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In this paper, we investigate periodic travelling waves in a three-layer system with the
rigid-lid assumption. Solutions are recovered numerically using a boundary integral
method. We consider the case where the density difference between the layers is small (i.e.
a weakly stratified fluid). We consider the system both with and without the Boussinesq
assumption to explore the effect the assumption has on the solution space. Periodic
solutions of both mode-1 and mode-2 are found, and their bifurcation structure and
limiting configurations are described in detail. Similarities are found with the two-layer
case, where large-amplitude solutions are found to overhang with an internal angle of
120◦. However, the addition of a second interface results in a richer bifurcation space, in
part due to the existence of mode-2 waves and their resonance with mode-1 waves. New
limiting profiles are found.

Key words: waves/free-surface flows

1. Introduction

Layered models are often used to approximate a stratified fluid with regions of almost
constant density and sharp pycnoclines. This simplifies the mathematical description of
the model, but results in shear instabilities in time-dependent simulations. Nonetheless,
the study of steady travelling waves in layered models has proven useful in exploring wave
properties in continuously stratified media which the layered models approximate (see,
for example, the discussion by Ostrovsky & Stepanyants (2005) concerning the validity
of two-layer models, and likewise the agreement found by Lamb (2000) between finite
thickness and infinitesimally thin pycnoclines for the three-layer system). Furthermore, in
cases where the upper layer is bounded above by a passive gas, the upper boundary is
often replaced by a solid wall, known as the rigid-lid approximation. The work of Evans &
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Ford (1996) found this approximation had small effects on the wave properties of travelling
internal modes.

For layered internal wave models, previous literature focuses primarily on a two-layer
fluid. Two-layer models admit one baroclinic mode, corresponding to mode-1 waves in the
terminology for continuously stratified flows. Mode-1 solitary waves are found to bifurcate
from uniform streams, and as their amplitude increases they either form an internal
wavefront (Turner & Vanden-Broeck 1988) or form overhanging profiles (Grimshaw &
Pullin 1986). Periodic waves were also found to overhang, and the limiting configuration
of such waves was only recently found (Maklakov & Sharipov 2018). This solution is
characterised by an internal angle of 120◦ inside one of the fluids, with a stagnant bubble
attached. A more detailed description of the bifurcation structure was found by Guan,
Vanden-Broeck & Wang (2021a), and in particular it was found that these solutions
smoothly connect to a single-layer limiting Stokes wave as the density of the upper fluid
goes to zero.

In this paper, we explore the global bifurcation structure of periodic three-layer internal
waves. This is done numerically using a boundary integral formulation, where unknowns
are parameterised in arclength of the interface, akin to Rusås & Grue (2002) and Chen
& Forbes (2008). However, we express unknowns using Fourier series representations
in terms of arclength (and hence achieving spectral accuracy) as opposed to using
finite difference formulae to approximate derivatives. The three-layer rigid-lid model is
especially interesting since the model admits two baroclinic modes, the so-called fast mode
(mode-1) and the slow mode (mode-2). Some work has been done on solitary waves in this
setting. Weakly nonlinear theories for three-layer flows such as the modified Korteweg–de
Vries equation (Grimshaw, Pelinovsky & Talipova 1997) and Gardner equation (Kurkina
et al. 2015) have been derived and used to model solitary waves of the system. Meanwhile,
the strongly nonlinear but weakly dispersive three-layer Miyata–Choi–Camassa equations
(Miyata 1988; Choi & Camassa 1999) were explored by Jo & Choi (2014) and Barros, Choi
& Milewski (2020). Using a fully nonlinear theory, a detailed description of three-layer
conjugate states was obtained by Lamb (2000). Fully nonlinear wave computations have
been computed by previous authors, who explored both mode-1 (Rusås & Grue 2002)
and mode-2 (Doak, Barros & Milewski 2022) solitary waves. Fully nonlinear mode-1 and
mode-2 periodic waves have been computed (Rusås 2000; Chen & Forbes 2008). However,
a detailed description of the bifurcation space is thus far lacking, and is presented below.

