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Minimal Subfields of Elliptic Curves
Samprit Ghosh

Abstract. For an elliptic curve𝐸 defined over a number field𝐾 and 𝐿/𝐾 aGalois extension, we study
the possibilities of the Galois group Gal(𝐿/𝐾 ) , when theMordell-Weil rank of 𝐸 (𝐿) increases from
that of 𝐸 (𝐾 ) by a small amount (namely 1, 2 and 3). In relation with the vanishing of correspond-
ing 𝐿-functions at 𝑠 = 1, we prove several elliptic analogues of classical theorems related to Artin’s
holomorphy conjecture. We then apply these to study the analytic minimal subfield, first introduced
by Akbary andMurty, for the case when order of vanishing is 2. We also investigate how the order of
vanishing changes as rank increases by 1 and vice versa, generalizing a theorem of Kolyvagin.

1 Introduction

Let 𝐸 be an elliptic curve defined over a number field 𝐾 and let 𝐿/𝐾 be a finite Galois
extension with Galois group 𝐺 = Gal(𝐿/𝐾). The famous Mordell-Weil Theorem tells
us that, 𝐸 (𝐿), the group of 𝐿-rational points of 𝐸 , is finitely generated. Throughout
this paper we will focus on the “free part" of theMordell-Weil group, that is, 𝐸 (𝐿)mod-
ulo the torsion subgroup 𝐸 (𝐿)tors and denote the rank of this quotient by rk𝐸 (𝐿). The
question of studying this free part of 𝐸 (𝐿) as a Z[𝐺]-module is an appealing one and
was raised in the works of Mazur and Swinnerton-Dyer [19], Coates and Wiles [5], and
others. Towards this study, Akbary and Murty in [1] introduced the idea of a minimal
subfield : 𝑀 ⊆ 𝐿, minimal, such that rk𝐸 (𝑀) = rk𝐸 (𝐿) and produced explicit exam-
ples. They gave a description of the possibilities for Gal(𝑀/𝐾) when the rank 𝐸 (𝐿) is
small (e.g. 1, 2 and 3). In the first part of this paper we generalize their results from small
rank to small increase in rank. We show that similar descriptions of Gal(𝑀/𝐾) holds
when rk𝐸 (𝐿) = rk𝐸 (𝐾) + 𝑡 for 𝑡 = 1, 2 and 3. We prove the following theorem.

Theorem 1.1 Let 𝐿/𝐾 be a Galois extension of number fields and 𝐸/𝐾 be an elliptic curve
such that rk𝐸 (𝐿) = rk𝐸 (𝐾) + 𝑡. Let 𝑀 be the minimal subfield.

(1) If 𝑡 = 1, then 𝑀 is a quadratic extension of 𝐾 .
(2) If 𝑡 = 2, then 𝑀 is either a cyclic extension of 𝐾 with [𝑀 : 𝐾] = 2, 3, 4, 6 or a dihedral

extension of 𝐾 with [𝑀 : 𝐾] = 4, 6, 8, 12.
(3) If 𝑡 = 3, then Gal(𝑀/𝐾) is isomorphic to one of the following

𝐶𝑛 × 𝐶𝑚, where 𝑛 = 2, 3, 4 and 𝑚 = 1, 2,
𝐷2𝑝 × 𝐶𝑚, where 𝑝 = 2, 3, 4, 6 and 𝑚 = 1, 2,
𝐴4 × 𝐶𝑚, or 𝑆4 × 𝐶𝑚 where 𝑚 = 1, 2.
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2 S. Ghosh

Section 2 is largely devoted to proving the above Theorem starting with a precise
definition of the Minimal subfield.

We then venture on amore analytic side of things. The famousBirch andSwinnerton-
Dyer conjecture connects the rank of an elliptic curve to the order of vanishing of its 𝐿-
function at 𝑠 = 1. In this regard, Akbary andMurty introduced the analytic notion of the
minimal subfield in [1]. Its existence is dependent on the holomorphy of 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠)
for irreducible characters 𝜒 of the Galois group. For number fields, classical theorems
of Foote-Murty and Foote-Wales, shows holomorphy of Artin 𝐿-functions when the
Dedekind zeta function has a zero of small order. In section 4 and 5 we develop elliptic
analogues of these theorems. For example we show,

Theorem 1.2 Let 𝐸/𝐾 be an elliptic curve and suppose that 𝐸 satisfies the generalized
Taniyama conjecture over 𝐾 . Let 𝐹 be a Galois extension of 𝐾 with solvable Galois group𝐺 =

Gal(𝐹/𝐾). Let 𝜒 be an irreducible character of 𝐺 . Then 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is holomorphic at
𝑠 = 𝜔, if𝜔 is a zero of 𝐿 (𝐸/𝐹, 𝑠) of order 𝑟 ≤ 𝑝2 − 2, where 𝑝2 is the second smallest prime
factor of |𝐺 |.

We also prove that Theorem 1.2 holds for 𝑟 = 2. These results establish existence of
the analytic minimal subfield when the 𝐿-function of 𝐸 over the top field has a zero of
small order. Also note that these results are unconditional if we assume𝐾 = Q asmodu-
larity is known. In section 6, similar to the algebraic case, we investigate the possibilities
of the Galois group for the analytic minimal subfield, when the order of vanishing at
𝑠 = 1 of 𝐿 (𝐸/𝐹, 𝑠) is 2. As an application, we show the following slight generalization
of a theorem of Kolyvagin.

Theorem 1.3 Let 𝐸/Q be an elliptic curve and 𝐾/Q be a solvable Galois extension.

(i) If rk𝐸 (𝐾) = rk𝐸 (Q) + 1, then ord𝑠=1 𝐿 (𝐸/𝐾, 𝑠) ≥ ord𝑠=1 𝐿 (𝐸/Q, 𝑠) + 1.
(ii) If 𝐿 (𝐸/Q ⊗ 𝜒, 𝑠) is holomorphic at 𝑠 = 1, for every irreducible character 𝜒 of Gal(𝐾/Q)

and ord𝑠=1 𝐿 (𝐸/𝐾, 𝑠) = ord𝑠=1 𝐿 (𝐸/Q, 𝑠) + 1, then rk𝐸 (𝐾) ≥ rk𝐸 (Q) + 1.

In both cases equality holds if the algebraic and the analytic minimal subfields are equal.

We also show that the holomorphy condition in Theorem 1.3(ii) can be dropped if 𝐸
has CM.

Notation and terminology

We will be using a fair bit of group theory and representation theory of finite groups.
In this subsection, we briefly introduce the notations and terminologies we have used.

Throughout the paper𝐶𝑛 is the cyclic group of order 𝑛, 𝐷2𝑛 is the dihedral group of
order 2𝑛, 𝑄8 is the quarternion group of order 8, whereas, 𝑆𝑛 and 𝐴𝑛 are respectively
the symmetric and the alternating group of 𝑛 symbols. If 𝑉 is a vector space, then by
GL(𝑉), we denote the group of automorphisms of 𝑉 . By GL𝑛 (𝐾) (resp. SL𝑛 (𝐾) ) we
denote the group of 𝑛 × 𝑛 invertible matrices (resp. matrices with determinant 1) with
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Minimal Subfields of Elliptic Curves 3

entries in 𝐾 . When 𝐾 = F𝑞 , a finite field with 𝑞 elements, we have simply written it as
GL𝑛 (𝑞) (resp. SL𝑛 (𝑞)). We have used PGL𝑛 (𝐾) for the projective general linear group,
defined as GL𝑛 (𝐾)/𝑍 (GL𝑛 (𝐾)). Note that, for any group 𝐺 , by 𝑍 (𝐺) we denote the
center of the group. We define ŜL2 (3) to be any non-trivial semidirect product of 𝑄8
by a cyclic 3-group.

