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Abstract

Let a, b, c be fixed coprime positive integers with min{a, b, c} > 1. Let N(a, b, c) denote the number of
positive integer solutions (x, y, z) of the equation ax + by = cz. We show that if (a, b, c) is a triple of distinct
primes for which N(a, b, c) > 1 and (a, b, c) is not one of the six known such triples, then c > 1018, and
there are exactly two solutions (x1, y1, z1), (x2, y2, z2) with 2 | x1, 2 | y1, z1 = 1, 2 � y2, z2 > 1, and, taking
a < b, we must have a = 2, b ≡ 1 mod 12, c ≡ 5 mod 12, with (a, b, c) satisfying further strong restrictions.
These results support a conjecture put forward by Scott and Styer [‘Number of solutions to ax + by = cz’,
Publ. Math. Debrecen 88 (2016), 131–138].
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1. Introduction

Let N be the set of all positive integers. Let a, b, c be fixed coprime positive integers
with min{a, b, c} > 1. The equation

ax + by = cz, x, y, z ∈ N (1.1)

has been studied deeply with abundant results (see [14], see also [2]). In 1933,
Mahler [15] used his p-adic analogue of the Diophantine approximation method of
Thue–Siegel to prove that (1.1) has only finitely many solutions (x, y, z). However, his
method is ineffective. Let N(a, b, c) denote the number of solutions (x, y, z) of (1.1). An
effective upper bound for N(a, b, c) was first given by Gel’fond [8]. A straightforward
application of an upper bound on the number of solutions of binary S-unit equations
due to Beukers and Schlickewei [5] gives N(a, b, c) ≤ 236. The following more accurate
upper bounds for N(a, b, c) have been obtained in recent years.

(i) (Scott and Styer [22]) If 2 � c, then N(a, b, c) ≤ 2.
(ii) (Hu and Le [9]) If max{a, b, c} > 5 · 1027, then N(a, b, c) ≤ 3.
(iii) (Hu and Le [10]) If 2 | c and max{a, b, c} > 1062, then N(a, b, c) ≤ 2.
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(iv) (Miyazaki and Pink [16]) If 2 | c, a < b and max{a, b, c} ≤ 1062, then
N(a, b, c) ≤ 2 except for N(3, 5, 2) = 3.

Nevertheless, the problem of establishing N(a, b, c) ≤ 1 with a finite number of
exceptions remains open. This open question is addressed by the following conjecture
in [22]. Assuming without loss of generality that a, b and c are not perfect powers, the
conjecture may be formulated as follows.

CONJECTURE 1.1. For a < b, we have N(a, b, c) ≤ 1, except for:

(i) N(2, 2r − 1, 2r + 1) = 2, (x, y, z) = (1, 1, 1) and (r + 2, 2, 2), where r is a positive
integer with r ≥ 2;

(ii) N(2, 3, 11) = 2, (x, y, z) = (1, 2, 1) and (3, 1, 1);
(iii) N(2, 3, 35) = 2, (x, y, z) = (3, 3, 1) and (5, 1, 1);
(vi) N(2, 3, 259) = 2, (x, y, z) = (4, 5, 1) and (8, 1, 1);
(v) N(2, 5, 3) = 2, (x, y, z) = (1, 2, 3) and (2, 1, 2);
(vi) N(2, 5, 133) = 2, (x, y, z) = (3, 3, 1) and (7, 1, 1);
(vii) N(2, 7, 3) = 2, (x, y, z) = (1, 1, 2) and (5, 2, 4);
(viii) N(2, 89, 91) = 2, (x, y, z) = (1, 1, 1) and (13, 1, 2);
(xi) N(2, 91, 8283) = 2, (x, y, z) = (1, 2, 1) and (13, 1, 1);
(x) N(3, 5, 2) = 3, (x, y, z) = (1, 1, 3), (1, 3, 7), and (3, 1, 5);
(xi) N(3, 10, 13) = 2, (x, y, z) = (1, 1, 1) and (7, 1, 3);
(xii) N(3, 13, 2) = 2, (x, y, z) = (1, 1, 4) and (5, 1, 8);
(xiii) N(3, 13, 2200) = 2, (x, y, z) = (1, 3, 1) and (7, 1, 1).

