(k) ,

k
of T we mean the smallest ideal of £X containing all poly-
nomials of form
Tk(Y Y Y ) > 1
1 s 2! LR LY ) n ’ n - ’

where Yi'Y Yn are chosen from the indeterminates (3. 1).

gt
In addition, we define

(5.2) n(k) , a(k)
as follows: If there exists a positive integer n such that

(5.3) aX, X, ...X =0 mod I(k)

172 n
for at least one positive integer a, then n(k) is the least such
positive integer n. Otherwise, n(k) = ®. If n(k) < o, then
a(k) is the least positive integer a such that (5.3) holds with
n =n(k). If n(k) =, then a(k) = .
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Relatively little is known at present about n(k), a(k),
although these numbers are precisely what we need to know in
connection with the problem (4.13). We would, indeed, be
happy to have an upper bound for n(k) (proving that n(k) is
finite) and as much information as possible about the prime
factors of a(k). It is easy to prove the following:

(5.4) If n(k) <o, then k' divides a(k).

Indeed, (5.4) is a direct consequence of Lemma 3.2 (i). We
also know the following:

(5.5) n(1) =1 = a(1),
(5. 6) n(2) = 2 = a(2),
(5.7) n(3) = 8 or 9.

(5. 8) The prime divisors of a(3) are 2, 3 and (possibly) 5.

Here, (5.5) is trivial, and (5. 6) can be deduced from
(5.4) and the identity
5.9) 2X, X X —TZX X X)-XTZ(X X.) Tz(x X )X
e B) Sy B0 ST R0 - 17730 g7 glep -
The proof of (5.7), (5.8) is very much deeper; in particular,
there is very little hope of proving (5.7) by explicit formulas
comparable to (5.9). Indeed, (5.7), (5.8) were proved by
David Walkup in his Ph. D. thesis (University of Wisconsin,
August 1963) by a skillful combination of the classical theory

of representations of the symmetric group, the theory of Lie
rings, and the theory of polynomial identical relations.

I would conjecture that n(k) is finite for every k> 1
and also that the prime divisors of a(k) are the prime divisors
of k!

The connection between the problem of the finiteness of
n(k) and the theory of representations of the symmetric group
may be given as follows: Consider some fixed positive'integer
n and form the vector space V over the field of rationals with
a basis consisting of the n! monomials obtained from the

monomial
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by permuting the subscripts. Then V provides the regular
representation (over the field of rationals) of the symmetric
groupon 1,2,...,n. On the other hand, V has a subspace,
VO, spanned by all polynomials of form

o T )

MSk(ri,rZ, ceea Ty

which are homogeneous of degree 1 in each of X1 y oo, X

and in which M is a monomial (possibly the empty monomial 1)
and the r, are elementary ring-commutators. The subspace
i

V  also provides a representation of the symmetric group on
o
1,2,...,n. Hence we will have VO =V precisely when V
o

yields each irreducible representation of the symmetric group
on 1,2,...,n as often as the degree of the representation.
On the other hand, as should be clear from Theorem 3.5 and
the definition of I(k), it is true that n(k) is the least integer
n such that V :Vo (if such an n exists).

By exploiting the connection between n(k) and the

properties of the elementary symmetric function, one may
deduce from a result of Graham Higman [3] that

2 -2
(5.10) . n(k) > k e
for all sufficiently large k.
We shall conclude with a specific application to group
theory. First we need some definitions. If m is a set of
primes, an element, x, of the group G is said to be a

m-element provided x has finite order n and each prime
divisor of n isin w. If y, x are group elements, we define

-1 -1
(y,x) =y x yx.

Furthermore, if i is a non-negative integer, we define

(y,x;0) =y, (y,x;it1) = ((y,x;i), x) .
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THEOREM 5.1. Let k be a positive integer such that
n(k) is finite. Then there exists a finite set m of primes with
the following property: Let G be any group containing an
Abelian normal subgroup A such that (i) A has no m-elements
and (ii) the identity

I
-

(5.11) (a, x;k)

holds for all a in A and x in G. Then A is contained in
the nll\tl 4 Y AR Iy :

the n(k) term of the ascending central series of G. Here
the set m must contain every prime divisor of a(k) but need

not contain any additional primes greater than

(5.12) (k-1)(k-[k/2]) .

In (5.12), [x] denotes the '"greatest integer in x'". The
proof of Theorem 5.1 is given in detail in [2]. For the case
k =2, since n(2) =a(2) =2, we may take m= {2}. For k=3,
we know that n(3) =8 or 9 and that the prime divisors of a(3)
are 2, 3 and (possibly) 5. Here we may take = ={2,3,5}.
An earlier result of Heineken [4] for k=3 used = ={2,3,5,7}
together with the estimate

n(3) < 39 .

In a sequel he improved this estimate to
5
n(3) <3 .

In [2], several distinct but equivalent definitions of n(k)
are given. One of these is the following: n(k) is the least
positive integer (if one exists) such that a conclusion of the
type in Theorem 5.1 holds for all groups G. Other definitions
concern groups imbedded in associative rings and nilpotency
properties of Lie rings.
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