For a finite group 𝐺 , we denote the set of all irreducible characters of 𝐺 by Irr(𝐺).
If 𝐻 is a subgroup of 𝐺 and 𝜒 is a character of 𝐺 , then 𝜒 |𝐻 denotes the restriction of
𝜒 to 𝐻. Whereas, if 𝜓 is a character of 𝐻, by Ind𝐺

𝐻
𝜓 we denote the induced character

defined as

Ind𝐺𝐻𝜓 (𝑔) = 1
|𝐻 |

∑︁
𝑥∈𝐺

𝜓(𝑥−1𝑔𝑥), where we take 𝜓(𝑥) = 0 for all 𝑥 ∉ 𝐻.

We denote the usual inner product on the space of complex class functions on 𝐺 by
⟨_, _⟩. It is given by

⟨𝛼, 𝛽⟩ = 1
|𝐺 |

∑︁
𝑔∈𝐺

𝛼(𝑔)𝛽(𝑔).

Frobenius reciprocity theorem tells us that for any 𝜒 and 𝜓 as above, we have
⟨Ind𝐺𝐻𝜓, 𝜒⟩ = ⟨𝜓, 𝜒 |𝐻⟩𝐻 , where ⟨_, _⟩𝐻 is the usual inner product on the space of
complex class functions on the subgroup 𝐻. We denote the regular character of 𝐺 by
“reg”. Note that

reg =
∑︁

𝜒∈Irr(𝐺)
𝜒(1)𝜒.

In general, by a virtual character of 𝐺 , we mean a class function
∑
𝜒∈Irr(𝐺) 𝑎𝜒𝜒, where

𝑎𝜒 ∈ Z. In particular, 𝑎𝜒 can be negative.

We have written 𝐸/𝐾 to denote an elliptic curve 𝐸 defined over the field 𝐾 . We
denote the 𝐿-series of 𝐸 over 𝐾 by 𝐿 (𝐸/𝐾, 𝑠). If 𝐹/𝐾 is a Galois extension and 𝜒
is a character of Gal(𝐹/𝐾) then the twisted 𝐿-series of 𝐸 over 𝐾 by 𝜒 is denoted
by 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠), whereas, 𝐿 (𝑠, 𝜒) has been used to denote the Artin 𝐿-function
corresponding to 𝜒 of Gal(𝐹/𝐾).

2 Algebraic Minimal Subfield

Definition 2.1 Let 𝐸/𝐾 be an elliptic curve and let 𝐿/𝐾 be a finite extension (not nec-
essarily Galois) of number fields. Suppose that rk𝐸 (𝐿) = 𝑟 . The algebraic minimal
subfield 𝑀 is a subfield with 𝐾 ⊆ 𝑀 ⊆ 𝐿 satisfying

(i) rk𝐸 (𝑀) = 𝑟 , and
(ii) if 𝐾 ⊆ 𝐹 ⊆ 𝐿 with rk𝐸 (𝐹) = 𝑟 , then 𝑀 ⊆ 𝐹 .

Akbary andMurty showed that for any finite extension 𝐿/𝐾 and elliptic curve 𝐸/𝐾 ,
the minimal subfield 𝑀 exists and is unique. Also, if 𝐿/𝐾 is Galois then 𝑀/𝐾 is Galois
(see [1, Proposition 1]). For any finite Galois extension 𝐿/𝐾 , theGalois groupGal(𝐿/𝐾)
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4 S. Ghosh

acts on 𝐸 (𝐿) ⊗ Q giving us a representation (writing 𝑟 = rk𝐸 (𝐿) )

𝜌𝐿 : Gal(𝐿/𝐾) → GL(𝐸 (𝐿) ⊗ Q) � GL𝑟 (Q). (2.1)

Proposition 2.1 Let 𝐿/𝐾 be a finite Galois extension with rk𝐸 (𝐿) = 𝑟 and let 𝑀 be the
minimal subfield. Then

𝜌 : Gal(𝑀/𝐾) → GL(𝐸 (𝑀) ⊗ Q)

is faithful. Moreover, Im(𝜌) is conjugate to a finite subgroup of GL𝑟 (Z)

For a detailed proof see [1, Proposition 2]. But the essential idea is that 𝑀 is
constructed as the fixed field of ker 𝜌𝐿 .

2.1 Working with the Quotient space

We will write𝑉𝐹 = 𝐸 (𝐹) ⊗ Q for any number field 𝐹 . We will work with the quotient
space𝑉𝐿/𝑉𝐾 instead of𝑉𝐿 and use elementary linear algebra to prove a similar version
of the above proposition. Note that dimension of this quotient space is precisely the
increase in rank, i.e.,

dim𝑉𝐿/𝑉𝐾 = rk𝐸 (𝐿) − rk𝐸 (𝐾).

We can then consider the quotient representation coming from the Galois action. For
the algebraic minimal subfield, this representation also turns out to be faithful.

Proposition 2.2 Let 𝐿/𝐾 be a finite Galois extension with rk𝐸 (𝐿) = 𝑟 and let 𝑀 be
the algebraic minimal subfield. If rk𝐸 (𝐿) − rk𝐸 (𝐾) = 𝑡, then there exists a faithful
representation

𝜌̃ : Gal(𝑀/𝐾) → GL(𝑉𝑀/𝑉𝐾 ) � GL𝑡 (Q).
Moreover, Im( 𝜌̃) is conjugate to a finite subgroup of GL𝑡 (Z).

Proof By Proposition 2.1, we know there is a faithful representation
𝜌 : Gal(𝑀/𝐾) → GL(𝑉𝑀 ). We can then consider the quotient representation
𝜌̃ : Gal(𝑀/𝐾) → GL(𝑉𝑀/𝑉𝐾 ), where 𝜌̃(𝑔) · (𝑣 +𝑉𝐾 ) = 𝜌(𝑔) · 𝑣 +𝑉𝐾 .
Now let us compute ker 𝜌̃.

𝜌̃(𝑔) (𝑣 +𝑉𝐾 ) = 𝜌̃(1) (𝑣 +𝑉𝐾 )
⇒ 𝜌(𝑔)𝑣 − 𝑣 ∈ 𝑉𝐾
⇒ 𝜌(𝑔) (𝜌(𝑔)𝑣 − 𝑣) = 𝜌(𝑔)𝑣 − 𝑣 [Since 𝑔 acts trivially on𝑉𝐾 ]
⇒ (𝜌(𝑔)2 − 2𝜌(𝑔) + 𝐼𝑡 )𝑣 = 0 for all 𝑣 ∈ 𝑉𝑀 .

Thus the minimal polynomial of 𝜌(𝑔) divides the polynomial 𝑥2 − 2𝑥 + 1 = (𝑥 − 1)2.
Since Gal(𝑀/𝐾) is finite, the minimal polynomial will also divide 𝑥𝑛 − 1, where
𝑛 = |Gal(𝑀/𝐾) |. Thus the minimal polynomial must be 𝑥 − 1, and hence we have
𝜌(𝑔) = 𝐼𝑡 = 𝜌(1). Since 𝜌 is faithful, this implies 𝑔 = 1. Thus 𝜌̃ is also faithful.
The fixed assertion is true more generally, any finite subgroup of GL𝑛 (Q) has a conju-
gate in GL𝑛 (Z). For a proof see [24, Theorem 1, Appendix 3, p. 124]. ■
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Minimal Subfields of Elliptic Curves 5

In the next subsection we present a number of elementary results from group theory
as lemmas. These together with Proposition 2.2 will help us the prove Theorem 1.1.

2.2 Results from Group Theory

Lemma 2.3 Let 𝜌 : 𝐺 → GL2 (Z) be a faithful representation.

(1) If 𝜌 is reducible, then 𝐺 � 𝐶𝑛 or, Z/2Z ⊕ Z/2Z, where 𝑛 = 1, 2, 3, 4, 6.
(2) If 𝜌 is irreducible, then 𝐺 � 𝐷2𝑛, where 𝑛 = 3, 4, 6.

