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1. Introduction. Let � ⊂ Rn be a bounded smooth domain, α and β be non-
negative real numbers and p ∈ (1, (n + 2)/(n − 2)). We consider the following problem:

⎧⎪⎨
⎪⎩

�u + u p = 0, x ∈ �,

u > 0, x ∈ �,

α
∂u
∂ν

+ βu = 0, x ∈ ∂�,

(1.1)

where ν is the unit outer normal vector field on ∂�.
When α > 0 and β = 0, it is trivial to observe that (1.1) has no solution. On the

other hand, if β > 0, it is easy to prove via the variational method or the continuity
method combined with a priori estimates that (1.1) has at least one solution. Since the
existence of multiple solutions is a common phenomenon in the non-linear problem,
a natural question then follows.

Question A: How many solutions does (1.1) have? In the Dirichlet case (that is,
α = 0 and β > 0), the answers to Question A depend on the shape of the domain.
For example, (1.1) with α = 0 and β > 0 has at most one solution when � is a ball or
a planner domain, that is, symmetric and convex along axes (see [1, 6]). However, it
has more than one solution for some dumbell-shaped domains with a narrow enough
neck (see [7, 8]), or some annulus domains. There are many other literatures on the
Dirichlet problem. We refer the interest reader to [3, 8, 10, 15, 16, 17]. Compared with
the Dirichlet problem, there are few results about the so-called Robin problem (that
is, α, β > 0) that always arise in biology, chemistry and environmental sciences (see,
however, [9] for an existence result for the Robin problem with critical non-linearities).
In this paper, we study the Robin problem. For convenience, we set η = β/α and
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transform (1.1) into the following problem:

⎧⎪⎨
⎪⎩

�u + u p = 0, x ∈ �,

u > 0, x ∈ �,
∂u
∂ν

+ ηu = 0, x ∈ ∂�.

(1.2)

Existence result for (1.2) can be proved in a similar way as that of [9]. Hence, our
particular attention is given to prove uniqueness results for (1.2). In the Dirichlet case,
it is well known that the symmetry and convexity of the domain play a crucial role in
the proof of uniqueness results via a so-called maximum principle for narrow domains
(see [6, 14]). However, in the Robin boundary case, this kind of maximum principle is
no longer available. The lack of maximum principle for narrow domains causes some
difficulty in the analysis of problem (1.2). For example, we do not know how to prove
a symmetrical result for (1.2) even when � is a ball, let alone � are other symmetrical
domains. This circumstance prevents us from adopting many powerful tools used in the
proof of uniqueness results for the Dirichlet problem. The method we will use here is
the a priori estimates method combined with the analysis of the asymptotic behaviour
of solutions of (1.2) as η → 0. There is a drawback as well as an advantage of this
method. The drawback is that we can obtain only local in η results by this method.
The advantage is that this method also works well for the Robin problem of elliptic
systems. Now, we are in a position to state our first result.

THEOREM 1.1. There exists a positive number η0 such that problem (1.2) has at most
one solution for any η ∈ (0, η0).

Our second result is about the Robin problem of elliptic systems. To simplify the
notation, we denote ∂u

∂ν
+ ηu by Bu. Then the problem we consider next can be written

as ⎧⎪⎪⎨
⎪⎪⎩

�u + vp = 0, x ∈ �,

�v + uq = 0, x ∈ �,

u, v > 0, x ∈ �,

Bu = Bv = 0, x ∈ ∂�.

(1.3)

THEOREM 1.2. There exists a positive number η0 such that problem (1.3) has at most
one solution for any η ∈ (0, η0) provided that p, q ∈ (1, (n + 2)/(n − 2)) or max{2(p +
1)/(pq − 1), 2(q + 1)/(pq − 1)} > n − 2.

REMARK 1.3. Compared with the uniqueness results for a Dirichlet problem, the
main feature of our results is that there is no special request on the domain �.

REMARK 1.4. A difference between the Dirichlet problem and the Robin problem is
also displayed in the symmetrical results. It is well known that the symmetrical results
may be invalid for positive solutions of the Dirichlet problem on annulus domains.
However, by Theorems 1.1 and 1.2, we have the following symmetrical results for the
Robin problem when η is small enough.

COROLLARY 1.5. If � is invariant under rotation, then, for any η ∈ (0, η0), the solution
of problems (1.2) and (1.3) is radially symmetry, where η0 is the positive number in
Theorems 1.1 and 1.2, respectively.
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REMARK 1.6. An interesting question is that whether the symmetrical result is valid
for positive solutions of the Robin problem when η > 0 is arbitrary and � is invariant
under rotation.

