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Abstract

An inverse semigroup S is said to be meet (join) semidistributive if its lattice .if &(S) of full inverse
subsemigroups is meet (join) semidistributive. We show that every meet (join) semidistributive inverse
semigroup is in fact distributive.

2000 Mathematics subject classification: primary 20M18,08A3O.

The study of subalgebra lattices of algebras has a long and fruitful history. In par-
ticular, the subsemigroup lattices of semigroups have been the subject of continued
uwes.U%atiou, especially lyy She\it\v\. and Kvs colleagues (see. _̂IQ\ fc* a. tecent suxve^y
Inverse semigroups whose lattice 5£ of inverse subsemigroups lattices were distribu-
tive, modular, etcetera are extremely restricted in nature (see [1] and [10, Section 17])
and with this in mind the second author initiated the study of the lattice J/fj?(S) (or
just j£?^") of full inverse subsemigroups (those containing all the idempotents) of
an inverse semigroup S and described those inverse semigroups for which t£& is
distributive in [6]. The prototype for this class is the bicyclic semigroup. The authors
of the current paper similarly described the inverse semigroups for which ££& is
modular in [4]. In the first paper on the topic, progress was made on describing the
inverse semigroups for which -SfJ2" is semimodular, (for instance, the free inverse
semigroups have this property) but a full answer remains hidden from view at this
point. See [7] for a survey on Jf & and _$?.

In this paper we describe the inverse semigroups for which _Sf& is either meet
semidistributive or join semidistributive, terms that are generally referred to as SD( A)
and 5D(v), respectively. A lattice satisfies SD(A) if the following implication holds:
a Ab = a Ac^>> a A(bv c) = a Ab; SD(v) is just its lattice-theoretic dual. These
important lattice-theoretic implications are satisfied by free lattices, for instance [2].
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38 Katherine G. Johnston-Thorn and Peter R. Jones [2]

We shall show that in fact each of meet semidistributivity and join semidistributivity
of ££& is equivalent to distributivity. Sufficiency is trivial, but the proof of necessity
is certainly not so. This leads us to study an interesting Munn semigroup TY, where
the semilattice Y is shown in Figure 1, Section 3.

For groups, both J£?& and S£ coincide with the lattice of subgroups. It was shown
by Shiryaev [11] that in this case, SD(A) and distributivity are equivalent, and by a
well-known result, equivalent to being locally cyclic (see the monograph on subgroup
lattices by Suzuki [12]). Equivalence of 5D(v) and distributivity for subgroup lattices
of groups was shown by Napolitani [8]. (See Lemma 2.6 for a proof.) However, it was
shown by Shiryaev in the same paper that for subsemigroup lattices of semigroups,
SD(A) and distributivity are distinct (albeit closely related). In other work, the same
author studied 5D(v) for those lattices and demonstrated a rather different set of
criteria (see [10, pages 37-38] for a summary). So on the one hand our result is not
entirely surprising. But on the other, there is no reason, a priori, to assume that it
should hold.

It is convenient to use the terminology suggested by paper's title: we call an inverse
semigroup a ^-inverse semigroup if the lattice j£f & has property &.

In outline, our argument in Section 2 follows those in [5, 6, 4]: _£?Ĵ "(S) is a
subdirect product of the lattices of full inverse subsemigroups of its principal factors,
which are either simple or 0-simple inverse semigroups. Since SD(A) and 5D(v),
being implicational, are preserved by sublattices and direct products, we are reduced to
considering [0]-simple inverse semigroups. Completely 0-simple inverse semigroups
are easily dealt with. It is then shown that a 0-simple inverse semigroup S that is either
meet or join semidistributive has no zero-divisors, and that JC^(S) = J£^{S \ {0}),
so that only the case where 5 is simple need concern us. The remainder of Section 2
then shows that such a semigroup satisfies the sufficient conditions for distributivity
given by our main preliminary result, Result 1.1, which follows some preliminaries.
Section 3 investigates the properties of an interesting Munn semigroup, which plays a
key role in the main theorem.

It was of some surprise to the authors that, despite the inherent non-duality of JSf «F,
almost every step in our proofs applies equally well to either of the hypotheses SD(A)
or SD(v).

1. Preliminaries

The reader is referred to [9] for properties of inverse semigroups, especially to
Chapter 9 for information on monogenic inverse semigroups. We standardize some
notation, at this point. Let S be an inverse semigroup. For any subset A of 5, EA will
denote the set of idempotents of 5 that belong to A. An inverse subsemigroup is/«//
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[3] Semidistributive inverse semigroups 39

if it contains Es- Following [4], we shall denote by (A) the full inverse subsemigroup
of S generated by a set A. Since we shall have several occasions to refer to the
inverse subsemigroup that A generates, we need an alternative notation: {(A». Hence
(A) = ((A U Es)).