Lemma 2.4 Let 𝜌 : 𝐺 → GL3 (Z) be a faithful representation. Then𝐺 is isomorphic to one
of the following

𝐶𝑛 × 𝐶𝑚, where 𝑛 = 1, 2, 3, 4 and 𝑚 = 1, 2,
𝐷2𝑝 × 𝐶𝑚, where 𝑝 = 2, 3, 4, 6 and 𝑚 = 1, 2,
𝐴4 × 𝐶𝑚, where 𝑚 = 1, 2, or
𝑆4 × 𝐶𝑚, where 𝑚 = 1, 2.

For proofs, see [1, Section 3].

2.3 Proof of Theorem 1.1

Proof For the 𝑡 = 1 case, byProposition 2.2 theGalois groupGal(𝑀/𝐾) is isomorphic
to a subgroup ofGL1 (Z) = {±1}. Since the rank has increased,𝑀 ≠ 𝐾 , so wemust have
[𝑀 : 𝐾] = 2. Applying Proposition 2.2 and the above Lemmas 2.3 and 2.4 we directly
get the 𝑡 = 2 and 𝑡 = 3 case. ■

Theorem 1.1 (1) is particularly interesting as it implies the following.

Corollary 2.5 In any extension of odd degree, particularly in a cubic extension, the rank can
not increase by 1. It either remains the same or jumps by at least 2.

Remark 2.6 Note that generalization to larger values of 𝑡 becomes heavily reliant on
the knowledge of classification of finite subgroups of GL𝑛 (Z). However, we present
here the following easily observed result. We haven’t included it as a theorem as the
author is unsure of whether or not it is vacuous.

Let 𝐿/𝐾 be a solvable Galois extension of degree 𝑛 such that rk𝐸 (𝐿) = rk𝐸 (𝐾) + 𝑡,
where 𝑡 is odd. Let 𝑀 be its minimal subfield. If the quotient representation
𝜌̃ : Gal(𝑀/𝐾) → GL𝑡 (Q) is irreducible, then 𝑡 | 𝑛. The proof follows from the two
results stated below.

(a) Let𝐺 be a finite group. The degree of every irreducible representation of𝐺 over an
algebraically closed field k of characteristic 0, divides the order of𝐺 .
For a proof see [23, Section 6.5].

(b) Theorem (Dixon) Let𝐺 be a finite solvable irreducible subgroup of GL𝑛 (𝐾) where
𝐾 is a real field and 𝑛 is an odd integer. Then𝐺 is absolutely irreducible.
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6 S. Ghosh

For a proof see [6, Theorem 1] and [7].

Note that by absolutely irreducible, we mean that 𝐺 is irreducible over the algebraic
closure 𝐾 of 𝐾 . If in fact, 𝑡 = 𝑝 is prime, then the above mentioned papers of Dixon
will provide a nice description of the Galois Group. But we think that requiring 𝜌̃ to be
irreducible for larger ranks, might be asking too much!

3 Analytic Minimal Subfield

In this section we focus on the analytic counterpart of the algebraic minimal subfield.

Definition 3.1 Let 𝐸/𝐾 be an elliptic curve and 𝐹 be any finite extension of 𝐾 . For
each zero 𝜔 of 𝐿 (𝐸/𝐹, 𝑠), the analytic minimal subfield 𝐹𝜔 is a subfield of 𝐹 with 𝐾 ⊆
𝐹𝜔 ⊆ 𝐹 such that
(i) ord𝑠=𝜔 𝐿 (𝐸/𝐹𝜔 , 𝑠) = ord𝑠=𝜔 𝐿 (𝐸/𝐹, 𝑠), and
(ii) if 𝐾 ⊆ 𝑀 ⊆ 𝐹 and ord𝑠=𝜔 𝐿 (𝐸/𝑀, 𝑠) = ord𝑠=𝜔 𝐿 (𝐸/𝐹, 𝑠), then 𝐹𝜔 ⊆ 𝑀 .

Proposition 3.1 If 𝐹/𝐾 is Galois with Galois group𝐺 and 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is holomorphic
at 𝑠 = 𝜔 for any irreducible character 𝜒 of 𝐺 , then 𝐹𝜔 exists and is Galois over 𝐾 .

For a detailed proof see [1, Proposition 6]. We briefly mention the construction here,
as we will be using this in Section 6. The idea is to consider those characters for which
the twisted 𝐿-function vanishes at 𝜔, i.e.,

𝑍𝜔 = {𝜒 | 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝜔) = 0}.

Then define
𝐻𝜔 =

⋂
𝜒∈𝑍𝜔

ker 𝜒

The minimal subfield 𝐹𝜔 is then the fixed field, 𝐾𝐻𝜔 of 𝐻𝜔 in 𝐹 .

Therefore from Proposition 3.1, in order to work with 𝐹𝜔 , we first need to inves-
tigate holomorphy of 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) at 𝑠 = 𝜔. We recall some classical theorems on
Artin’s holomorphy conjecture. Let 𝐹/𝐾 be a Galois extension.

Theorem 3.2 (Stark) If 𝑠0 is a simple zero of the Dedekind zeta function 𝜁𝐹 (𝑠), then
𝐿 (𝑠, 𝜒) is analytic at 𝑠 = 𝑠0 for every irreducible character 𝜒 of Gal(𝐹/𝐾).

For a proof, see [26, Theorem 3, p. 144 ].

Definition 3.2 We say 𝐸 satisfies the generalised Taniyama conjecture over a number
field𝐾 if the 𝐿-function 𝐿 (𝐸/𝐾, 𝑠) is the 𝐿-function 𝐿 (𝜋, 𝑠) of a cuspidal automorphic
representation 𝜋 of GL2 (A𝐾 ), whereA𝐾 is the adèle ring of 𝐾 .

Note that for 𝐾 = Q, the above conjecture is known and is called The Modularity
Theorem. The name derives from the fact that if 𝐸/Q is an elliptic curve then its 𝐿-
function 𝐿 (𝐸/Q, 𝑠) is the 𝐿-function of a modular form. In 1995, Wiles and Taylor
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Minimal Subfields of Elliptic Curves 7

first proved the conjecture for semi-stable elliptic curves defined over Q and in 2001,
B. Conrad, F. Diamond, Richard Taylor and C. Breuil, proved modularity for all elliptic
curves defined over Q. From works of Taylor, Kisin, Wintenberger and others, the
following result on “potential modularity” is also known: If 𝐸/𝐾 is an elliptic curve,
where 𝐾 is a totally real field, then there is a totally real extension 𝐿/𝐾 such that 𝐸/𝐿
is modular. See for example, [29], [27], [3], [16].

The following elliptic analogue of Stark’s theorem is due to Akbary and Murty (see
[1, Proposition 7]).

Theorem 3.3 (Akbary-Murty) Let 𝐸/𝐾 be an elliptic curve and suppose that 𝐸 satisfies
the generalized Taniyama conjecture over 𝐾 . Let 𝐹 be a solvable extension of 𝐾 and let 𝜒 be
an irreducible character of 𝐺 =Gal(𝐹/𝐾). Then, 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is holomorphic at 𝑠 = 𝜔,
if 𝜔 is a simple zero of 𝐿 (𝐸/𝐹, 𝑠).

Using this, they showed, under the same assumptions of the theorem, the analytic
minimal subfield 𝐹𝜔 exists. Moreover, 𝐹𝜔 is a cyclic extension of 𝐾 and if 𝜔 is real
then [𝐹𝜔 : 𝐾] ≤ 2. Regarding Artin’s holomorphy conjecture, some generalizations
of Theorem 3.2 of Stark, are known. These results, as stated below, are due to Foote,
Murty and Wales. They ease the condition on 𝜔, from being a simple zero to a zero of
small order. In the next section, we will prove the elliptic analogue of such theorems.