The Boussinesq assumption is a common assumption made in the theory of stratified
flows, and is asymptotically justified when the density differences between the layers is
small compared with a reference density. The Boussinesq assumption adds a symmetry
into the system of equations such that, given a solution, one can obtain an additional
solution with the same speed and energy by flipping the properties (depths and densities)
of the upper and lower layer and replacing interface displacements with their negative
value. Furthermore, with a symmetric choice of parameters (i.e. when the density
difference between the upper and middle layers is equivalent to the difference between the
middle and lower layers, and the depths of the upper and lower layers are equivalent), some
Boussinesq solutions have an additional symmetry that the two interface displacements are
mirror images (potentially with a phase shift of a half-wavelength of the wave). We refer
to such solutions as having ‘upside-down’ symmetry hereafter. Note that not all solutions
with such parameters have such symmetry, as discussed below. In this paper, we explore
the solution space both with and without the Boussinesq assumption.

While reasonable on physical grounds, both the Boussinesq and rigid-lid assumptions
do have clear structural mathematical consequences which are not often emphasised in the
literature, for example the aforementioned breaking of symmetry, changes in the stability
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characteristics (Barros & Choi 2011; Boonkasame & Milewski 2012; Heifetz & Mak 2015;
Guha & Raj 2018) of certain flows, and a momentum paradox (Camassa et al. 2012).

For mode-1 Boussinesq solutions with a symmetric choice of parameters it is found
that there exists an upside-down symmetric branch of solutions (with a half-wavelength
phase-shift between the interfaces). Along this branch, a bifurcation point is found, and
the bifurcating branch has solutions which are not upside-down symmetric. In fact, there
are two branches emerging from the bifurcation point: one is obtained from the other by
swapping the depths and density jumps of the upper and lower layer and replacing interface
displacements with their negative value, according to the symmetry in the Boussinesq
system described above. All of the solutions on these branches form overhangs, until either
one or both interfaces touches itself and forms a trapped bubble, as found for two-layer
solutions (Maklakov & Sharipov 2018; Guan et al. 2021a). Removing the Boussinesq
assumption, or changing the symmetric choice of parameters, results in two distinct
solution branches, in which no solutions have the upside-down symmetry.

For mode-2 solutions, the bifurcation space is more complicated. The Boussinesq
upside-down symmetric branch of solutions in this case does not have a phase-shift in
the interface reflections, and in fact the streamline at the mid-depth is a horizontal line
running through the middle of the middle layer. In this sense, the solutions can be seen
as two-layer mode-1 solutions reflected across a wall. Unlike the mode-1 upside-down
symmetric branch, the branch has not one but two bifurcation points. All solution branches
again terminate with overhanging profiles, although previously unseen limiting solutions
are found in which two trapped bubbles are formed either side of the overhanging region.
A detailed analysis of such solutions is beyond the scope of this paper. Breaking of the
symmetry in the parameter choices (or removal of the Boussinesq assumption) results in
three distinct branches. We also explore long mode-2 waves, in which mode-1 resonances
are found. This results in additional branches of periodic solutions which bifurcate from
a periodic Stokes wave, akin to the theory of Wilton ripples (Wilton 1915). As the
wavelength is further increased, the solutions ultimately approach generalised solitary
waves (Akylas & Grimshaw 1992; Rusås & Grue 2002; Doak et al. 2022).

The paper is organised as follows. In § 2, we formulate the problem, and discuss the
linear theory. In § 3, we describe the numerical method. In § 4, we discuss the typical
numerical results. Section 5 contains conclusions.