The rest of this paper is arranged as follows. Section 2 includes some preliminary
lemmas needed in the proof of Theorems 1.1 and 1.2. The proof of Theorems 1.1 and
1.2 is placed in Section 3.

2. Preliminary lemmas. In this section, we give some lemmas needed in the proof
of Theorems 1.1 and 1.2.

LEMMA 2.1 ([4]). Let u(x) be a non-negative solution of the equation

−�u = u p, x ∈ Rn, (2.1)

with 1 ≤ p < n+2
n−2 , then u(x) ≡ 0.

LEMMA 2.2 ([2, 11, 12]). Let (u(x), v(x)) be a non-negative solution of the elliptic
system {−�u = vp, x ∈ Rn,

−�v = uq, x ∈ Rn,
(2.2)

with p, q ∈ (1, (n + 2)/(n − 2)) or max{2(p + 1)/(pq − 1), 2(q + 1)/(pq − 1)} > n − 2.
Then u(x) ≡ v(x) ≡ 0.

LEMMA 2.3. There exists a positive number η0 and a positive constant M independent
of η such that for any solution u(x) of problem (1.2) with η ∈ (0, η0), we have ‖u‖L∞(�) ≤
M.

Proof. If the conclusion of Lemma 2.3 is not true, then there exists a sequence
ηk → 0 as k → ∞ and a sequence of solution uk(x) of problem (1.2) with η = ηk such
that

Mk = max
x∈�

uk(x) = uk(xk) → +∞, as k → ∞.

Let dk = dist(xk, ∂�) and vk be the function defined by

vk(y) = uk
(
xk + M(1−p)/2

k y
)

Mk
= uk(x)

Mk
, y = M(p−1)/2

k (x − xk).

It is easy to check that vk satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�vk = v
p
k, y ∈ �k,

max
y∈�k

vk(y) = vk(0) = 1,

∂vk(y)
∂ν

+ ηkvk = 0, y ∈ ∂�k,

(2.3)

where �k = M(p−1)/2
k (� − xk).

Now, we have the following two cases to be considered.

Case 1: If dkM(p−1)/2
k → ∞, then �k → Rn. Hence, for any compact domain D ⊂

Rn, we have D ⊂ �k when k is large enough. By the standard elliptic estimates, we
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can find a constant C depending only on D and n such that ‖vk‖Ck,α(D) ≤ C. If the
diagonal convergence method is employed, then we can extract a subsequence of vk

that is still denoted by vk such that vk converges uniformly on any compact subset of
Rn to a function v. Considering the limit in problem (2.3), we find that v satisfies{

−�v = vp, y ∈ Rn,

v(0) = 1,
(2.4)

This contradicts the conclusion of Lemma 2.1.

Case 2: If dkM(p−1)/2
k is bounded, then we can extract a subsequence of dkM(p−1)/2

k

that is still denoted by dkM(p−1)/2
k such that dkM(p−1)/2

k → s, as k → ∞. In this
circumstance, we have �k → R+

s = Rn ∩ {xn > −s}. Hence, for any compact domain
D of R+

s , it follows from the standard elliptic estimates that there exists a constant C
depending only on D and n such that ‖vk‖C2,α (D) ≤ C. By the diagonal convergence
method, we know that up to a subsequence, vk converges uniformly on any compact
subset of R+

s to a function v(y). Considering the limit in problem (2.3), we find that
v(y) satisfies ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−�v = vp, y ∈ R+

s ,

v(0) = 1,

∂v

∂yn
= 0, yn = −s.

(2.5)

If we denote the even reflection of v(y) with respect to the hyperplane yn = −s by
w(y), and set

h(y) =
{

v(y), y ∈ R+
s ,

w(y), y ∈ R−
s = {y ∈ Rn : yn < −s},

then it is easy to verify that h(y) is a non-trivial solution of problem (2.1). This
also contradicts the conclusion of Lemma 2.1. Hence, we complete the proof of
Lemma 2.3. �

By a similar argument to that used in the proof of Lemma 2.3 and taking into
account Lemma 2.2, we can prove the following lemma (a similar argument can be
found in [11]).

LEMMA 2.4. There exists a positive number η0 and a positive constant M independent
of η such that for any solution (u(x), v(x)) of problem (1.3) with η ∈ (0, η0), we have

‖u‖L∞(�) + ‖v‖L∞(�) ≤ M.

LEMMA 2.5. Let u1(x) and u2(x) be two distinct solutions of problem (1.2).
Then we have ∫

�

u1u2
(
up−1

1 − up−1
2

)
dx = 0.