Later in this paper, in referring to the solutions in cases (i) through (xiii) above, it
will be helpful to have established the following result.

LEMMA 1.2. The values of N(a, b, c) in Conjecture 1.1 are exact: there are no further
solutions in any of the thirteen cases.

PROOF. For cases (i) through (xii), this follows from Theorem 1 of [22] and
Theorem 6 of [19]. For case (xiii), consideration modulo 16 shows that z > 1 requires
4 | x − y, which contradicts consideration modulo 5. So z = 1, and there are only two
solutions. �

Although the results on (1.1) known so far support Conjecture 1.1, it is generally
far from being resolved. This difficult problem is made more approachable by taking
c prime. More than thirty years ago, the first author [12] discussed the upper bound
for N(a, b, c) when a, b, c are distinct primes. Many authors have used this approach
to the problem. Later, [22] removed the difficulty caused by taking c composite when
c is odd, and Hu and Le [10] and Miyazaki and Pink [16] handled even composite c;
these later results established N(a, b, c) ≤ 2 with the single exceptional case (a, b, c) =
(3, 5, 2).

Establishing N(a, b, c) ≤ 1 involves many exceptional cases and is, in general, much
more difficult, suggesting perhaps that the old approach of considering only prime
bases may be a practical way to begin considering this problem.
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Our first result requires c prime with congruence restrictions on a and b not
necessarily prime.

THEOREM 1.3. If a ≡ 2 mod 3, b � 0 mod 3 and c > 3 is an odd prime, then
N(a, b, c) ≤ 1, except for the following possibility: (1.1) has exactly two solutions
(x1, y1, z1) and (x2, y2, z2), and these solutions satisfy 2 | x1, 2 | y1, 2 � z1 and 2 � y2,
with c ≡ 5 mod 12.

Theorem 1.3 is used to establish the following result.

THEOREM 1.4. If a, b, c are distinct primes with a < b and N(a, b, c) > 1, then
c ≡ 5 mod 12, and there must be exactly two solutions (x1, y1, z1) and (x2, y2, z2),
with 2 | x1, 2 | y1, z1 = 1 and 2 � y2, except for (a, b, c) = (2, 3, 5), (2, 3, 11), (2, 5, 3),
(2, 7, 3), (3, 5, 2) and (3, 13, 2).

Further restrictions are given by the following result.

THEOREM 1.5. If a, b, c are distinct primes with a < b and N(a, b, c) > 1, then, if
(a, b, c) � (2, 3, 5), (2, 3, 11), (2, 5, 3), (2, 7, 3), (3, 5, 2) or (3, 13, 2), we must have a = 2
with b ≡ 1 mod 12 and c ≡ 5 mod 12; further, if b ≡ 1 mod 24, then c ≡ 17 mod 24.

COROLLARY 1.6. If a, b, c are distinct primes with a < b and N(a, b, c) > 1, then,
if (a, b, c) � (2, 3, 5), (2, 3, 11), (2, 5, 3), (2, 7, 3), (3, 5, 2) or (3, 13, 2), we must have
N(a, b, c) = 2 and, letting the two solutions be (x1, y1, z1) and (x2, y2, z2) as in
Theorem 1.4, we must have z2 > 1.

In a later section, we will use the following version of Conjecture 1.1 in which a, b
and c are restricted to prime values.

CONJECTURE 1.7. For a, b and c distinct primes with a < b, we have N(a, b, c) ≤ 1,
except for:

(i) N(2, 3, 5) = 2, (x, y, z) = (1, 1, 1) and (4, 2, 2);
(ii) N(2, 3, 11) = 2, (x, y, z) = (1, 2, 1) and (3, 1, 1);
(iii) N(2, 5, 3) = 2, (x, y, z) = (1, 2, 3) and (2, 1, 2);
(iv) N(2, 7, 3) = 2, (x, y, z) = (1, 1, 2) and (5, 2, 4);
(v) N(3, 5, 2) = 3, (x, y, z) = (1, 1, 3), (1, 3, 7) and (3, 1, 5);
(vi) N(3, 13, 2) = 2, (x, y, z) = (1, 1, 4) and (5, 1, 8).

