An Infinite Product of Euler.

In a letter to Stirling, dated July 27, 1738, Euler mentions having happened on the infinite product, "satis notatu dignam," $\frac{3.5 \cdot 7.11 .13 .17 .19 \ldots}{4.4 .8 \cdot 12.12 .16 .20 \ldots}$, the numerators being the odd primes in their natural order, the denominators the multiples of 4 nearest to those primes. He says he can prove that the limit of this product is $\frac{\pi}{4}$. His proof was probably as follows :

$$
\begin{aligned}
& \frac{3.5 \cdot 7.11 .13 \cdot 17 \cdot 19 \ldots}{4.4 \cdot 8 \cdot 12.12 \cdot 16 \cdot 20 \ldots}=\left(1+\frac{1}{3}\right)^{-1}\left(1-\frac{1}{5}\right)^{-1}\left(1+\frac{1}{7}\right)^{-1} \\
& =\left(1+\frac{1}{11}\right)^{-1}\left(1-\frac{1}{13}\right)^{-1} \\
& =\left(1-\frac{1}{3}+\frac{1}{3^{2}}-\frac{1}{3^{3}}+\ldots\right)\left(1+\frac{1}{5}+\frac{1}{5^{2}}+\ldots\right) \\
& \quad\left(1-\frac{1}{7}+\frac{1}{7^{2}}-\ldots\right)\left(1-\frac{1}{11}+\frac{1}{11^{2}}-\ldots\right)(\ldots) \\
& =\sum_{n=0}^{\infty}(-)^{n} \frac{1}{3 n+1}=\arctan 1=\frac{\pi}{4} .
\end{aligned}
$$

A. C. Aitken.

An Elementary Proof of Girard's Theorem.

Girard enunciated in 1625 the following celebrated theorem, which is associated with the name of Fermat:

Every prime of the form $4 m+1$ is the sum of two squares in one way only, and no prime of the form $4 m-1$ is a factor of the sum of two squares that are not both multiples of that prime.

The theorem will be deduced here from an immediate corollary of the H.C.F. theorem, namely that if a is prime to b, we may find c and d such that $a d-b c=k$, where k is any assigned integer.
§1. If k is less than and prime to n, and q is given, only one number h less than n exists such that $k h \equiv q(\bmod . n)$.

At least one exists, for, since k is prime to n, we may find c and d such that $k c-n d=q$, and c may be set as $p n+h(h<n)$, so that $k h \equiv q(\bmod n)$.

Now suppose another such number h_{1} exists.
Then $k\left(h-h_{1}\right) \equiv 0(\bmod . n)$.
\therefore since k is prime to $n, h-h_{1}$ must be a multiple of n, which is impossible, since h and h_{1} are unequal and each less than n.
$\therefore h$ is the only number less than n such that $k h \equiv q(\bmod . n)$.
§2. If P is an odd prime and q is given, only two, if any, numbers k and $P-k$ less than P exist such that $k^{2} \equiv q(\bmod . P)$.

For suppose two others k_{1} and $P-k_{1}$ exist and let k and k_{1} be the odd members of these pairs.

Then $k^{2}-k_{1}^{2}=\left(k+k_{1}\right)\left(k-k_{1}\right) \equiv 0(\bmod . P)$.
\therefore since $k-k_{1}$ is not zero, $k+k_{1}$ must be a multiple of P, which is impossible, since $k+k_{1}$ is even, but less than $2 P$.

Hence k and $P-k$ are the only numbers, if any, less than P such that $k^{2} \equiv q(\bmod . P)$.
§3. (a) If P is a prime of the form $4 m+1$, and q is given, not a multiple of P, two and only two numbers k and $P-k$ less than P exist such that $k^{2}+q^{2} \equiv 0(\bmod , P)$.
(b) If P is a prime of the form $4 m-1$, no numbers satisfy the congruence $x^{2}+q^{2} \equiv 0(\bmod . P)$.
(a) Consider all the $4 m$ numbers less than P. By $\S 1$, each number h may be paired with a number h_{1} so that $h h_{1} \equiv q^{2}(\bmod . P)$.

If $q \equiv r, r<P$, then r and $P-r$ can only be paired with themselves, forming squares congruent with q^{2}; by $\$ 2$, they are the only two such numbers less than P. Remove them.