2. Mathematical formulation

Consider two-dimensional progressive waves travelling with constant speed c along two
interfaces between three incompressible, inviscid and immiscible fluids layers (see the
sketch in figure 1). We consider steady solutions on a background current of −c. We denote
by hj and ρj ( j = 1, 2, 3) the mean depths and densities in each fluid layer, where subscripts
1, 2 and 3 refer to fluid properties associated with the lower, middle and upper fluid layers,
respectively. We denote the wavelength of the wave as λ. A Cartesian coordinate system
is introduced such that the x-axis is halfway between the mean levels of the upper and
lower interfaces, and the y-axis coincides with a vertical line through a wave crest/trough.
We choose ρ2, h2 and c as the scalings of density, length and velocity, hence in the
non-dimensionalised system that follows we have set h2 = 1 and ρ2 = 1. We concentrate
on solutions with mirror symmetry about the y-axis. The flows are irrotational; hence there
exist potential functions φj ( j = 1, 2, 3) satisfying the Laplace equation in the respective
domains

φ1,xx + φ1,yy = 0, −1/2 − h1 < y < −1/2 + η−, (2.1)
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Figure 1. Schematic of the flow configuration. The dashed lines are the mean interfacial levels.

φ2,xx + φ2,yy = 0, −1/2 + η− < y < 1/2 + η+, (2.2)

φ3,xx + φ3,yy = 0, 1/2 + η+ < y < 1/2 + h3, (2.3)

where h1 and h3 become the non-dimensional depths of the lower and upper layers, η−
and η+ are the deviations of the lower and upper layers from their mean water levels
(dashed lines in figure 1). On the interfaces, continuity of pressure gives (making use of
the Bernoulli equation)

φ2
2,x + φ2

2,y − R1(φ
2
1,x + φ2

1,y) + 2(1 − R1)

F2 (−1/2 + η−) = B−, y = −1/2 + η−,

(2.4)

R3(φ
2
3,x + φ2

3,y) − φ2
2,x − φ2

2,y + 2(R3 − 1)

F2 (1/2 + η+) = B+, y = 1/2 + η+, (2.5)

where R1 = ρ1/ρ2 > 1, R3 = ρ3/ρ2 < 1, F2 = c2/(gh2), g is the acceleration due to
gravity and B± are the unknown Bernoulli constants. The Boussinesq approximation
consists of setting R1 = R3 = 1 only in the kinetic energy terms above. There are four
kinematic boundary conditions imposed on the interfaces:

φ1,xη
−
x − φ1,y = φ2,xη

−
x − φ2,y = 0, y = −1/2 + η−, (2.6)

φ2,xη
+
x − φ2,y = φ3,xη

+
x − φ3,y = 0, y = 1/2 + η+. (2.7)

On the solid walls, we need to impose the following impermeability conditions:

φ1,y = 0, y = −1/2 − h1, (2.8)

φ3,y = 0, y = 1/2 + h3. (2.9)

Equations (2.1)–(2.9) complete the mathematical description of the three-layer travelling
waves. There are six non-dimensional parameters: h1, h3, R1, R3, λ and F. Under the
Boussinesq approximation, the following symmetry leaves the equations unchanged:

h1 ↔ h3, R1 − 1 ↔ −(R3 − 1), η+ ↔ −η−, y ↔ −y. (2.10)

Hence, for each solution found in the original system, another solution exists by reflecting
the original solution about y = 0 and appropriate reassignment of layer densities and
heights. If, in addition, h1 = h3 and R1 − 1 = −(R3 − 1), the second solution has the
same physical parameters (physical domain and density stratification) as the original one.
Hence if the solution itself is not symmetric about y = 0, a new solution may be obtained
this way.
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2.1. Linear solutions
To obtain the dispersion relation, we consider perturbations with wavenumber k = 2π/λ
of the form

η− = εK eikx + c.c., η+ = εL eikx + c.c., (2.11a,b)

φ1 = −x + εP cosh(k(y + h1 + 1/2)) eikx + c.c., (2.12)

φ2 = −x + ε(Q cosh(k(y + 1/2)) + S cosh(k(y − 1/2))) eikx + c.c., (2.13)

φ3 = −x + εT cosh(k(y − h3 − 1/2)) eikx + c.c., (2.14)