In the final section of this paper, we will explain a method by which we have shown
the following result.

THEOREM 1.8. Any counterexample to Conjecture 1.7 must have

b > 109, c > 1018.

This result is in marked contrast to results which can be obtained without assuming
a, b and c are prime: in that more general case, the lower bound on c when (a, b, c)
gives a counterexample to Conjecture 1.1 is still quite low (the latest such results are
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given by Miyazaki and Pink [17] in considering Conjecture 1.1 for the special case in
which either a or b is congruent to ±1 modulo c). Theorem 1.8 improves Lemma 2.9
in Section 2 which follows.

2. Preliminaries

We now divide all solutions (x, y, z) of (1.1) into four classes according to the parities
of x and y: 2 | x and 2 | y; 2 � x and 2 | y; 2 | x and 2 � y; or 2 � x and 2 � y. We will call
these classes the parity classes of (1.1).

LEMMA 2.1. If c is an odd prime, then, for a given parity class, there is at most one
solution (x, y, z) to (1.1), except for (a, b, c) = (3, 10, 13) or (10, 3, 13).

PROOF. Since c is an odd prime, using the notation of [22], we see that for any given
parity class of (1.1), there is only one ideal factorisation in CD. Therefore, by Lemma
2 of [22], we obtain the lemma immediately. �

LEMMA 2.2 [20, Lemma 2]. The equation

3x + 2y = nz

has no solutions in positive integers (x, y, z, n) with z > 1 except for 32 + 24 = 52.

LEMMA 2.3. Let X, n be positive integers with 2 � X and n > 1. Then |X2 − 2n| > 20.26n,
except for X2 − 2n = 1 or −7.

PROOF. This lemma is a special case of Corollary 1.7 of [1] with y = 2. �

LEMMA 2.4 [7, 13]. The equation

X2 + 2m = Yn, X, Y , m, n ∈ N, gcd(X, Y) = 1, n > 2,

has only the solutions (X, Y , m, n) = (5, 3, 1, 3), (11, 5, 2, 3) and (7, 3, 5, 4).

LEMMA 2.5 [4, Theorem 8.4]. The equation

X2 − 2m = Yn, X, Y , m, n ∈ N, gcd(X, Y) = 1, m > 1, n > 2, (2.1)

has only the solution (X, Y , m, n) = (71, 17, 7, 3).

LEMMA 2.6 [20, Theorem 6]. Let A, B be distinct odd positive primes. For a given
positive integer k, the equation

Am − Bn = 2k, m, n ∈ N, (2.2)

has at most one solution in positive integers (m, n).

LEMMA 2.7 [19, Theorem 6]. If a < b and c = 2, then N(a, b, 2) ≤ 1, except for
N(3, 5, 2) = 3 and N(3, 13, 2) = 2.

LEMMA 2.8 [22]. If 2 � c, then N(a, b, c) ≤ 2.

LEMMA 2.9 [6]. If a, b, c are distinct primes with max{a, b, c} < 100, then
Conjecture 1.7 is true.
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LEMMA 2.10 [21, Lemma 4.2]. The equation

(1 +
√
−D)r = m ±

√
−D

has no solutions with integer r > 1 when D is a positive integer congruent to 2 mod 4
and m is any integer, except for D = 2, r = 3.

Further, when D ≡ 0 mod 4 is a positive integer such that 1 + D is prime or a prime
power, (2.5) has no solutions with integer r > 1 except for D = 4, r = 3.

LEMMA 2.11. If the equation

3m − 2n = 3x − 2y = d

has a solution in positive integers (m, n, x, y) with m � x, then d = 1, −5 or −13.

PROOF. This follows easily from a conjecture of Pillai [18] first proven by Stroeker and
Tijdeman [23] using lower bonds on linear forms in logarithms. It is also an immediate
consequence of the elementary corollary to Theorem 4 of [19]. �

LEMMA 2.12. If N(a, b, c) > 1 when a ≡ 2 mod 3, b � 0 mod 3 and c is an odd prime,
then (1.1) has exactly two solutions (x1, y1, z1) and (x2, y2, z2), where 2 � y1 − y2.