Proof. The proof of this Lemma is merely an application of integration by part, so
we omit it here. A similar argument can be found in the proof of Lemma 2.6. �
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LEMMA 2.6. Let (u1(x), v1(x)) and (u2(x), v2(x)) be two distinct solutions of problem
(1.3).

Then we have∫
�

u1u2
(
uq−1

1 − uq−1
2

)
dx =

∫
�

v1v2
(
v

p−1
2 − v

p−1
1

)
dx.

Proof. Since (u1(x), v1(x)) and (u2(x), v2(x)) are solutions of problem (1.3), we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u1 + v
p
1 = 0, x ∈ �,

�v1 + uq
1 = 0, x ∈ �,

u1, v1 > 0, x ∈ �,

Bu1 = Bv1 = 0, x ∈ ∂�,

(2.6)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u2 + v
p
2 = 0, x ∈ �,

�v2 + uq
2 = 0, x ∈ �,

u2, v2 > 0, x ∈ �,

Bu2 = Bv2 = 0, x ∈ ∂�.

(2.7)

Accordingly∫
�

v2v
p
1 dx =

∫
�

v2(−�u1)dx =
∫

�

u1(−�v2)dx =
∫

�

u1uq
2 dx,

∫
�

v1v
p
2 dx =

∫
�

v1(−�u2)dx =
∫

�

u2(−�v1)dx =
∫

�

u2uq
1 dx.

Combining the above two identities, we conclude the proof of Lemma 2.6. �

3. The proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Suppose that the conclusion of Theorem 1.1 is false. Then
there exists a sequence ηi → 0 as i → ∞ such that the problem⎧⎪⎪⎨

⎪⎪⎩
�u + up = 0, x ∈ �,

u > 0, x ∈ �,

∂u
∂ν

+ ηiu = 0, x ∈ ∂�,

(3.1)

has at least two distinct solutions u1
i (x) and u2

i (x). By Lemma 2.3 and the standard
elliptic estimates (see [5]), we know that there exists a positive constant C independent
of ηi such that ∥∥u1

i

∥∥
C2,α(�),

∥∥u2
i

∥∥
C2,α (�) ≤ C.

Hence, up to a subsequence, we may assume that

u1
i (x) → u1(x) uniformly on �,

u2
i (x) → u2(x) uniformly on �.
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Considering the limit in problem (3.1) as i → ∞, we find that u1(x) and u2(x) are
the non-negative solutions of the following problem:

⎧⎨
⎩

�u + u p = 0, x ∈ �,

∂u
∂ν

= 0, x ∈ ∂�.
(3.2)

Consequently, we have u1(x) ≡ u2(x) ≡ 0 on �.
Let Ui(x) = u1

i (x) − u2
i (x). Then Ui(x) �≡ 0 since u1

i (x) and u2
i (x) are distinct. Thus,

we can define

wi(x) = Ui(x)
‖Ui‖L∞(�)

.

It is easy to verify that wi(x) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�wi + pap−1
i (x)wi = 0, x ∈ �,

‖wi‖L∞(�) = 1,

∂wi

∂ν
+ ηiwi = 0, x ∈ ∂�,

(3.3)

where ai(x) is a function between u1
i (x) and u2

i (x).
Noticing that pap−1

i (x)wi are uniformly bounded, it follows from the standard
elliptic estimates that there exists a positive constant C independent of ηi such that
‖wi‖C2,α (�) ≤ C. Hence, up to a subsequence, we may assume that

wi(x) → w(x) uniformly on �.

Considering the limit in problem (3.3) as i → ∞, we conclude that w(x) satisfies

⎧⎪⎪⎨
⎪⎪⎩

�w = 0, x ∈ �,

‖w‖L∞(�) = 1,

∂w

∂ν
= 0, x ∈ ∂�.

(3.4)

This implies that w(x) ≡ 1 on �, or w(x) ≡ −1 on �. Without loss of generality, we
may assume that w(x) ≡ 1. Then there exists a positive integer I such that

wi(x) > 0 for any i > I and x ∈ �.

Accordingly, by the definition of wi(x), we know that

u1
i (x) − u2

i (x) > 0 for any i > I and x ∈ �.