Theorem 3.4 (Foote-Wales) Let 𝐹/𝐾 be a Galois extension of number fields with solvable
Galois group 𝐺 . If the Dedekind zeta function of 𝐹 , 𝜁𝐹 (𝑠), has a zero at 𝑠 = 𝑠0 of order less
than or equal to 2, then all Artin 𝐿-series 𝐿 (𝑠, 𝜒) are analytic at 𝑠 = 𝑠0 for every irreducible
character 𝜒 of 𝐺 .

For a proof, see the Corollary of [10, Theorem II].

Theorem 3.5 (Foote-Murty) Let 𝐹/𝐾 be a Galois extension of number fields with solvable
Galois group 𝐺 and let 𝑝2 be the second smallest prime number dividing |𝐺 | . If 𝜁𝐹 (𝑠) has a
zero of order 𝑟 at 𝑠 = 𝑠0, where 𝑟 ≤ 𝑝2 − 2, then 𝐿 (𝑠, 𝜒) is analytic at 𝑠0 for all irreducible
characters 𝜒 of 𝐺 .

For a proof see [9, p. 8]. Also note that, in case |𝐺 | has only one prime factor, i.e., |𝐺 |
is a prime power, then𝐺 is nilpotent and 𝐿 (𝑠, 𝜒) is known to be analytic in such cases.
The key idea behind both of the above two results, was an attempt in finding minimal
counterexamples to Artin’s holomorphy conjecture.

3.1 Automorphic representations and Nilpotent Galois groups

Assuming the generalized Taniyama Conjecture for 𝐾 , M. Ram Murty and V. Kumar
Murty in [20] proved that if 𝐹/𝐾 is contained in a finite solvable Galois extension of
𝐾 , then 𝐿 (𝐸/𝐹, 𝑠) is holomorphic. Their result is predicted by a more general con-
jecture in Langlands program which states that if 𝜋1 and 𝜋2 are cuspidal automorphic
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representations of GL𝑛 (A𝐾 ) and GL𝑚 (A𝐾 ), respectively, then 𝜋1 ⊗ 𝜋2 is an automor-
phic representation of GL𝑛𝑚 (A𝐾 ). This is known for 𝑚 = 1, as Abelian twists are
automorphic. The GL(2) × GL(2) case was proved by Ramakrishnan in [22] and the
GL(2) × GL(3) by Kim and Shahidi in [15]. In [2] Arthur and Clozel proved that the
Langlands reciprocity is valid for all nilpotent Galois extensions using their theory of
automorphic induction. Therefore assuming the generalized Taniyama conjecture for
𝐸/𝐾 , and for an extension 𝐹/𝐾 with nilpotent Gal(𝐹/𝐾), we see that 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠)
is automorphic for any irreducible character 𝜒 of Gal(𝐹/𝐾).

Recently Wong [30] have generalized the above result to certain cases of “nearly nilpo-
tent” and “abelian-by-nilpotent” Galois extensions. In a subsequent section, while prov-
ing the elliptic analogue of Foote-Wales’s theorem, we will use similar ideas to eliminate
one of the possibilities.

4 Elliptic Analogue of Foote and Murty’s Theorem

Theorem 4.1 Let 𝐸/𝐾 be an elliptic curve and suppose that 𝐸 satisfies the generalized
Taniyama conjecture over 𝐾 . Let 𝐹 be a Galois extension of 𝐾 with solvable Galois group𝐺 =

Gal(𝐹/𝐾). Let 𝜒 be an irreducible character of 𝐺 . Then, 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is holomorphic at
𝑠 = 𝜔 if 𝜔 is a zero of 𝐿 (𝐸/𝐹, 𝑠) of order 𝑟 ≤ 𝑝2 − 2, where 𝑝2 is the second smallest prime
factor of |𝐺 |.

Remark 4.2 Note that if |𝐺 | has only one prime factor, then𝐺 is nilpotent. Hence from
the above discussion, 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is known to be automorphic.

As an immediate corollary we get the following.

Corollary 4.3 Under the same conditions of the above theorem, the minimal subfield 𝐹𝜔
exists if 𝜔 is a zero of 𝐿 (𝐸/𝐹, 𝑠) of order 𝑟 ≤ 𝑝2 − 2, where 𝑝2 is the second smallest prime
factor of |𝐺 |.

4.1 Ingredients for the proof of Theorem 4.1

The following Aramata-Brauer type theorem was proved in [20, Theorem 2].

Theorem 4.4 Let 𝐸/𝐾 be an elliptic curve and suppose that 𝐸 satisfies the generalized
Taniyama conjecture over 𝐾 . If 𝐹 is a solvable Galois extension of 𝐾 , then 𝐿 (𝐸/𝐹, 𝑠) extends
to an entire function and 𝐿 (𝐸/𝐹, 𝑠)/𝐿 (𝐸/𝐾, 𝑠) is entire. In particular,

ord𝑠=𝜔 𝐿 (𝐸/𝐹, 𝑠) ≥ ord𝑠=𝜔 𝐿 (𝐸/𝐾, 𝑠).

We now list some results on finite groups and virtual Heilbronn characters that will
be used to prove Theorem 4.1.

Let 𝐹/𝐾 be a finite Galois extension with Galois group 𝐺 . Let 𝐻 be a subgroup of
𝐺 . Let 𝜒 and 𝜓 denote the irreducible characters of𝐺 and 𝐻 respectively. Consider the
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virtual Heilbronn characters

𝜃𝐺 =
∑︁

𝑛𝜒𝜒 and 𝜃𝐻 =
∑︁

𝑛𝜓𝜓

where 𝑛𝜒 denotes the order of zero of 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) at 𝑠 = 𝜔 and 𝑛𝜓 denotes the order
of zero of 𝐿 (𝐸/𝐹𝐻 ⊗ 𝜓, 𝑠) at 𝑠 = 𝜔 (𝐹𝐻 being the fixed field of 𝐻).

Proposition 4.5 𝜃𝐺 |𝐻 = 𝜃𝐻 .

For a proof see [20, Proposition 1].

Theorem 4.6 (Blichfeldt) Let 𝐺 be a finite group admitting a faithful, irreducible complex
representation 𝜌. If𝐺 possesses a non-central abelian normal subgroup, then 𝜌 is induced from
a proper subgroup of 𝐺 .

For a proof see [4, Corollary 50.7, p. 348].

Theorem 4.7 (Ito) Let 𝐺 be a solvable group and 𝑝 be a prime such that 𝐺 has a faithful
character of degree < 𝑝 − 1. Then 𝐺 admits an abelian normal Sylow 𝑝-subgroup.

For a proof see [8, Theorem 24.6, p. 128].

Proposition 4.8 Any solvable non-abelian group𝐺 has a normal subgroup 𝑁 of prime index
such that 𝑁 contains 𝑍 (𝐺).

Proof Since 𝐺 is non-abelian, 𝐺1 = 𝐺/𝑍 (𝐺) is a non-trivial solvable group. Let 𝐻
be a maximal normal subgroup of 𝐺1. Then 𝐺1/𝐻 is solvable and simple and hence is
cyclic of prime order. Thus the index of𝐻 in𝐺1 is prime. Taking 𝑁 to be the pre-image
of 𝐻1 proves the proposition. ■

We also recall the following result from Clifford’s theory (see [8, p. 53-54]).

Proposition 4.9 Let 𝑁 be a normal subgroup of 𝐺 with [𝐺 : 𝑁] = 𝑝, a prime. Then for
any irreducible character 𝜒 of 𝐺 , either 𝜒 |𝑁 is irreducible, or 𝜒 |𝑁 =

∑𝑝

𝑖=1 𝜓𝑖 , where 𝜓𝑖 are
distinct and irreducible characters of 𝑁 . Moreover, 𝜒 = Ind𝐺

𝐻
𝜓𝑖 .