One difference in terminology from [9] is that we use the more modern term
aperiodic, instead of 'combinatorial', to describe inverse semigroups in which all
subgroups are trivial.

An element a of an inverse semigroup is said to be right regular if aa~l > a~la and
strictly right regular if strict inequality holds. In the latter case it is well known that the
inverse subsemigroup ((a)) generated by a is bicyclic, with identity aa~[. (The dual
definition also yields a bicyclic semigroup, with dual identity element.) Following [6]
we say that £ s is Archimedean in S if for every strictly right regular element a and
idempotent e of S, a~"a" < e for some n > 1.

RESULT 1.1 ([6]). A simple inverse semigroup S (not a group) is distributive if and
only if the following three conditions hold:

(1) it is aperiodic;
(II) its semilattice of idempotents is Archimedean in S and the idempotents of each

S>-class of S are totally ordered;
(III) its maximum group quotient is locally cyclic.

It was also shown in [6J that in that case, J f & is a certain 'contracted' direct product
of the lattice of ideals of its semilattice of idempotents with the subgroup lattice of
its maximal group quotient. In [4, Theorem 5.3] the authors went on to completely
determine the bisimple distributive inverse semigroups, in terms of subgroups of the
rationals.

A consequence of Result 1.1 is that any simple distributive inverse semigroup
S is £-unitary: the least group congruence a identifies no nonidempotents with
idempotents. See [9] for various conditions equivalent to £-unitariness. We shall
prove early in the next section that a simple meet semidistributive inverse semigroup
is necessarily £-unitary. The next preliminary result will then be useful. We note that
Corollary 3.7 of [6] follows immediately.

PROPOSITION 1.2. Let S be any E-unitary inverse semigroup and T any inverse
subsemigroup of S. Then Jjf^(T) embeds in

PROOF. Map any full inverse subsemigroup U of T to its join U v Es in
Clearly U v Es e S£&{S) and, since joins in S£^(S) are those in Jf(S), the map is
join-preserving.

To show it is intersection-preserving, we need to show that (U v Es) H (V v Es) c
V) v£ s , fo ra l l U, V e 1£&(T). So letx belong to the left-hand subsemigroup.
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Clearly we may assume that x <£ Es. It is easily seen that JC = eu — f v, for some
e,f € Es, u € U, v e V. It follows that uav and uu~xvovv~xu. Since it is easily
seen that uu~lvBHvv~xu, we obtain uu~]v = vv~xu = w, say, using the fact that
E-unitary inverse semigroups are characterized by the property 3? n a = 1 [3]. Now
w € U f) V, since U and V are full in 7, and x = xx~lw, whence x belongs to the
right-hand subsemigroup.

Finally, if U € Sf^(T), let x e (U v ES)C\ T, so that x = eu = JCJC-'K, for
some e € Es,u € U. Since JC e 7\ w " ' e 7\ But U is full in T,sox e U. Thus
(£/ V Es) f)T = U and this immediately implies injectivity of the given map. •

The following lemma, on the generation of full inverse subsemigroups, will be used
repeatedly. Its proof is easy and its essence may be found in [5].

LEMMA 1.3. Let S be an inverse semigroup and a € S\ES. Ifb is a nonidempotent
in the full inverse subsemigroup {a) generated by a, then b = {bb~^)an, for some
nonzero integer n\ ifn < 0, then b~l = (b~lb)a~".

Only elementary lattice theory will be needed in this paper. It is clear that since
5 D ( A ) and SD(v) are defined by implications, they are preserved by sublattices and
direct products. Each is also clearly a consequence of distributivity itself. Less clear
is the following preservation property of SD(A). Whether the analogue holds for
SD(v) we do not know, leading to the one step in the proof of the main theorem in
which the arguments differ.

LEMMA 1.4. Let L be a complete meet semidistributive lattice and 0 : L -> M
be a surjective lattice morphism that preserves complete joins. Then M is meet
semidistributive.

PROOF. For each m € M, let m be the greatest element of m<t>~1. Note that the
map m —»• m' is order-preserving: for if m < n in M, then we have (m' v n')0 =
m'4> V n'<j) = m v n = n, whence m' v n' < n', that is, m' < n'. It now follows that
(m A n)' < m' A n' and the reverse inequality follows from the definition, that is, the
map is meet-preserving.

Now let m, n, r e M, with m An = m A r. Then m A n = m' A r' and from S D ( A )
in L, we have m' A («' v r') = m' A /;'. Applying 0 yields m A (H V r) = m An. •

The following technical lemma is at the heart of almost every argument that follows.
The notation a \\ b means that a and b are incomparable.