This contradicts the conclusion of Lemma 2.5. Thus, we complete the proof of
Theorem 1.1. �

https://doi.org/10.1017/S0017089508004321 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004321


UNIQUENESS OF POSITIVE SOLUTIONS OF ROBIN PROBLEM 443

Proof of Theorem 1.2. Suppose that the conclusion of Theorem 1.2 is false. Then
there exists a sequence ηi → 0 as i → ∞ such that the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u + vp = 0, x ∈ �,

�v + uq = 0, x ∈ �,

u, v > 0, x ∈ �,

∂u
∂ν

+ ηiu = 0, x ∈ ∂�,

∂v

∂ν
+ ηiv = 0, x ∈ ∂�,

(3.5)

has at least two distinct solutions (u1
i (x), v1

i (x)) and (u2
i (x), v2

i (x)). By Lemma 2.4 and
the standard elliptic estimates (see [5]), we know that there exists a positive constant C
independent of ηi such that

∥∥u1
i

∥∥
C2,α(�) + ∥∥v1

i

∥∥
C2,α (�) ≤ C,

and

∥∥u2
i

∥∥
C2,α(�) + ∥∥v2

i

∥∥
C2,α (�) ≤ C.

Hence, up to a subsequence, we may assume that

u1
i (x) → u1(x) uniformly on �,

u2
i (x) → u2(x) uniformly on �,

and

v1
i (x) → v1(x) uniformly on �,

v2
i (x) → v2(x) uniformly on �.

Considering the limit in problem (3.5) as i → ∞, we find that (u1(x), v1(x)) and
(u2(x), v2(x)) are non-negative solutions of the following problem:

⎧⎪⎪⎨
⎪⎪⎩

�u + vp = 0, x ∈ �,

�v + uq = 0, x ∈ �,

∂u
∂ν

= ∂v

∂ν
= 0, x ∈ ∂�.

(3.6)

Consequently, we have u1(x) ≡ u2(x) ≡ v1(x) ≡ v2(x) ≡ 0 on �.
Let Ui(x) = u1

i (x) − u2
i (x) and Vi(x) = v1

i (x) − v2
i (x).

Then |Ui(x)| + |Vi(x)| �≡ 0 since (u1
i (x), v1

i (x)) and (u2
i (x), v2

i (x)) are distinct. Thus,
we can define wi(x) = Ui(x)/(‖Ui‖L∞(�) + ‖Vi‖L∞(�)) and hi(x) = Vi(x)/(‖Ui‖L∞(�) +
‖Vi‖L∞(�)).

https://doi.org/10.1017/S0017089508004321 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004321


444 QIUYI DAI AND YUXIA FU

It is easy to verify that (wi(x), hi(x)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�wi + pap−1
i (x)hi = 0, x ∈ �,

�hi + qbq−1
i (x)wi = 0, x ∈ �,

‖wi‖L∞(�) + ‖hi‖L∞(�) = 1,

∂wi

∂ν
+ ηiwi = 0, x ∈ ∂�,

∂hi

∂ν
+ ηihi = 0, x ∈ ∂�,

(3.7)

where ai(x) is a function between v1
i (x) and v2

i (x) and bi(x) is a function between u1
i (x)

and u2
i (x).

Noticing that pap−1
i (x)hi and qbq−1

i (x)wi are uniformly bounded, it follows from
the standard elliptic estimates that there exists a positive constant C independent of
ηi such that ‖wi‖C2,α (�) ≤ C and ‖hi‖C2,α (�) ≤ C. Hence, up to a subsequence, we may
assume that

wi(x) → w(x) uniformly on �.

hi(x) → h(x) uniformly on �.

Considering the limit in problem (3.7) as i → ∞, we conclude that (w(x), h(x))
satisfies ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�w = 0, x ∈ �,

�h = 0, x ∈ �,

‖w‖L∞(�) + ‖h‖L∞(�) = 1,

∂w

∂ν
= ∂h

∂ν
= 0, x ∈ ∂�.

(3.8)

This implies that w(x) ≡ C1 and h(x) ≡ C2 on �, where C1 and C2 are constants.
Moreover, |C1| + |C2| = 1. Hence, one of |C1| and |C2| should be no less than 1/2.
Without loss of generality, we may assume that |C1| ≥ 1/2. Then C1 ≥ 1/2 or C1 ≤
−1/2.

If C1 ≥ 1/2, then there exists a positive integer I such that

wi(x) > 0 for any i > I and x ∈ �,

from which we can also conclude that

hi(x) > 0 for any i > I and x ∈ �.

Now, by the definition of wi(x) and hi, we know that

u1
i (x) − u2

i (x) > 0 for any i > I and x ∈ �,

and

v1
i (x) − v2

i (x) > 0 for any i > I and x ∈ �.

This contradicts the conclusion of Lemma 2.6.
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If C1 ≤ −1/2, by a similar argument, we may conclude that there exists a positive
integer I such that

u1
i (x) − u2

i (x) < 0 for any i > I and x ∈ �,

and

v1
i (x) − v2

i (x) < 0 for any i > I and x ∈ �.

This also contradicts the conclusion of Lemma 2.6. Thus, we complete the proof of
Theorem 1.2. �
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