4.2 Proof of Theorem 4.1

The proof is based on the idea of minimal counterexamples as that of its classical
counterpart. Assume the theorem is false and suppose 𝐹 and 𝐾 are chosen to form
a counterexample with [𝐹 : 𝐾] minimal. Thus there exists an irreducible character
𝜒 of 𝐺 and a point 𝑠 = 𝜔 such that 𝜔 is a zero of 𝐿 (𝐸/𝐹, 𝑠) of order satisfying the
conditions in the theorem but 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) has a pole at 𝑠 = 𝜔, i.e., 𝑛𝜒 < 0 in the
virtual Heilbronn character 𝜃𝐺 at 𝑠 = 𝜔.
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Note that𝐺 can not be cyclic, since 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is known to be analytic for cyclic
extensions 𝐹/𝐾 for every irreducible character 𝜒 of 𝐺 . See for example, the proof of
[20, Theorem 2, p. 492].

Step 1 : Every irreducible character 𝜒 of 𝐺 with 𝑛𝜒 < 0 is faithful.

Note that by Theorem 4.4, for every field 𝐷 with 𝐾 ⊆ 𝐷 ⊆ 𝐹 , we have
ord𝑠=𝜔 𝐿 (𝐸/𝐷, 𝑠) ≤ ord𝑠=𝜔 𝐿 (𝐸/𝐹, 𝑠). Thus for any character 𝜒 with a pole at
𝑠 = 𝜔, one can consider 𝐷 = 𝐹ker 𝜒 , the fixed field of ker 𝜒. Thus the conditions of
the hypothesis for the counterexample carries over to 𝐷, 𝐺/ker 𝜒 and 𝐾 . By
minimality of |𝐺 |, we must have ker 𝜒 = {1}.

Step 2 : For all proper subgroups 𝐻 of 𝐺 , 𝜃𝐻 is a character of 𝐻.

We have the factorization

𝐿 (𝐸/𝐹, 𝑠) =
∏

𝜒 ∈ Irr(𝐺)
𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠)𝜒 (1) .

Thus ord𝑠=𝜔𝐿 (𝐸/𝐹, 𝑠) = 𝑟 =
∑
𝜒 ∈ Irr(𝐺) 𝑛𝜒𝜒(1) = 𝜃𝐺 (1). Suppose 𝜓 is an

irreducible character of 𝐻. Consider the L-series 𝐿 (𝐸/𝐹𝐻 ⊗ 𝜓, 𝑠). By Proposition
4.5, we have 𝜃𝐺 |𝐻 = 𝜃𝐻 and so 𝜃𝐻 (1) = 𝜃𝐺 |𝐻 (1) = 𝑟 . Thus if 𝜔 is a pole, the triple
𝐹, 𝐻, 𝐹𝐻 forms a counterexample contradicting minimality. Thus for every
irreducible character 𝜓 of 𝐻, 𝐿 (𝐸/𝐹𝐻 ⊗ 𝜓, 𝑠) is analytic at 𝑠 = 𝜔, in particular,
𝑛𝜓 ≥ 0 which implies 𝜃𝐻 is a character. Note that, by assumption, 𝜃𝐺 is not a
character.

Step 3 : Any irreducible 𝜒 of 𝐺 with 𝑛𝜒 < 0, is not induced from any proper subgroup of 𝐺 .

Suppose 𝜒 = Ind𝐺
𝐻
𝜓 for a character 𝜓 of a proper subgroup 𝐻 of𝐺 . Then

𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) = 𝐿 (𝐸/𝐹𝐻 ⊗ 𝜓, 𝑠) =
∏
𝜙

𝐿 (𝐸/𝐹𝐻 ⊗ 𝜙, 𝑠)𝑎𝜙 ,

where characters 𝜙 are the irreducible constituents of 𝜓 with coefficient 𝑎𝜙 . By the
previous step, since 𝐻 is a proper subgroup, the factors are analytic at 𝑠 = 𝜔, in
particular 𝐿 (𝐸/𝐹𝐻 ⊗ 𝜓, 𝑠) is analytic at 𝑠 = 𝜔 contradicting 𝑛𝜒 < 0.

Step 4 : There are no faithful characters of 𝐺 of degree ≤ 𝑝2 − 2. In particular, if 𝜒 is an
irreducible character of 𝐺 with 𝑛𝜒 < 0, then 𝜒(1) > 𝑝2 − 2.

If𝐺 has a faithful character of degree ≤ 𝑝2 − 2, then by Ito’s Theorem 4.7,𝐺 will
have normal abelian Sylow 𝑝𝑖-subgroups for all prime factors 𝑝𝑖 , 𝑖 ≥ 2, of𝐺 . Also,
all of them will be central and hence index of 𝑍 (𝐺) in𝐺 will be a power of 𝑝1. In
particular,𝐺/𝑍 (𝐺) will be nilpotent and hence𝐺 will be nilpotent contradicting
the existence of 𝜒.

Note that, this in particular implies𝐺 must be non-abelian.

Step 5 : We now decompose 𝜃𝐺 into three constituents 𝜃𝑛 𝑓 , 𝜃+ and 𝜃− as follows

• 𝜃𝑛 𝑓 is the sum of all constituents 𝑛𝜆𝜆 of 𝜃𝐺 such that 𝜆 is an irreducible
character of𝐺 that is not faithful (hence the “𝑛 𝑓 ” ).
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• 𝜃+ is the sum of all constituents 𝑛𝜓𝜓 of 𝜃𝐺 such that 𝜓 is an irreducible
character of𝐺 that is faithful and 𝑛𝜓 > 0.

• 𝜃− =
∑(−𝑛𝜒)𝜒, where 𝑛𝜒𝜒 are all those constituents of 𝜃𝐺 such that 𝜒 is an

irreducible character of𝐺 that is faithful and 𝑛𝜒 < 0.

From Step 1, all the coefficients of 𝜃𝑛 𝑓 are non-negative. Thus 𝜃𝑛 𝑓 is either a
character or 0. By construction 𝜃− is a character (since there is at least one
irreducible character 𝜒 with 𝑛𝜒 < 0) and 𝜃+ is either a character or 0. Also note that,
by construction, ⟨𝜃𝑛 𝑓 , 𝜃−⟩ = 0, as well as ⟨𝜃+, 𝜃−⟩ = 0 and ⟨𝜃+, 𝜃𝑛 𝑓 ⟩ = 0 and

𝜃𝐺 = 𝜃𝑛 𝑓 − 𝜃− + 𝜃+.

The final contradiction will come from showing 𝜃+ = 𝜃− .

Step 6 : In any finite group 𝑋 , every normal subgroup appears as one of the subgroups in a
chief series 𝑋 = 𝑋1 ≥ 𝑋2 ≥ · · · ≥ 𝑋𝑛−1 ≥ 𝑋𝑛 = {1}, where each 𝑋𝑖 ⊴ 𝐺 . In
particular, for our solvable𝐺 the chief factors𝐺𝑖/𝐺𝑖+1 are elementary abelian
𝑝-groups (see [14, Corollary 8.7, p. 102]). In particular the last chief factor𝐺𝑛−1/{1}
is a non-trivial abelian group. That is, every normal subgroup of𝐺 contains a
non-trivial abelian 𝑝-group that is normal in𝐺 . We have already seen that every
abelian normal subgroup of𝐺 is central. Thus for every irreducible character 𝜆 of𝐺
that is not faithful, ker𝜆 ∩ 𝑍 (𝐺) ≠ 1. By Proposition 4.8,𝐺 has a normal subgroup
𝑁 ⊇ 𝑍 (𝐺) of prime index, say 𝑝.

Step 7 : ⟨𝜃− |𝑁 , 𝜃𝑛 𝑓 |𝑁⟩𝑁 = 0
Firstly, we note that 𝜒 |𝑁 is irreducible for every irreducible constituent 𝜒 of 𝜃− .
Since, if not, then from Proposition 4.9, we have 𝜒 |𝑁 = 𝜓1 + · · · + 𝜓𝑝 for some
irreducible characters 𝜓𝑖 of 𝑁 and 𝜒 = Ind𝐺

𝐻
𝜓1, contradicting Step 3. Now for any

irreducible constituent 𝜆 of 𝜃𝑛 𝑓 , we have seen ker𝜆 ∩ 𝑍 (𝐺) ≠ {1}, i.e., 𝜆 |𝑁 is not
faithful as 𝑁 ⊇ 𝑍 (𝐺). Again by Proposition 4.9, either 𝜆 |𝑁 is irreducible, or is
induced from irreducible constituents, thus they are also not faithful. Hence
⟨𝜃− |𝑁 , 𝜃𝑛 𝑓 |𝑁 ⟩𝑁 = 0.