PROPOSITION 1.5. Suppose the lattice L contains a, b, c that satisfy: aAb = aAc,
bva = by c and a || b: then L is neither meet nor join semidistributive. In particular,
this is the case when L has a zero, a, b ^ 0 and a Ab = 0 = a Ac and by a = fo v c.
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PROOF. The final statement follows immediately from the first. Now suppose
a, b, c are as in that first statement. Then a A (b v c) = a A (b v a) = a ^ a A b,
contradicting SD(A). But the statement is self-dual. •

COROLLARY 1.6. In a modular lattice, SD(A), S D ( V ) and distributivity are equiv-
alent.

PROOF. A modular lattice is nondistributive if and only if it contains a copy of
the five-element bounded lattice {0, 1, a, b, c] with atoms a, b, c. This sublattice
satisfies the conditions in the proposition—and SD(A) and SD(v) are inherited by
sublattices. •

2. The main result

The main result of the paper is the following.

THEOREM 2.1. The following are equivalent for an inverse semigroup S:

(i) 5 is meet semidistributive.
(i i) S is join semidistributive.

(iii) S is distributive.

The steps in the proof were outlined in the introduction. We first reduce the problem
to the case of simple and 0-simple inverse semigroups.

RESULT 2.2. Let S be an inverse semigroup. Then:

(i) ([5]) Jf^(S) is isomorphic to a subdirect product of lattices of full inverse
subsemigroups of its principal factors; and each of the latter lattices is isomorphic to
an interval sublattice of S£^{S).

(ii) Hence S is meet semidistributive if and only if each of its principal factors is
meet semidistributive, and similarly for join semidistributivity.

The case when 5 is a group was dealt with in the introduction. If S = G° is a group
with adjoined zero, then clearly ^f^(S) = ^C(G). Now suppose 5 is completely
0-simple, that is, a Brandt semigroup.

PROPOSITION 2.3. Let S be a completely 0-simple inverse semigroup, not a group
with adjoined zero. The following are equivalent:

(i) S is meet semidistributive.
(ii) S is join semidistributive.

(iii) 5 is aperiodic with exactly two nonzero idempotents.
(iv) S is distributive.
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PROOF. Suppose 5 is either meet or join semidistributive and let e, f be distinct
nonzero idempotents. Leta € Rer\Lf. It is easily calculated that (a) = £sU(a,a" '} .
If x e He, then (xa) = Es U {xa, Ota)"1}, where xaJi?a, and so {x) D (a) = Es =
{x) D (xa). Now since * = (xa)a~\ (a) v (x) = (a) v (xa). By (the latter statement
of) Proposition 1.5, (x) = E5, that is, x e Es-

Now suppose that g is a third nonzero idempotent. Let b e Rf n Lg and c —
ab € Ren Lg. Then (b) = £5 U {6, *"'} and (c) = £ s U {c, c"1}. It follows that
(a) n (6) = Es = (a) n (c). But from a = cb~l we also have (b) v (a) = (b) v (c).
Thus Proposition 1.5 yields a contradiction.

That (iii) implies (iv) was shown in [5]. •

It only remains to consider the [0]-simple inverse semigroups that are not completely
[0]-simple. The next result reduces one step further, to the heart of the problem.

LEMMA 2.4. Let S be a 0-simple inverse semigroup that is not completely 0-simple.
If S is either meet or join semidistributive, then it has no zero divisors and the simple
inverse subsemigroup S \ {0} is either meet or join semidistributive, respectively.

PROOF. Suppose 5 has zero divisors. Then there exist nonzero idempotents e, f
whose product is zero. By 0-simplicity, (see [3, Lemma 5.7.1] there exists an idem-
potent less than e and ^-related to / , we may assume that e@f. So there exists
a € Re(~\Lf. Again, since S is not completely 0-simple, there exists an idempotent g,
say such that g@e and g < e. Let b € Re D Lg and c = a~xb, an element of Rf n Lg.

We show (b) D (a) = Es = (b) n (c) which, together with the equation (a) v (b) =
(a) v (c) (based on b — aa~lb = ac), contradicts Proposition 1.5.

To show the first of the two equalities, suppose that x is a nonidempotent in
(b) Pi (a). Then, applying Lemma 1.3, x — (xx~[)bk, for some positive k, without loss
of generality (by replacing x by its inverse, if necessary), so that x e eSg; similarly,
x = (xx~l)an, whence x e eSf, if n > 0, or x e f Se, if n < 0. If x € eSg D eSf,
then* = xg — (xf)g — 0, and likewise if x e eSgDf Se, then* = ex = e(fx) = 0.
This contradicts the assumption that A: is a non-idempotent: hence (b) Pi (a) = Es.
The second equality follows from a dual argument, with / Sg and gS/ appearing in
place of eSf and / Se.