PROOF. If a ≡ 2 mod 3, b � 0 mod 3 and c is an odd prime, then the parity of y
determines the parity class. Since Lemma 2.1 shows that there is at most one solution
per parity class, we see that N(a, b, c) > 1 implies that there are exactly two solutions
(x1, y1, z1) and (x2, y2, z2) and 2 � y1 − y2. �

LEMMA 2.13 [3, Theorem 1.1]. Let c and b be positive integers. Then there exists at
most one pair of positive integers (z, y) for which

0 < |cz − by| < 1
4 max{cz/2, by/2}.

3. Proofs of Theorems 1.3 and 1.4

PROOF OF THEOREM 1.3. Assume N(a, b, c) > 1 with a ≡ 2 mod 3, b � 0 mod 3 and
c > 3 an odd prime. By Lemma 2.12, there must be exactly two solutions (x1, y1, z1) and
(x2, y2, z2), with 2 � y1 − y2. Take y1 even. Then, since c > 3, consideration modulo 3
shows that 2 | x1, 2 | y1 and 2 � z1, which requires c ≡ 2 mod 3 and c ≡ 1 mod 4. Thus,
c ≡ 5 mod 12. �

PROOF OF THEOREM 1.4. Assume that a, b and c are distinct primes with a < b. If
N(a, b, c) > 1, we can take a = 2 (c � 2 by Lemma 2.7, except for (a, b, c) = (3, 5, 2)
and (3, 13, 2), given as exceptions in the statement of the theorem).

Additionally, we can also take b � 3: using Lemma 2.2, we find that if the equation
2x + 3y = cz has two solutions (x1, y1, z1) and (x2, y2, z2), we either must have c = 5 with
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{z1, z2} = {1, 2} or we must have z1 = z2 = 1, in which case we have 3y1 − 2x2 = 3y2 −
2x1 = d, where d = 1, −5 or −13 by Lemma 2.11; recalling Lemma 1.2 and using the
solutions given in cases (x) and (iii) in Conjecture 1.1, we see that d = −5 corresponds
to c = 35, while using case (xii) with case (iv) shows that d = −13 corresponds to
c = 259; since neither of these values of c is prime, we must have d = 1, and it is a
familiar elementary result that we must have (x1, y1, x2, y2) = (1, 2, 3, 1) giving c = 11.

Thus we find that the only cases with a = 2, b = 3 and N(a, b, c) > 1 are (a, b, c) =
(2, 3, 5) and (2, 3, 11), given as exceptions in the statement of the theorem.

Now assume a = 2 and c = 3, and assume (1.1) has two solutions (x1, y1, z1) and
(x2, y2, z2). By Lemma 2.12, we can assume 2 | y1. If z1 is even, then 3z1/2 − by1/2 = 2
and 3z1/2 + by1/2 = 2x1−1, so that 3z1/2 = 2x1−2 + 1; it is a familiar elementary result
that we must have either (x1, z1) = (3, 2) (giving by1/2 = 1) or (x1, z1) = (5, 4) (giving
by1/2 = 7). Since b > 1, we find that (a, b, c) = (2, 7, 3) is the only possibility when z1
is even.

Additionally, if 2 � z1 when a = 2 and c = 3, then, since 2 | y1, we have x1 = 1, and
we can factor in Q(

√
−2):

±by1/2 ±
√
−2 = (1 +

√
−2)z1 ,

where the ‘±’ are independent. Since clearly z1 > 1, we can use Lemma 2.10 to see
that z1 = 3 and (a, b, c) = (2, 5, 3).

Thus, recalling Lemma 1.2, we find that the only cases with a = 2, c = 3 and
N(a, b, c) > 1 are (a, b, c) = (2, 7, 3) and (2, 5, 3), given as exceptions in the statement
of the theorem.