The remaining $4 m-2$ numbers may be put into $2 m-1$ pairs (h, h_{1}). Each pair (h, h_{1}) may in turn be associated with a "conjugate" pair ($P-h, P-h_{1}$).

Since the number of pairs is odd, a certain pair ($k, P-k_{1}$) is left over. But its conjugate ($P-k, k_{1}$) exists. Hence it must be identical with $\left(k, P-k_{1}\right)$, so that, since k is not equal to $P-k$, we have $k=k_{1}$, and $\therefore k(P-k) \equiv q^{2}$, i.e. $k^{2}+q^{2} \equiv 0(\bmod . P)$.

Also by $\S 2, k$ and $P-k$ are the only such numbers less than P. Moreover k and q can both be less than $\frac{1}{2} P$, so that we may write $P . Q=k^{2}+q^{2}$, where Q is less than $\frac{1}{2} P$.
(b) Now let P be of the form $4 m-1$.

Removing as before r and $P-r$, where $q \equiv r$, we have left $4 m-4$ numbers, which may, as in (a), be put in pairs (h, h_{1}).

Assume a pair ($k, P_{--} k$) exists. Remove it.
There remains an odd number of pairs, $2 m-3$.
\therefore by reasoning similar to that of (a), there must be among these a pair $(l, P-l)$.

But then we should have four numbers $k, l, P-k, P-l$, all satisfying the congruence $x^{2}+q^{2} \equiv 0(\bmod . P)$, which is impossible, by $\S 2$.

Hence our assumption is wrong, and there is no number less than P, and therefore no number at all, satisfying $x^{2}+q^{2} \equiv 0$ (mod. P).

Thus is proved the negative part of Girard's Theorem, that a prime of the form $4 m-1$ cannot be a factor of the sum of two squares which do not both contain that prime.

Hence the only factors of the sum of two squares prime to each other are primes of the form $4 m+1$ or the prime 2.
§4. We shall now generalize a theorem of Euler, and prove that if $p^{2}+q^{2}=N_{0} . N_{1} . N_{2} . N_{3} \ldots N_{k}$, where $N_{0}, N_{1}, N_{2}, \ldots$ etc. are prime factors of $p^{2}+q^{2}$, and if all the factors except N_{k} are given as the sums of two squares (necessarily prime to each other), then N_{k} is also the sum of two squares.

Let $N_{0}=a_{0}^{2}+b_{0}^{2}, N_{1}=a_{1}^{2}+b_{1}^{2}, \ldots$ etc.
Then $p^{2}+q^{2}=\left(a_{0}^{2}+b_{0}^{2}\right)\left(a_{1}^{2}+b_{1}^{2}\right) \ldots N_{k}$.
Since a_{0} is prime to b_{0}, we may find c and d such that

$$
a_{0} d-b_{0} c=p
$$

Let $q=a_{0} c+b_{0} d+e$.
Then $\left(a_{0} d-b_{0} c\right)^{2}+\left(a_{0} c+b_{0} d+e\right)^{2}=\left(a_{0}^{2}+b_{0}^{2}\right)\left(a_{1}^{2}+b_{1}^{9}\right) \ldots N_{k}$, i.e. $\quad\left(a_{0}^{2}+b_{0}^{2}\right)\left(c^{2}+d^{2}\right)+e^{2}+2 e\left(a_{0} c+b_{0} d\right)=\left(a_{0}^{2}+b_{0}^{2}\right)\left(a_{1}^{2}+b_{1}^{2}\right) \ldots N_{k}$.
$\therefore e\left\{e+2\left(a_{0} c+b_{0} d\right)\right\}$ is a multiple of the prime $a_{0}^{2}+b^{2}$.
\therefore either e or $e+2\left(a_{0} c+b_{0} d\right)$ is a multiple.