The map A —*• A U {0} is easily seen to be an isomorphism of jSf^(S) upon
\ {0}). •

In the remainder of this section we shall show that a meet or join semidistributive
simple inverse semigroup (that is not a group) satisfies the conditions (I)-(III) of
Result 1.1, completing the proof of Theorem 2.1.

LEMMA 2.5. Let S be a simple inverse semigroup that is either meet or join semidis-
tributive. Then S is E-unitary.
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PROOF. Suppose S is not £-unitary. Hence S is not a group and it contains a
nonidempotent a and an idempotent g such that ga = g = ag. Put e = aa~{ and
/ = a~{a. By simplicity, S contains an idempotent ^-related to e and below eg, so
that we may assume that g < e and gSSe. Let b e ReC\ Ls and let c — a~[b.

The proof is similar to that of the previous lemma: we show {b) D (a) = Es =
{b} n <c) (based on a = bc~l), which together with the equation (a) v (b) — {a) v (c),
contradicts Proposition 1.5.

To show the the first of the two equalities, we once again suppose that x is a
nonidempotent in (b) D {a), so that x = (xx~l)bk, for some k > 0, without loss of
generality, and x e eSg; and x = xx~la", for some n ^ O . Since a"g = g, we obtain
x = xg — xx~lg e Es, another contradiction. Again, the second equality follows by
a dual argument. •

LEMMA 2.6. Let S be an E-unitary inverse semigroup that is either meet or join
semidistributive. Then S/o is locally cyclic {and so abelian).

PROOF. In either case we make use of [4, Proposition 1.6], which when specialized
to £-unitary inverse semigroups states that the map S£&(S) —>• Jif(S/o) induced
by the natural morphism S —> S/o is a lattice morphism. This morphism clearly
preserves complete joins.

For SD(A) the claim now follows from Lemma 1.4 and the result of Shiryaev, for
groups, cited in the introduction.

For 5D(v) we do not have the analogue of that lemma and proceed directly instead.
We first prove that under the hypothesis on S, S/o is abelian. So let a, b e S/o.
Then there exist x2#.y in 5 such that xo = a, yo — b. (For instance, if x'o = a
and y'a = b, put x = y'(y')~lx' and y = x'(x')~ly'.) Now since x(x~ly) = y
and (x~ly)y~l = x'\ we have (x,y) = (x~ly) v (x) = {x~ly) v (y) and so by
SD(v) in 5, (JC, y) = {x~]y) v ({x} n (y)). Now by [4, Proposition 1.6], the natural
morphism S —> S/o induces a lattice morphism of Jz?j£"(.S) upon Ji?(S/o), and so
{a, b) = (a~'b) v ((a) n (b)). But (a) D (b) is a subgroup of the centre of (a, b) and
thus a normal subgroup of {a, b), so that (a, b) = (a~1b)({a) n (b)). Then the factor
group (a, b)/{a) n (b) is isomorphic to the cyclic group (a~lb}/({a) n (b) n (a~'6)).
Hence the factor group of {a, b) by its centre is also cyclic and so, by a well known
theorem, (a, b) is abelian.

To show S/o locally cyclic, consider any finitely generated subgroup. Since S/o
is abelian we may assume, without loss of generality, that this subgroup is the direct
product of finitely many cyclic subgroups. Suppose {a) and {b) are two such direct
factors, so that (a) n {b) = 1. Now choosing x, y e S and proceeding as above, we
obtain {a, b) — (a~*b). The result now follows by induction. •

We observe that our proof includes a proof that 5D(v) implies distributivity for
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groups (but for SD(A) uses the result of Shiryaev).

LEMMA 2.7. Let Sbea simple inverse semigroup that is either meet or join semidis-
tributive, but is not a group. Then S is aperiodic and Es is Archimedean in S.

PROOF. On the one hand, suppose Es is not Archimedean in S. Then there is a
strictly right regular element a, with aa~l = e, say, and an idempotent g such that
g ~£ a~"a", for all n > 0. Since 5 is simple, we may assume without loss of generality
that g&e and g < e. If, on the other hand, S is not aperiodic, choose a nonidempotent
a in a subgroup He, say; then there exists an idempotent g such that g3>e and g < e.

In either case, we therefore have an element a such that e = aa~x > a~xa and an
idempotent g < e, ^-related to e and such that g jf a~"a" for all n > 0.