So, excluding the six exceptions given in the statement of the theorem, we can
assume a = 2, b � 3 and c � 3 when N(a, b, c) > 1 for a triple of primes (a, b, c). Now,
Theorem 1.4 follows immediately from Theorem 1.3, except for the conclusion z1 = 1.
To see that z1 = 1, note that, since 2 � z1, it suffices to use Lemma 2.4, noting (a, b, c) =
(2, 5, 3) and (2, 7, 3) have been excepted, and handling (2, 11, 5) using Lemma 2.1 with
consideration modulo 3 and modulo 5. �

4. Proofs of Theorem 1.5 and Corollary 1.6

PROOF OF THEOREM 1.5. Assume a, b and c are distinct primes with a < b, (a, b, c) �
(2, 3, 5), (2, 3, 11), (2, 5, 3), (2, 7, 3), (3, 5, 2) or (3, 13, 2), and N(a, b, c) > 1. From
Theorem 1.4,

c ≡ 5 mod 12 (4.1)

and

2x1 + by1 = c, 2 | x1, 2 | y1. (4.2)

Assume first

b ≡ 1 mod 3. (4.3)
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We have

2x2 + by2 = cz2 , 2 | x2, 2 � y2, 2 � z2. (4.4)

Since 2 | x2 and 2 � y2, by (4.1) and (4.4), we get b ≡ by2 ≡ cz2 − 2x2 ≡ 1 − 0 ≡ 1
mod 4. Hence, by (4.3),

b ≡ 1 mod 12. (4.5)

If c ≡ 5 mod 8 and b ≡ 1 mod 8, then from (4.2) and (4.4), we get x1 = 2 and x2 = 2,
respectively. This implies that (2.2) has two solutions (m, n) = (1, y1) and (z2, y2) for
(A, B) = (c, b) and k = 2. By Lemma 2.6, this is impossible. Hence, by (4.1) and (4.5),
(b, c) � (1, 5) mod 24 and

(b, c) ≡ (1, 17), (13, 5) or (13, 17) mod 24. (4.6)

Now assume b ≡ 2 mod 3. Then we have (4.1), (4.2) and

2x2 + by2 = cz2 , 2 � x2, 2 � y2, (4.7)

b ≡ 2 mod 3, (4.8)

and

cz2 ≡ 1 mod 3. (4.9)

Further, by (4.1) and (4.9),

2 | z2. (4.10)

When x2 > 1 and y2 > 1, we see from (4.7) and (4.10) that (2.1) has a solution
(X, Y , m, n) = (cz2/2, b, x2, y2). Hence, by Lemma 2.5, (b, c) = (17, 71), for which a
solution (x1, y1, z1) is impossible since z1 = 1. So we have either x2 = 1 or y2 = 1.

If y2 = 1, then from (4.7) and (4.10),

2x2 + b = cz2 , 2 � x2, 2 | z2. (4.11)

Note that x2 > 1 since cz2 > c.
Apply Lemma 2.3 to (4.11) to obtain

b = (cz2/2)2 − 2x2 > 20.26x2 . (4.12)

Further, by (4.2), (4.11) and (4.12),

2x2 + b = cz2 ≥ c2 = (2x1 + by1 )2 > b2y1 ≥ b4 > 21.04x2 , (4.13)

whence we obtain

b > 2x2 (20.04x2 − 1). (4.14)

However, by (4.2), we have b <
√

c. By Lemma 2.9, we can assume max{b, c} > 100,
so by (4.11), 2x2 = cz2 − b > c2 −

√
c ≥ 1012 −

√
101 > 10190, whence we get x2 ≥ 15.

So we have 20.04x2 − 1 ≥ 20.6 − 1 > 1/2. By (4.14),

b > 2x2−1. (4.15)
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Therefore, by (4.11), (4.13) and (4.15), we have 3b > 2x2 + b = cz2 ≥ c2 > b4, which is
a contradiction. So we obtain y2 > 1. This implies

x2 = 1. (4.16)

By (4.16), (4.1), (4.7) and (4.8),

b = 2rh − 1, c = 2sk + 1, r > 1, s > 1, 2 � h, 2 � k, 3 | h.

Recalling (4.16), (4.7) and (4.10), we have

2x2 + by2 = 2 + (2rh − 1)y2 = 2rh1 + 1 = cz2 = 2s+v2(z2)k1 + 1, 2 � h1, 2 � k1, 3 | h1,
(4.17)

where v2(n) is the greatest integer t such that 2t | n. From (4.17), we see that r > s, so
that in (4.2), we must have x1 = s.