Step 8 : 𝜃+ |𝑁 = 𝜃− |𝑁
By step 2, 𝜃𝑁 is a character. Also, by Proposition 4.5,
𝜃𝑁 = 𝜃𝐺 |𝑁 = 𝜃+ |𝑁 − 𝜃− |𝑁 + 𝜃𝑛 𝑓 |𝑁 . Therefore, by step 7, either 𝜃+ |𝑁 = 𝜃− |𝑁 or
𝜃+ |𝑁 = 𝜃− |𝑁 + 𝜙 for some character 𝜙 of 𝑁 . Assume the latter, then

𝑟 = 𝜃𝐺 (1) = 𝜃𝐺 |𝑁 (1) = 𝜙(1) + 𝜃𝑛 𝑓 (1). (4.1)

Let 𝜙1 be an irreducible constituent of 𝜙, and hence of 𝜃+ |𝑁 . If 𝜓 is an irreducible
constituent of 𝜃+ such that 𝜙1 occurs in 𝜓 |𝑁 , we see that 𝜓 |𝑁 ≠ 𝜙1. This is because
𝜙1 (1) ≤ 𝑟 by (4.1), where as 𝜓 being faithful, 𝜓 |𝑁 (1) > 𝑝2 − 1 ≥ 𝑟 by step 4.
Applying Proposition 4.9 again, 𝜓𝑁 = 𝜙1 + · · · + 𝜙𝑝 . These are distinct𝐺-conjugate
irreducible characters of 𝑁 . Since, 𝜙1 is an irreducible constituent of 𝜙 and
𝜙 = (𝜃+ − 𝜃−) |𝑁 is a𝐺-stable character of 𝑁 , each 𝜙𝑖 must also appear as a
constituent of 𝜙. Thus we have 𝜓(1) = 𝜙1 (1) + · · · + 𝜙𝑝 (1) ≤ 𝜙(1) ≤ 𝑟. This
contradicts 𝜓(1) = 𝜓 |𝑁 (1) > 𝑟 computed above, thus 𝜃+ |𝑁 = 𝜃− |𝑁 .
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Final Step : Let 𝑔 ∈ 𝐺 \ 𝑁 and let 𝐻 be the subgroup generated by 𝑔 and 𝑍 (𝐺). Since, 𝐻 is
abelian, 𝐻 ≠ 𝐺 . Let 𝜆 be a constituent of 𝜃𝑛 𝑓 , then from step 6, we have
ker𝜆 ∩ 𝑍 (𝐺) ≠ {1}. Thus the same holds for Ind𝐺

𝐻
(𝜆 |𝐻 ). Let 𝜒 be an irreducible

constituent of 𝜃− , hence is faithful and so ⟨𝜒, Ind𝐺𝐻 (𝜆 |𝐻 )⟩ = 0. Hence by Frobenius
reciprocity, ⟨𝜒 |𝐻 , 𝜆 |𝐻⟩ = 0 and so, like in Step 7, ⟨𝜃− |𝐻 , 𝜃𝑛 𝑓 |𝐻⟩𝐻 = 0. Now
𝜃𝐻 = 𝜃𝐺 |𝐻 = 𝜃+ |𝐻 − 𝜃− |𝐻 + 𝜃𝑛 𝑓 |𝐻 . As before, either 𝜃+ |𝐻 − 𝜃− |𝐻 is zero or a
character and arguing in the exact same way as step 8, we get 𝜃+ |𝐻 = 𝜃− |𝐻 . Hence,
𝜃+ (𝑔) = 𝜃− (𝑔) for all 𝑔 ∈ 𝐺 \ 𝑁 . Combining this with Step 8, gives 𝜃+ = 𝜃− .
This is a contradiction and hence the theorem is proved. ■

5 Elliptic Analogue of Foote and Wales’s Theorem

Theorem 5.1 Let 𝐸/𝐾 be an elliptic curve and suppose that 𝐸 satisfies the generalized
Taniyama conjecture over 𝐾 . Let 𝐹 be a Galois extension of 𝐾 with solvable Galois group𝐺 =

Gal(𝐹/𝐾). Let 𝜒 be an irreducible character of 𝐺 . Then, 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is holomorphic at
𝑠 = 𝜔, if 𝜔 is a zero of 𝐿 (𝐸/𝐹, 𝑠) of order ≤ 2.

The proof of this theorem follows its counterpart more directly than the previous
one, because of the following theorem.

Theorem 5.2 (Foote-Wales) Let𝐺 be a finite group with a virtual character 𝜃 satisfying the
following conditions.

(1) 𝜃 (1) ≤ 2,
(2) 𝜃 is not a character of 𝐺 but 𝜃 |𝐻 is a character for every proper subgroup 𝐻 of 𝐺, and
(3) if 𝜒 is any irreducible constituent of 𝜃 such that ⟨𝜃, 𝜒⟩ < 0, then 𝜒 is faithful, non-linear

and is not induced from any proper subgroup of 𝐺 .

Then 𝜃 (1) = 2 and 𝐺 � SL2 (𝑝), for some prime 𝑝 ≥ 5, or ŜL2 (3).

Note that in their notation, ŜL2 (3) denotes any non-trivial semidirect product of𝑄8
(the quaternion group of order 8) by a cyclic 3-group. For a proof, see [10, Theorem III].

Additionally, we are assuming that𝐺 is solvable and so𝐺 cannot be SL2 (𝑝) (𝑝 ≥ 5).
For ŜL2 (3), Foote and Wales in [10, pp. 229] tackles this possibility by quoting a deep
result of Langlands which shows that Artin’s holomorphy conjecture is true in the case
when𝐺/𝑍 (𝐺) � 𝐴4. We address this in our next proposition. The proof can be seen as
consequence of a result ofWong, see [30, Theorem 1.3]. But for the sake of completeness
we present it here.

Proposition 5.3 Suppose that 𝐸 satisfies the generalized Taniyama conjecture over 𝐾 . Let
𝐹 be a Galois extension of 𝐾 with solvable Galois group isomorphic to ŜL2 (3). Let 𝜒 be an
irreducible character of 𝐺 . Then, 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is automorphic and hence entire.

Proof Note that𝑄8 ⊴ ŜL2 (3) and the quotient is a 3-group, in particular, is nilpotent.
A result of Horváth (see [12, Proposition 2.7]) says that this makes ŜL2 (3) an “SM-group
relative to 𝑄8”. What this means in our context, is that, every irreducible character
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𝜒 of ŜL2 (3), is induced from an irreducible character 𝜓 of a subnormal subgroup 𝐻
containing𝑄8. Moreover, 𝜓 |𝑄8 is irreducible and hence 𝜓(1) = 𝜓 |𝑄8 (1) ≤ 2. Further
note that, in the degree 2 case, 𝜓 can not be the icosahedral type (recall, this is the case
when the image of the degree 2 representation in PGL2 (C) is isomorphic to 𝐴5). This
is because, the only prime factors of ŜL2 (3), and hence of 𝐻, are 2 and 3. In particular,
5 is not a prime factor of 𝐻.

Now if 𝜓 is of degree 1, then, from Artin reciprocity, 𝜓 can be seen as an idèle class
character. If 𝜓 is of degree 2, from theorems of Langlands and Tunnell ([18], [28]), 𝜓
is associated to a cuspidal automorphic representation 𝜋𝜓 of GL2 (A𝐾𝐻 ). Since 𝐻 is
subnormal, there exists a subnormal series

𝐻 = 𝐻0 ⊴ 𝐻1 ⊴ · · · ⊴ 𝐻𝑡 = ŜL2 (3).