Let b e Re D Lg. We show that (a) n {b) = Es. Suppose otherwise: then, by
Lemma 1.3, we may assume a nonidempotentx such that* = xx~lbk, for some k > 0
and x = xx~la" for some n ^ O . Then bkaa". Suppose n > 0. By hypothesis, both
bk and a" lie in Re and since 5 is £-unitary, by Lemma 2.5 they are equal. However,
this yields the contradiction g — b~xb > b~kbk — a~"an. Alternatively, n < 0, in
which case a~na" = e and so a~"bk e Re and by £-unitariness a~"bk = e, yielding
the contradiction g = b~lb > b~kbk > e > a~la.

Consider the idempotent h = (ab)~lab. Since h < g and ab € Re C\ Lh, h
has the same properties that g has and by the argument of the previous paragraph,
(a) n {ab) = Es.

Buta = ae — (ab)b~l and so (b) v {a} = (b) v {ab), contradicting Proposition 1.5.
•

It remains to prove that the idempotents of each £^-class form a chain in a simple
inverse semigroup that is either meet or join semidistributive. This is by far the most
difficult step. We show first that the width w(ED) (the maximum number of mutually
incomparable idempotents) of the poset ED, under the natural order, is at most two.
The incomparability relation on Es is denoted by ||, as for lattices.

LEMMA 2.8. Let Sbea simple inverse semigroup that is either meet or join semidis-
tributive. Then w(ED) < 2 for each of its ^-classes D.

PROOF. By Lemma 2.5, 5 is £-unitary. Suppose e, / , g are mutually incomparable
^-related idempotents; let a e Ref\Lf,b e RfnLHa.ndc — ab, so that ab e Rer\Lx.

Let T — {{a, b)), the inverse subsemigroup generated by a and b. We shall show
that T is neither meet nor join semidistributive, contradicting Proposition 1.2. Let
us consider products w of a's and fo's that lie in Re (and so begin with a). Since
aa~l || a"'a, we have a2, aa~2 <£ /?,, so that if w e {{a)) then w € {a, aa~l}. From the
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[9] Semidistributive inverse semigroups 45

given incomparabilities we also see that aa~xb, aa~xb~\ ab~x, ab2 £ Re: this leaves
T fl Re = [aa~l, a, ab = c) (since abb'1 = a).

It follows that the principal factor for the J?-class Ja in T is completely 0-simple
with three nonzero idempotents. By Proposition 2.3, T is neither meet nor join
semidistributive. •

In view of Result 1.1, the next lemma will complete the proof of our main theorem.
However, all the real work is deferred to the next section of the paper. According to
Theorem 3.4 and the results of the current section, if w(ED) = 2 for some f^-class D
of S then S contains an isomorphic copy of the inverse monoid M with presentation
<(z, e | zz~x > z~xz, e2 = e, zz~x > e, ez~xz — z'2z2)). However, by Theorem 3.3 M
is neither meet nor join semidistributive, contradicting Proposition 1.2.

LEMMA 2.9. Let S be a simple inverse semigroup that is either meet or join semidis-
tributive. Then w{ED) = 1, that is, ED is a chain, for each Qi-class D. Hence S is
distributive.

Note that according to Theorem 3.2 and Theorem 3.3, the condition that the idem-
potents of each ^-class form a chain is not a consequence of the other conditions.

We conclude this section with a somewhat technical lemma that will be used in
the next section. We include it at this point because in the case when S is bisimple,
the results of the following section may be circumvented and the conclusion of the
previous lemma drawn almost immediately, as in the corollary below.

LEMMA 2.10. Let S be an E-unitary inverse semigroup, with S/a abelian. Then

(i) if b is right regular and e e Es satisfies e > bb~x and e@bb~\ then RL,
contains a right regular element c such that cab. Hence

(ii) ifaa~x || a~xaandg e Es satisfies g < aa'x and g3)aa~x then (ga)(ga)~x ||
(ga)-](ga).

PROOF, (i) Since b is right regular, b2b~2 = bb~x. Now choose d e ReD Lbh-< and
put c = dbd~x. Since S/a is abelian, cab. Now

cc'x = dbdxdb-]d'x = dbbb'xb~xd~x = dbb~xd~x = dd~xdd~x = dd~[ = e

and c~xc < dd~x = e.
(ii) Suppose, on the contrary and without loss of generality, that ga is right regular.