B− = (1 − R1)(1 − 1/F2), B+ = (R3 − 1)(1 + 1/F2), (2.15a,b)

where K, L, P, Q, S and T are constant coefficients, c.c. denotes a complex conjugate and
ε is a small parameter to measure the nonlinearity. The −x term in the velocity potentials
φi corresponds to the uniform stream of speed unity, arising due to the moving frame of
reference. Substituting the above quantities into (2.4)–(2.7) and collecting terms of O(ε),
we can get six homogeneous linear equations for K, L, P, Q, S and T . Using the solvability
condition, we can obtain a fourth-order algebraic equation of F:

AF4 + BF2 + C = 0, (2.16)

where the coefficients are

A = k2[1 + coth(k)(R1 coth(kh1) + R3 coth(kh3)) + coth(kh1) coth(kh3)R1R3], (2.17)

B = k[coth(k)(R3 − R1) + R3 coth(kh3)(1 − R1) − R1 coth(kh1)(1 − R3)], (2.18)

C = R3 + R1 − R3R1 − 1. (2.19)

Solving this equation for the positive roots, we obtain the following two branches of the
dispersion relation:

F1 = cp1(k, R1, R3, h1, h3), F2 = cp2(k, R1, R3, h1, h3), (2.20a,b)

where cp1 ≥ cp2 for the same parameters (a rigorous proof that F2 > 0 can be found
in Yih (2012), which applies to Euler multilayer fluids). Here cp1 and cp2 are the
phase velocities of the mode-1 and the mode-2 waves. Mode-1 waves are defined by
interface displacements of the same polarity (KL > 0) and mode-2 waves have interface
displacements of opposite polarity (KL < 0). These linear solutions will be used as initial
guesses to generate fully nonlinear profiles, and to motivate certain resonances between
modes.

3. Numerical method

3.1. Boundary integral equations
For periodic waves having a wavenumber k, we introduce the following transformation:

ζ = e−ikz, (3.1)

where z = x + iy. This maps the physical region in one spatial period to an annular region
in the ζ -plane and enables us to apply Cauchy’s integral formula to solve the Laplace
equation. Introducing the complex velocity w = u − iv, where u and v are the horizontal
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and vertical components of the velocity, we have the following Cauchy’s integral formula
on the ζ -plane:

w(ζ ′) = 1
iπ

∮
C

w(ζ )

ζ − ζ ′ dζ, (3.2)

where ζ and ζ ′ are points on the boundary C of each fluid layer on which the integral is
evaluated. Note that the integral has a singularity when ζ = ζ ′, therefore, the integral is
in the sense of Cauchy principal value. We can express the complex velocity w in terms of
the velocity modulus q and the inclination angle θ as

w = q e−iθ . (3.3)

On the interface, θ has the following relation to z:

dz
ds

= eiθ , (3.4)

where s is the physical arclength parameter and we require that s is monotonically
increasing along the interfaces in the direction such that the relatively heavier fluid is
always to the right of the interfaces. In this way, (3.2) can be rewritten as

w(s′) = − k
π

∮
C

q(s)
1 − ζ(s′)/ζ(s)

ds, (3.5)

where we have used (3.4). For the lower and the upper layer, (3.5) requires the information
on the solid walls. However, using the Schwarz reflection principle, we can avoid this by
reflecting the lower (upper) interface with respect to the bottom (top) wall to get a mirror
image. In this fashion, the solid boundaries become a flat streamline inside the new region
of the lower and upper layer, and (3.5) can be calculated by evaluating the integral on the
physical interface and its mirror image. In the lower fluid layer,

ζ(s′)/ζ(s) =
{

e−ik(x′−x) ek(η−′−η−), on the lower interface,

e−ik(x′−x) ek(η−′+η−+2h1), on the image of lower interface;
(3.6)

in the upper layer,

ζ(s′)/ζ(s) =
{

e−ik(x′−x) ek(η+′−η+), on the upper interface,

e−ik(x′−x) ek(η+′+η+−2h3), on the image of upper interface;
(3.7)

on the lower interface of the middle layer,

ζ(s′)/ζ(s) =
{

e−ik(x′−x) ek(η−′−η−), on the lower interface,

e−ik(x′−x) ek(η−′−η+−1), on the upper interface;
(3.8)

on the upper interface of the middle layer,

ζ(s′)/ζ(s) =
{

e−ik(x′−x) ek(η+′−η−+1), on the lower interface,

e−ik(x′−x) ek(η+′−η+), on the upper interface.
(3.9)
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Finally, we can obtain four boundary integral equations by taking the imaginary part of
(3.5),

q1(s′) sin(θ−(s′)) = k
π

∫ α−

−α−
Im

⎛
⎜⎜⎝ q1(s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
mirror image of lower interface