Moreover, since we assumed solvability, 𝐻𝑖+1/𝐻𝑖 is of prime degree. Therefore, by
repeated application of Arthur and Clozel’s theory of base change for cyclic extensions
(see [2, Theorem 4.2]), the base change map 𝐵(𝜋) ∈ GL2 (A𝐾𝐻 ) exists. Recall, we are
writing, 𝐿 (𝐸/𝐾, 𝑠) = 𝐿 (𝜋, 𝑠). For a short exposition on the base change map see [20,
Section 3], we’re following their notation. Now

𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) = 𝐿 (𝐸/𝐾 ⊗ Ind𝐺𝐻 𝜓, 𝑠) = 𝐿 (𝐸/𝐾
𝐻 ⊗ 𝜓, 𝑠) = 𝐿 (𝐵(𝜋) ⊗ 𝜋𝜓 , 𝑠).

Since functoriality is known in cases of GL(𝑛) × GL(1) and GL(2) × GL(2), the latter
due to Ramakrishnan [22], and we saw that either 𝜓 is an idèle class character or an
automorphic representation of GL(2), so 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is automorphic and hence
entire. ■

5.1 Proof of Theorem 5.1

As in Theorem 4.1, assume the statement is false and take a counterexample 𝐹/𝐾 with
[𝐹 : 𝐾] minimal. Thus there exists an irreducible character 𝜓 of 𝐺 = Gal(𝐹/𝐾) and a
point 𝑠 = 𝜔 such that 𝜔 is a zero of 𝐿 (𝐸/𝐹, 𝑠) of order ≤ 2 but 𝐿 (𝐸/𝐾 ⊗ 𝜓, 𝑠) has a
pole at 𝑠 = 𝜔.

Set 𝜃 = 𝜃𝐺 =
∑
𝑛𝜒𝜒. Note that 𝑛𝜓 < 0. Since we have the factorization

𝐿 (𝐸/𝐹, 𝑠) =
∏

𝜒 ∈ Irr(𝐺)
𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠)𝜒 (1) ,

so, 𝜃𝐺 (1) =
∑
𝜒 ∈ Irr(𝐺) 𝑛𝜒𝜒(1) = ord𝑠=𝜔𝐿 (𝐸/𝐹, 𝑠) ≤ 2.Moreover, we can then carry

out Steps 1 - 4, as it is, in the proof of Theorem 4.1. Hence, all the conditions of Theorem
5.2 are satisfied. But then the solvability assumption eliminates SL2 (𝑝) and Proposition
5.3 eliminates ŜL2 (3) giving us a contradiction. ■

6 Applications to Minimal subfields

We now look at some applications of our theorems in the context of analytic and
algebraic minimal subfields.
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Theorem 6.1 Let 𝐸/𝐾 be an elliptic curve and 𝐹/𝐾 be a finite Galois extension with solvable
Galois group 𝐺 = Gal(𝐹/𝐾). Suppose that 𝐸 satisfies the generalized Taniyama conjecture
over 𝐾 and 𝐿 (𝐸/𝐹, 𝑠) has a zero at 𝜔 of order two. Then the analytic minimal subfield 𝐹𝜔
exists. Further, if 𝜔 is real, then 𝐺 = Gal(𝐹𝜔/𝐾) satisfies one of the following.

(i) 𝐺 is either cyclic or dihedral.
(ii) 𝑍 (𝐺) � Z/2Z and 𝐺/𝑍 (𝐺) � 𝐷2𝑛, 𝐴4 or, 𝑆4.

Proof By Theorem 5.1, 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) is holomorphic for every irreducible character
𝜒 of𝐺 . Hence by Proposition 3.1, 𝐹𝜔 exists.

Now suppose 𝜔 is real. We have the factorization

𝐿 (𝐸/𝐹, 𝑠) =
∏

𝜒 ∈ Irr(𝐺)
𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠)𝜒 (1) .

Since ord𝑠=𝜔 𝐿 (𝐸/𝐹, 𝑠) = 2, then there exists 𝜒 ∈ Irr(𝐺) such that
ord𝑠=𝜔 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) ≥ 1. Since 𝜔 is real, we have

ord𝑠=𝜔 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠) = ord𝑠=𝜔 𝐿 (𝐸/𝐾 ⊗ 𝜒, 𝑠)

Case I : 𝜒 ≠ 𝜒. Hence 𝜒(1) = 1 = 𝜒(1). Thus 𝜒 is one-dimensional. Then 𝐹𝜔 , being
the fixed field of ker 𝜒 ∩ ker 𝜒 = ker 𝜒, is cyclic.

Case II : 𝜒 = 𝜒 and 𝜒(1) = 1. Thus 𝜒 is a real irreducible linear character. Since the
order of vanishing of 𝐿 (𝐸/𝐹, 𝑠) at 𝜔 is 2, there exists another such character. Hence
Gal(𝐹𝜔)/𝐾 is a subgroup of Z2 ⊕ Z2.

Case III : 𝜒 = 𝜒 and 𝜒(1) = 2. Since 𝐹𝜔 is the fixed field of ker 𝜒, Gal(𝐹𝜔/𝐾) admits
a faithful degree 2 irreducible representation coming from the quotient representation
corresponding to 𝜒. Let the character of this representation be denoted by 𝜒̃. Therefore
we know that𝐺/𝑍 (𝐺) is isomorphic to a finite subgroup of PGL2 (C) and therefore is
isomorphic to𝐶𝑛, 𝐷𝑛, 𝐴4, 𝑆4, or 𝐴5. (see [25, Proposition 16, Sec 2.5]). By the solvabil-
ity condition 𝐴5 can be eliminated. Since 𝜒 = 𝜒, we have 𝜒̃ = 𝜒̃, and so 𝑍 (𝐺) = {1}
or Z/2Z. Now𝐺/𝑍 (𝐺) cannot be cyclic as that will imply𝐺 is abelian. Note that when
𝑍 (𝐺) = {1}, then the only possibilities are 𝐷2𝑛 and 𝑆4. (This is because 𝐴4 does not
have any 2 dimensional irreducible representations.) Moreover, if𝐺 � 𝑆4, then, by [23,
Proposition 24, p. 61] (take 𝐴 = 𝐴4), there are two possibilities. We show that both of
them lead to contradictions. Suppose 𝜒̃ |𝐴4 is isotypic (i.e., it is a direct sum of isomor-
phic irreducible representations). Since 𝐴4 does not have any 2 dimensional irreducible
representation, 𝜒̃ |𝐴4 is also reducible and isotypic and so, 𝐴4 ⊆ 𝑍 (𝐺), a contradic-
tion. Thus, there exists an irreducible representation 𝜓 of 𝐴4 such that 𝜒̃ = Ind𝑆4

𝐴4
𝜓

with 𝜓(1) = 1. But we also know that every representation of 𝐴4 of dimension 1 has
𝑉4 in its kernel, therefore, 𝑉4 ⊆ ker𝜓. Since 𝑉4 ⊴ 𝑆4, hence 𝑉4 ⊂ ker Ind𝑆4

𝐴4
𝜓 = ker 𝜒̃,

contradicting faithfulness of 𝜒̃. ■

We now look at more applications of our results in relation to the celebrated Birch
and Swinnerton-Dyer conjecture. The BSD conjecture predicts that the rank of 𝐸 (𝐾) is
equal to the order of vanishing of 𝐿 (𝐸/𝐾, 𝑠) at 𝑠 = 1. Due to work of Gross and Zagier
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[11] and Kolyvagin [17], this is known for 𝐾 = Q and ord𝑠=1𝐿 (𝐸/Q, 𝑠) ≤ 1. In the next
theoremwe prove a slight generalization to this result, namely, we look at the case when
rank increases by 1 in a solvable extension.