Then, with e = aa~x, (i) implies that Re contains a right regular element c, cr-related
to ga and hence to a. But E-unitariness gives c = a, contradicting the assumption
on a. •

COROLLARY 2.11. If S is a bisimple inverse semigroup that is either meet or join
semidistributive, then ED is a chain for each S>-class D. Hence S is distributive.
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PROOF. Suppose 5 contains incomparable ^-related idempotents e, f. Let a e
Re(~\Lf. Since aa"1 || a~lamda2$a, we apply (ii) of the preceding lemma, with g =
a2a~2, to obtain a2a~2 || (aa~l)(a~[a). However this forces the idempotents a2a~2,
(aa~])(a~la) and a~2a2 to be mutually incomparable, contradicting Lemma 2.8. •

3. The inverse monoid M

In this section we investigate the properties of the inverse monoid M that was
defined before the statement of Lemma 2.9. In view of its representation as the Munn
semigroup of a particularly interesting semilattice (see Figure 1 below), it has some
independent interest, so the first part, at least, of this section can be read independently
of the rest of the paper.

As in the rest of the paper, if S is an inverse semigroup and X a subset of S
then the inverse subsemigroup of S generated by X is denoted {(X)), while the full
inverse subsemigroup that it generates is denoted (X). The notation (X\R) stands
for an inverse semigroup presentation, where X is a nonempty set and R is a subset
of FIX x Flx, FIX being the free inverse semigroup on X. Then {{X\R)} is the
inverse semigroup defined by this presentation: the quotient of FIX by the congruence
generated by R. Since it should not cause confusion, we shall use the same notation for
the elements of FIX and their classes in the quotient. Relations of the form ef — f,
where e, f are idempotents of FIX, will often be abbreviated as e > / .

We use the notational conventions of formal languages to describe certain subsets
of inverse semigroups S. Thus X+ denotes the subsemigroup generated by X and, if
S is a monoid, X* denotes the submonoid so generated (and if X = [x], we use the
respective abbreviations x+ and x*).

To begin, we repeat the definition of the monoid under consideration. Let

M = ((z, e | zz~x > z'xz, e2 = e, zz~x > e, eZ~]z = z~2z2)).

From the first relation it follows that z generates (as an inverse subsemigroup) a
quotient ofthebicyclic monoid with zz~l as identity. Hence ((z)) = z~1*z*. Further, in
combination with the third relation we see that M is a monoid with identity zz~l = 1.
From the final relation we have that ez~[ — z~2z2z~l = z~i(z~lz)(zz~l) and obtain:

(1) ez~x = z~2z and thus ze = z~lz2-

From these equations it is clear that any product of z 's and e's in M may be rewritten
so that any noninitial e is preceded by z"1 and any nonterminal e is succeeded by z,
so that, using the fact that zz~l = 1, at most one e need appear. Hence we have the
following description of the elements of M, which will turn out to be canonical.
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PROPOSITION 3.1. M = z~l*{e, \}z*.

Consider the semilattice Y shown in Figure 1 below. Its Munn semigroup TY

consists of the isomorphisms between principal ideals of Y, under composition of
partial mappings. See [3] for more details and examples. Denote by y : YkQ —• Ykx

the 'glide reflection' that maps k, to ki+\ and g, to gi+i, for all / > 0; and by e the
identity automorphism 1 Ygn- It is clear that the relations in the presentation of M are
satisfied, with z = y and e = e. Thus ((/, e)> = y~'*{e, \}y*. A straightforward
calculation shows that for /; > 0, y" : Y^ ->• Ykn and ey" : Kg0 - • KSn. It follows
easily that the elements in the set y~'*{e, \}y* are distinct. Hence {{y, e)) = M.

FIGURE 1. The semilattice Y

But it is also clear that there are no nontrivial automorphisms of the principal ideals
of Y (so that Ty is aperiodic) and also that since each k, covers two elements but each
gi only one, these two types of elements generate nonisomorphic ideals. Thus TY

is generated by y and e. Further TY has two ^-classes, one the bicyclic semigroup
DY — ((y)), the other Df. Since Y is subuniform, 7> is simple. The other properties
in the following theorem are easily verified.

THEOREM 3.2. The inverse monoid M defined above is isomorphic to the Munn
semigroup TY of the semilattice in Figure I. It has the following properties:

(i) The elements of M are in bijection with the set z~[*{e, l}z*.
(ii) The element z generates a bicyclic inverse subsemigroup.

(iii) M is E-unitary, with M/a infinite cyclic and EM S Y.
(iv) M (5 aperiodic.
(v) EM is Archimedean in M.

(vi) M is simple, with two ^-classes, one of width one, one of width two.
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We remark that the E-unitariness of M may also be deduced directly, from the fact
that it is an idempotent-pure quotient of the free product of the free inverse semigroup
on z, which is E-unitary, and the trivial semigroup [e].

THEOREM 3.3. The inverse monoid M is neither meet semidistributive nor join
semidistributive.

PROOF. Let a = ez, b = ez2 and c = a~xb = z'xez2. Put A = (a), C = (c) and
B = (A n C) v (b). We show that C n A = C Pi B and A v C = A v B, but A || C
in J£?^\ contradicting the first statement of Proposition 1.5.