− k
π

∫ α−

−α−
Im

⎛
⎜⎜⎝ q1(s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
lower interface

,

(3.10)

q−
2 (s′) sin(θ−(s′)) = k

π

∫ α−

−α−
Im

⎛
⎜⎜⎝ q−

2 (s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
lower interface

− k
π

∫ α+

−α+
Im

⎛
⎜⎜⎝ q+

2 (s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
upper interface

,

(3.11)

q+
2 (s′) sin(θ+(s′)) = k

π

∫ α−

−α−
Im

⎛
⎜⎜⎝ q−

2 (s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
lower interface

− k
π

∫ α+

−α+
Im

⎛
⎜⎜⎝ q+

2 (s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
upper interface

,

(3.12)

q3(s′) sin(θ+(s′)) = k
π

∫ α+

−α+
Im

⎛
⎜⎜⎝ q3(s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
upper interface

− k
π

∫ α+

−α+
Im

⎛
⎜⎜⎝ q3(s)

1 − ζ(s′)
ζ(s)

⎞
⎟⎟⎠ ds

︸ ︷︷ ︸
mirror image of upper interface

,

(3.13)

where 2α− and 2α+ are the total arclength in a spatial period for the lower and upper
interfaces, q1 and q3 are the tangential velocities of the lower and upper fluid layers on
their corresponding interfaces, q−

2 and q+
2 are the tangential velocities of the middle fluid

layer on the lower and the upper interfaces, and θ− and θ+ are the inclination angles of the
lower and upper interfaces. Note that we have put the point where s = 0 on the symmetry
axis, i.e. the y-axis.

3.2. Fourier series solutions
For the convenience of numerical calculation, we introduce two pseudoarclength
parameters τ± = s/α± ∈ [−1, 1] and write the following Fourier series of the six
unknown functions:

q1 =
∞∑

n=0

an cos(nπτ−), q−
2 =

∞∑
n=0

bn cos(nπτ−), q+
2 =

∞∑
n=0

cn cos(nπτ+),

(3.14a–c)
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q3 =
∞∑

n=0

dn cos(nπτ+), θ− =
∞∑

n=1

en sin(nπτ−), θ+ =
∞∑

n=1

fn sin(nπτ+).

(3.15a–c)

Using (3.4), we can construct the lower and upper interfaces from θ− and θ+ by the
following equations:

x−(τ−) = α−
∫ τ−

0
cos(θ−(τ )) dτ, η−(τ−) = η−

0 + α−
∫ τ−

0
sin(θ−(τ )) dτ,

(3.16a,b)

x+(τ+) = α+
∫ τ+

0
cos(θ+(τ )) dτ, η+(τ−) = η+

0 + α+
∫ τ+

0
sin(θ+(τ )) dτ,

(3.17a,b)

in which η±
0 are unknowns. To guarantee spatial periodicity that x±(τ±)|10 = 2π/k, we

must impose the following conditions:

α−
∫ 1

−1
cos(θ−(τ−)) dτ− = α+

∫ 1

−1
cos(θ+(τ+)) dτ+ = 2π

k
. (3.18)

To determine η±
0 , we need to impose the following constraints which represent volume

conservation: ∫ 1

0
η− dx−

dτ− dτ− =
∫ 1

0
η+ dx+

dτ+ dτ+ = 0. (3.19)