Theorem 6.2 Let 𝐸/Q be an elliptic curve and let 𝐾/Q be a solvable Galois extension.

(i) If rk𝐸 (𝐾) = rk𝐸 (Q) + 1, then ord𝑠=1 𝐿 (𝐸/𝐾, 𝑠) ≥ ord𝑠=1 𝐿 (𝐸/Q, 𝑠) + 1.
(ii) If 𝐿 (𝐸/Q ⊗ 𝜒, 𝑠) is holomorphic at 𝑠 = 1 for every irreducible character 𝜒 of Gal(𝐾/Q),

and ord𝑠=1 𝐿 (𝐸/𝐾, 𝑠) = ord𝑠=1 𝐿 (𝐸/Q, 𝑠) + 1, then rk𝐸 (𝐾) ≥ rk𝐸 (Q) + 1.

In both cases equality holds if the algebraic and the analytic minimal subfields are equal.

Proof (i) Let 𝑀 be the algebraic minimal subfield. By Theorem 1.1, 𝑀 is a quadratic
extension ofQ, say of discriminant 𝐷. Consider the twisted elliptic curve 𝐸𝐷 . Then we
have

rk𝐸 (𝑀) = rk𝐸 (Q) + rk𝐸𝐷 (Q)
(e.g. see [13, Proposition 20.5.4, p. 357] ). Thus, rk𝐸𝐷 (Q) = 1 = ord𝑠=1𝐿 (𝐸𝐷/Q, 𝑠). We
also have 𝐿 (𝐸/𝑀, 𝑠) = 𝐿 (𝐸/Q, 𝑠) · 𝐿 (𝐸𝐷/Q, 𝑠). Thus,

ord𝑠=1𝐿 (𝐸/𝐾, 𝑠) ≥ ord𝑠=1𝐿 (𝐸/𝑀, 𝑠) = ord𝑠=1𝐿 (𝐸/Q, 𝑠) + 1,

where the first inequality follows directly from Theorem 4.4. Note that equality holds if
𝑀 = 𝐹1 (the analytic minimal subfield at 𝑠 = 1).

(ii) The holomorphy condition ensures that the analyticminimal subfield exists.We have
the factorization

𝐿 (𝐸/𝐾, 𝑠) =
∏
𝜒

𝐿 (𝐸/Q ⊗ 𝜒, 𝑠)𝜒 (1) .

Since the order of zero increases by 1, we see that there is a non-trivial character 𝜒 of
degree 1 such that 𝐿 (𝐸/Q⊗ 𝜒, 1) = 0. Since the analyticminimal subfield 𝐹1 is the fixed
field of ker 𝜒, thus it is cyclic. Moreover, as ord𝑠=1𝐿 (𝐸/Q ⊗ 𝜒, 𝑠) = ord𝑠=1𝐿 (𝐸/Q ⊗
𝜒, 𝑠), we have 𝜒 = 𝜒, and so [𝐹1 : Q] = 2. Suppose 𝐹1 is of discriminant 𝐷. Since,
𝐿 (𝐸/𝐹1, 𝑠) = 𝐿 (𝐸/Q, 𝑠) ·𝐿 (𝐸𝐷/Q, 𝑠), we have ord𝑠=1𝐿 (𝐸𝐷/Q, 𝑠) = 1, and therefore
rk𝐸𝐷 (Q) = 1. Thus rk𝐸 (𝐾) ≥ rk𝐸 (𝐹1) = rk𝐸 (Q) + 1. ■

Corollary 6.3 If ord𝑠=1 𝐿 (𝐸/Q, 𝑠) = rk𝐸 (Q) and 𝐾/Q is a quadratic extension, then

rk𝐸 (𝐾) = rk𝐸 (Q) + 1 if and only if ord𝑠=1𝐿 (𝐸/𝐾, 𝑠) = ord𝑠=1𝐿 (𝐸/Q) + 1.

The corollary follows from the fact that in this case both of the minimal subfields
are equal to 𝐾 . Also note that it is unconditional, as holomorphy of 𝐿 (𝐸/Q ⊗ 𝜒, 𝑠) is
known in cyclic case.

The holomorphy condition of 𝐿 (𝐸/Q ⊗ 𝜒) in Theorem 6.2 (ii) can be relaxed if 𝐸
has complex multiplication. We discuss this next.

Let𝐺 be a finite group and 𝐻 ≤ 𝐺 be any subgroup. For every complex character 𝜓
of 𝐻, we attach a complex number 𝑛(𝐻, 𝜓) satisfying
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(i) 𝑛(𝐻, 𝜓 + 𝜓′) = 𝑛(𝐻, 𝜓) + 𝑛(𝐻, 𝜓′), and
(ii) 𝑛(𝐺, Ind𝐺

𝐻
𝜓) = 𝑛(𝐻, 𝜓).

Define 𝜃𝐻 =
∑
𝜓∈Irr(𝐺) 𝑛(𝐻, 𝜓)𝜓. Then we have, 𝜃𝐺 |𝐻 = 𝜃𝐻 . (see [20, Proposition 1,

p. 484]). The following is proved in [21, Theorem 14].

Theorem 6.4 (M. RamMurty) Suppose 𝑛(𝐻, 1) ≥ 𝑛(𝐺, 1) for every cyclic subgroup 𝐻 of
𝐺 . Then ∑︁

𝜒≠1
|𝑛(𝐺, 𝜒) |2 ≤ (𝑛(𝐺, reg) − 𝑛(𝐺, 1))2

where ‘reg’ denotes the regular character of 𝐺 .

We also note the following theorem from [20, Theorem 1].

Theorem 6.5 (M. RamMurty and V. Kumar Murty)
Let 𝐸 be an elliptic curve defined over 𝐾 . Suppose that 𝐸 has complex multiplication (CM)
and 𝐹 is a finite extension of 𝐾 . If 𝐹 is contained in a solvable extension of 𝐾 , then
𝐿 (𝐸/𝐹, 𝑠)/𝐿 (𝐸/𝐾, 𝑠) is entire.

Combining the above two theorems, we get the following.

Theorem 6.6 Let 𝐸/Q be an elliptic curve and let 𝐾/Q be a solvable Galois extension
with Galois group 𝐺 . Suppose 𝐸 has complex multiplication. If ord𝑠=1 𝐿 (𝐸/𝐾, 𝑠) =

ord𝑠=1 𝐿 (𝐸/Q, 𝑠) + 1, then rk𝐸 (𝐾) ≥ rk𝐸 (Q) + 1.

Proof Let 𝑛(𝐻, 𝜓) = ord𝑠=1𝐿 (𝐸/𝐾𝐻 ⊗ 𝜓, 𝑠). For any cyclic subgroup 𝐻 of 𝐺 ,
𝐿 (𝐸/𝐾𝐻 ⊗𝜓, 𝑠) is entire, moreover by Theorem 6.5, 𝐿 (𝐸/𝐾𝐻 , 𝑠)/𝐿 (𝐸/Q, 𝑠) is entire
and so conditions of Theorem 6.4 are satisfied. In particular,∑︁

𝜒≠1
𝑛(𝐺, 𝜒)2 ≤ 1.

Thus, it must be that, there exists a linear character 𝜒1, such that 𝑛(𝐺, 𝜒1) = 1 and
𝑛(𝐺, 𝜒) = 0 for all 𝜒 ≠ 1, 𝜒1. That is, 𝐿 (𝐸/Q ⊗ 𝜒, 𝑠) is holomorphic at 𝑠 = 1 for all
irreducible characters 𝜒 of𝐺 . Thus, the condition of Theorem 6.2 (ii) is satisfied and we
have rk𝐸 (𝐾) ≥ rk𝐸 (Q) + 1 if ord𝑠=1 𝐿 (𝐸/𝐾, 𝑠) = ord𝑠=1 𝐿 (𝐸/Q, 𝑠) + 1. ■
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