We first need to establish some properties of a, b and c. The equations that are
used in the proofs follow easily from (1), but are more transparent if viewed in the
context of Ty, using the relationships stated earlier, under which, for example, the
idempotent z~"ez" of EM corresponds to gn in Y. The corresponding isomorphisms
map Yg0 -> Ygu Yg0 - • Yg2 and Yg\ - • Yg2, respectively. Hence a3?,bJ£c3?,a~x.

(i) Since aa~' = e and a~[a = z']ez, aa~[ || a~la. Hence Dffl>> = {aa~[,a~la,
a, a~l}. Now a2a~l = z~2z3 is strictly right regular and therefore generates a bicyclic
inverse subsemigroup with identity e. (In the terminology of [9, Section IX.2], {(a))
is of type (2, ocr).) The remaining elements of {(a)) form the ®{{a))-class Dl"j_, =
«a2a-')>.

(ii) Similarly, since cc~' = z~lez and c~'c = z~2ez2, cc~l || c"'c and {(c» consists
of the two 9w -classes D<(c» = {cc"1, c~lc, c, <r'} and <(cV», where c V = <r3z4

is strictly right regular and generates a bicyclic inverse subsemigroup with identity
Z~xez. Note also that t^c"1 = z~V = a"'a2.

(iii) Since bb~l = £ and b~xb = z~2ez2, b is strictly right regular and generates a
bicyclic semigroup with identity e.

Now we show that A n C = C \ {c, c~'}. From (i), A n /?(.=A n Ra-> ={a"', a-1<a),
so c ^ A. Hence also c"1 ^ A. On the other hand, let x be a nonidempotent of C,
so that x = fy for some / e £M and nonidempotent y of C. Suppose y e {(c2c~1)).
By (ii), c*c~l = a~xa2 € A and x € A also. The alternative is that y e {c, c~'}. If
y = c, suppose/ > z~lez = cc~l: then x = c; otherwise, using the isomorphism
of EM with y, / < e. But then x = fc = fee = fc2^1 = fa^a2 6 A. If
y = c~', suppose/ > z~2ez2 = c~lc: then* = c~l; otherwise/ < z~xez = cc~x

andx = / c " ' =f(cc~2) =f{a~2a) e A. Hence C\{c, c"1} c A.
To show A D C = fi D C, we observe that since A n C c B, the left hand side

is contained in the right. From the preceding paragraph, it remains to show that
c ^ B = (Af lC)v ( J ) . But neither A D C nor (b) contains a nonidempotent in Rc

(using (iii) for the latter), so no product in (A n C) V {b) can yield c.
The equation A v C = A v fi follows from c = a~lb and b = a(a~xb). We have

already seen that c £ A; that a £ C is also clear, since aa~l £ cc~\ c~lc. •
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THEOREM 3.4. Let S be an inverse semigroup that is simple, E-unitary with abelian
maximal group quotient, and aperiodic, in which E$ is Archimedean and the maximum
width oftheposets Ep, overall ^-classes D is exactly two. Then S contains an inverse
subsemigroup isomorphic to the monoid M defined above.

PROOF. Suppose / and h are ^-equivalent incomparable idempotents in S. Let
x € Rf n Lh.

Let us first consider ({x}}, using arguments similar to those in the proof of the
previous theorem; again refer to [9, Section IX.2]. Since xx~[ || x~]x, D^x)) =
[xx~l,x~lx,x,x~1}. Now since x1x~1, (xx~l)(x~lx) and x~2x2 are @{{x)}-related
idempotents then, by hypothesis, at least two of them are comparable. By replacing x
by its inverse, if necessary, we may assume that*2*"2 > (xx~[)(x~[x), in which case
it is also true that (xx'^ix^x) > x~2x2. In fact, if any of these idempotents are equal,
then x2x'1 lies in the subgroup Hx2x-i and is therefore idempotent by aperiodicity,
contradicting £-unitariness, this element being in the same a -class as x. Hence all
the inequalities are strict, that is, x2x~2(xx~~i)(x~1x) = / h > x~2x2, and x2x~l is
strictly right regular and generates a bicyclic inverse semigroup with identity x2x~2.
Moreover, since xlx~x = (x2x~1)2, it follows that xix~^3f.x2x~l3?,x2. ButJt^jc^crjc2,
SOJC3X~' = x2 and in fact*'"1"1*"1 = x' for all / > 2.

By simplicity, S contains an idempotent g, say, such that gQ!x ?xi&g<.{xx~x)(x~xx).
Put z — gxg and e = (xgx'l)(x~2gx2). We will prove that {(z, e)) = M.