Now we apply Lemma 2.13. Clearly 2 < cz2/2/4 (recall Lemma 2.9), so that applying
Lemma 2.13 to (4.2), we find that we must have

2x1 = 2s ≥ c1/2

4
>

by1/2

4
≥ b

4
≥ 3 · 2r − 1

4
≥ 3 · 2s+1 − 1

4
= 3 · 2s−1 − 1

4
so that

2 ≥ 3 − 1
2s+1 ,

which is false for all positive s.
Thus, we have b � 2 mod 3. So b ≡ 1 mod 3 and (4.6) holds. �

PROOF OF COROLLARY 1.6. First, N(a, b, c) = 2 follows from Theorem 1.4. If z1 = z2,
then, recalling Lemma 2.7 and noting that c � 35, 133 or 259, we must have by2 − 2x1 =

by1 − 2x2 > 0, so that Lemma 2.1 gives 2 � x1 − x2. Consideration modulo 3 shows that
this requires 2 � y1 − y2 and b ≡ 2 mod 3, contradicting Theorem 1.5. So z1 � z2, and
by Theorem 1.4, z2 > 1. �

5. The unlikelihood of counterexamples to Conjecture 1.7

We outline the algorithm used to justify Theorem 1.8.
For a given prime value of b and some small prime p (or small prime power),

we will consider all solutions (x1, y1, x2, y2, z2) to 2x1 + by1 ≡ c mod p and 2x2 + by2 ≡
cz2 mod p. Note that the exponents are defined modulo p − 1.

When b ≡ 13 mod 24 and c ≡ 5 mod 24, we must have x1 = 2. From above, 2 | y1,
2 | x2, 2 � y2, 2 � z2 > 1, and z2 divides the class number of Q(−b).

For a given b ≡ 13 mod 24, we find all z2 > 1 with z2 odd and dividing the class
number. Fix b and z2. For a given prime p, we consider each y1 mod p − 1 with y1
even. Define c ≡ 22 + by1 mod p; for each value of x2 even and y2 odd modulo p − 1,
we see if 2x2 + by2 ≡ cz2 mod p. If there is a solution, we add (y1, x2, y2) to a list of
all possible solutions modulo this prime p. We now consider another small prime
(or prime power) q. For each possible solution modulo p, we now see if there is
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a solution modulo q. If we are fortunate, there are no solutions modulo q that are
consistent with a solution modulo p, in which case this choice of b and z2 cannot
have any solutions. Otherwise, we add another prime r and see if any solutions are
consistent modulo r. Often for a given b, z2 has no consistent solutions after checking
a few primes (or prime powers). In rare instances, the program required up to fourteen
primes or prime powers to eliminate all possible solutions for a given b and z2, but we
never needed primes exceeding 241.

For b ≡ 13 mod 24 and c ≡ 17 mod 24, we must have x2 = 2. The procedure is
similar except that we now consider tuples (x1, y1, y2). For b ≡ 1 mod 24, we cannot
specify x1 and x2 so there are many more cases to check, but the same essential
algorithm can be used.

We used Maple® for some preprocessing, then used Sage® (in which we could
access the Pari® class number command) for the calculations. Total calculation time
was approximately 100 hours. See the last author’s website for programs and details.

In summary, we showed that for primes b < 109, there are no solutions
(x1, y1, z1, x2, y2, z2) outside those listed in Conjecture 1.7. Since c > b2, we have
c > 1018. This concludes the demonstration of Theorem 1.8.

In another direction, it is interesting to note that the case (b, c) ≡ (13, 17) mod 24
requires the equation

4 + by2 = cz2 , 2 � y2 > 1, 2 � z2 > 1. (5.1)

Note that if y2 = 1, then c = 2x1 + by1 > 4 + b = cz2 , which is impossible; note also that
z2 = 1 is impossible by Corollary 1.6.

The conditions in (5.1) are extremely unlikely even without the extra consideration
of an additional solution (x1, y1, z1).
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