If $e=M\left(a_{0}^{2}+b_{0}^{2}\right)$, then $e\left\{e+2\left(a_{0} c+b_{0} d\right)\right\}=\left(a_{0}^{2}+b_{0}^{2}\right)\left\{M^{2}\left(a_{0}^{2}+b_{0}^{2}\right)\right.$ $\left.+2 M\left(a_{0} c+b_{0} d\right)\right\}$; and if $e+2\left(a_{0} c+b_{0} d\right)=M\left(a_{0}^{2}+b_{0}^{2}\right)$, then $\epsilon\left\{e+2\left(a_{0} c+b_{0} d\right)\right\}=\left(a_{0}^{2}+b_{0}^{2}\right)\left\{M^{2}\left(a_{0}^{2}+b_{0}^{2}\right)-2 M\left(a_{0} c+b_{0} d\right)\right\}$.

In any case, dividing by ($a_{0}^{2}+b_{0}^{2}$), we have

$$
c^{2}+d^{2}+M^{2}\left(a_{0}^{2}+b_{0}^{2}\right) \pm 2 M\left(a_{0} c+b_{0} d\right)=\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \ldots N_{k s}
$$

i.e. $\quad\left(M a_{0} \pm c\right)^{2}+\left(M b_{0} \pm d\right)^{2}=\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \ldots N_{k}$, which we may write $p_{1}^{2}+q_{1}^{2}=N_{1} . N_{2} . N_{3} . \ldots N_{k}$.

From this we may derive in a similar manner

$$
p_{2}^{2}+q_{2}^{\frac{2}{2}}=N_{2} \cdot N_{3} \cdot N_{4} \ldots N_{k}
$$

and so on, and finally $p_{k}^{2}+q_{k}^{2}=N_{k}$, ${ }_{k}$ was to be proved.
§5. It may now be shown that every prime of the form $4 m+1$ is the sum of two squares.

By $\S 3(a)$, if P is such a prime, we may find $Q, R, S \ldots$, primes of form $4 m+1$ less than P, such that $P . Q . R . S \ldots=a^{2}+b^{2}$.

Now, by $\S 4, P$ is the sum of two squares if the lower primes $Q, R, S \ldots$ are the sums of two squares.

Each of $Q, R, S \ldots$ is in its turn the sum of two squares if still lower primes of the form $4 m+1$ are sums of two squares.

Thus ultimately the condition that P is the sum of two squares is that the lowest prime of the form $4 m+1$ shall be the sum of two squares.

This condition is satisfied, since $5=2^{2}+1^{2}$.
Hence P is the sum of two squares.
§6. Lastly, to show that the prime P is the sum of two squares in one way only.

Suppose it can be so expressed in two distinct ways, i.e. let $P=a^{2}+b^{2}=c^{2}+d^{2}$, where a, b, c, d are prime to P, and $a>c>d>b$. Then $a c$ is not equal to $b d$, and, since $\frac{a}{b}$ is not equal to $\frac{c}{d}, a d$ is not equal to $b c$.

Since $\left(d^{2}-b^{2}\right) P$, i.e. $d^{2}\left(a^{2}+b^{2}\right)-b^{2}\left(c^{2}+d^{2}\right)$ or $a^{2} d^{2}-b^{2} c^{2}$, is a multiple of P, either $a d+b c$ or $a d-b c$ is a multiple of $P, r P$.
Similarly either $a c-b d$ or $a c+b d$ is a multiple of $P, s P$. (ii).

Now if $a d+b c$ is a multiple of $P, a c+b d$ cannot be, for, squaring and adding, we should have $P^{2}+4 a b c d$ a multiple of P, which is impossible, since a, b, c, d are prime to P.

Hence either $a d+b c$ and $a c-b d$ are multiples together, or $a d-b c$ and $a c+b d$ are multiples together.
In either case, square and add. Then $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)$, i.e. $\quad P^{2}=\left(r^{2}+s^{2}\right) P^{2}$, so that $r^{2}+s^{2}=1$.

Hence one of r or $s=0$, i.e. $a d=b c$ or $a c=b d$, both of which are impossible, by (i). Hence our supposition is wrong, and P can be expressed in one way only as the sum of two squares.
A. C. Aitken.

Theorem regarding a regular polygon and a circle cutting its sides, with corollary and application to trigonometry.

1. Theorem.

If a circle cut all the sides (produced if necessary) of a regular polygon, the algebraic sum of the intercepts, on the sides, between the vertices and the circle is zero.

Fig. 1
Consider the case of a regular pentagon $A B C D E$ whose sides are cut by a circle as shown in Fig. 1. Let $A B=x$.