It will be convenient to introduce the idempotents e, — x~'gx', i > 0. (Here and
throughout, the zeroth power refers to an adjoined identity element, so that eQ = g).
It will also be convenient to extend this notation by letting e_, = xgx~K Clearly
x~'e,_ijc = e,, for i > 1, but this equation also holds for i = 0, since x~'x > g.
Moreover, the inverse conjugation equations also hold, that is, xetx~l = e,-\ for/ > 0.
For i = 0 this is by definition and for i = 1, it follows from xx~l > g. For i > 2,
use the following: gx'x~l — ^(JC"1^)^ '^;"1 = ^"'x'"1"1^"1 = gx~lx' = gx'~*. In
fact these equations imply that xx~l > eh i > —1. Hence conjugation by x is an
automorphism of the subsemilattice generated by [et : i > —1}. Note that from the
above we have gx'(gx')'1 = gx'x~*g — g, and (gx')~lgx' = x~'gx' — et, and we
have shown that all the idempotents et are ^-related.

From the definitions of e and z we have that

(i) e = (xgx~l)(x~2gx2) = e_i£>2,
(ii) zz'1 = gxgx~lg - gixgx'*) - eoe-u

(iii) z~lz = gx~{gxg = g(x~lgx) = eoeu and
(iv) z~2z2 = (gx-lg)eoel(gxg) = g(x-\eoex)x)g = eoele2.

Consider the three ^-related idempotents e0, ex and e2. According to Lemma 2.10,
since xx~x || x~lx, e0 = (gx)(gx)~l || (gx)~l(gx) — eu whence by the conjugation
properties, e\ || e2. From the width assumption on ^-related idempotents it follows
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that e0 and e2 are comparable. Suppose e0 < e2, that is g < x~2gx2 < x~2x2. Then
x~2gx2 < x~2(x~2x2)x2 = x~4x4 and, by induction, g < x~2nx2n for all n > 1. Since
x2n = JC2""1"1*"1 = (x2x~x)n, this contradicts the Archimedean property applied to the
strictly right regular element x2x~l.

Hence e0 > e2 and so, by (ii) and (i), zz~l > e. Further, by conjugation e_i > ex

and so, by (ii) and (iii), zz~l > z~'z; in fact this inequality is strict, for otherwise
z = gxg would be idempotent (since S is aperiodic), contradicting £-unitariness. In
addition, e(z~lz) = e\e2 = z~2z2 by (iv).

We have now shown that z and e satisfy the relations that define M. It remains
to show that all the products in the set z~l*{e, \}z* are distinct. In fact, since 5 is
aperiodic, it suffices to show that the (images of) the idempotents, namely the products
z~'z' and z~'ez', i > 0, are distinct.

Since z generates a bicyclic inverse subsemigroup, the idempotents z~'z', i > 0,
are clearly distinct; and also since z'z~' = zz~x > e, ez'ffle, whence by E-unitariness
and aperiodicity, ez' &. He and z~'ez' # e, for all i > 1. Conjugation by z leads to the
distinctness of the idempotents z~'ez', i > 0.

Finally, suppose that z~'ez' — z'j zJ, for some i,j. Then by conjugation, e e ((z».
If e = zz~l, then z~2z2 = e(z~lz) — (zz"')(z"'z) = z~lz, which is impossible;
similarly, e ^ z~lz- Since e > z~2z2 > z~'z' for i > 2, it follows that e — z~2z2.
Using (i) and (iv) above, and e0 > e2, this becomes e-\e2 = exe2. By conjugation
we obtain ek^ek = ek-\ek for k > 2. Then, for k > 4, since et_2 > e*, we have
et_set = ek^{ek.2ek) = (^_ 5 e t _ 2 )^ = (^_3et_2)et = e*_3(e*_2et) = et_3et. By
induction we obtain, for fc even, at least, that e\ek = ek_xek (the odd k case not being
needed).

Notice that since gx2(gx2)~[ = e0 > e2 = (gx2)~lgx2, the element gx2 is
strictly right regular. To obtain a contradiction, we invoke the Archimedean prin-
ciple, applied to gx2: for some n > 1, ex > (gx2)""^.*2)". Now (gx2)"2(^x2)2 =
x~2g(x~2gx2)gx2 = x~2eoe2x

2 — e4 and by induction, (gx2)'"(gx2)" = e2n, for
n > 1. So we have that ei > e2n, that is e2n = exe2n, which by the equation at the
end of the previous paragraph yields e2n-\ > e2n. But then conjugation by x implies
e0 > eu and we have shown earlier that these idempotents are incomparable.

This completes the proof that all the given idempotents are distinct. •
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