Also, we need to prescribe the current speed −c (which has been scaled to −1) defined as
the average velocity in the lower fluid

k
2π

∫ π/k

−π/k
u1(x, y = const.) dx = −1, (3.20)

where y = const. is an arbitrary horizontal line within the lower layer. Equation (3.20) can
be rewritten in terms of q1 using the irrotationality condition

k
2π

∫ α−

−α−
q1(s) ds = −1. (3.21)

In addition, similar conditions for the middle and upper layers are also necessary. Here
we focus on the case that all three layers have the same averaged background current
(implying zero average shear between each layer). Therefore, the same condition as in
(3.21) is adopted for q−

2 , q+
2 and q3. Using the pseudoarclength parameters, we have the

following four conditions:

α−k
2π

∫ 1

−1
q1 dτ− = α−k

2π

∫ 1

−1
q−

2 dτ− = α+k
2π

∫ 1

−1
q+

2 dτ+ = α+k
2π

∫ 1

−1
q3 dτ+ = −1.

(3.22)
These conditions imply the following equations:

a0 = b0 = − π

α−k
, c0 = d0 = − π

α+k
. (3.23a,b)
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3.3. Newton’s method for the nonlinear system
Since we focus on waves which have symmetry about the y-axis, only half of the spatial
period is needed in the computation. Therefore, we introduce N uniformly distributed mesh
points τ±

n in the right half-interval [0, 1]:

τ±
n = n − 1

N − 1
, n = 1, 2, . . . , N. (3.24)

To avoid the singularity in the integral equations, we introduce a second set of mesh points
τm±

n :

τm±
n = τ±

n + τ±
n+1

2
, n = 1, 2, . . . , N − 1. (3.25)

We let the boundary integral equations (3.10)–(3.13) to be satisfied on τm±
n , n =

1, 2, . . . , N − 1. The integrals are calculated by the trapezoid rule using the function
values on τn, n = 1, 2, . . . , N, which gives a spectral accuracy for periodic functions. The
Bernoulli equations (2.4) and (2.5) are rewritten as

(q−
2 )2 − R1q2

1 + 2(1 − R1)

F2

(
−1

2
+ η−

)
= B−, (3.26)

R3q2
3 − (q+

2 )2 + 2(R3 − 1)

F2

(
1
2

+ η+
)

= B+, (3.27)

and satisfied on τn, n = 1, 2, . . . , N. Together with the four conditions (3.18), (3.19), we
have 6N equations to solve. To close the system, we truncate the Fourier series after
N terms to get 6(N − 1) unknown coefficients an, bn, cn, dn, en, fn(n = 1, 2, . . . , N − 1)

and six unknown constants B+, B−, α−, α+, η−
0 and η+

0 , which makes the number of
unknowns 6N.

This nonlinear system can be solved by Newton’s iteration. Initially, we choose a
small-amplitude linear solution as the initial guess of iteration. The value of F is calculated
from the dispersion relation. Once the iterations have converged to a small amplitude
solution, we use continuation methods (usually with F as a continuation parameter) to
compute the branch of solutions. To display the bifurcation curve clearly, we choose the
wave speed F and a second parameter which measures the nonlinearity of the solutions.
The wave amplitude is a candidate as usual, however, considering there are two interfaces
and complex profiles, it is more appropriate to choose the wave energy E as the second
parameter. It is given by

E = −F2R1

2

∫ 1

−1
φs

1
dη−

dτ− dτ− + F2

2

(∫ 1

−1
φ−s

2
dη−

dτ− dτ− −
∫ 1

−1
φ+s

2
dη+

dτ+ dτ+
)

+ F2R3

2

∫ 1

−1
φs

3
dη+

dτ+ dτ+ + R1 − 1
2

∫ 1

−1
(η−)2 dx−

dτ− dτ− + 1 − R3

2

∫ 1

−1
(η+)2 dx+

dτ+ dτ+,

(3.28)

where φs
1 and φ−s

2 are the potential functions of the lower and the middle fluid layers on
the lower interface, φ+s

2 and φs
3 are the potential functions of the middle and upper layer on

the upper interface. Hereafter, the bifurcation curves will always be plotted on the (F, E)

space.
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kH Cs(S&Y) Cs(M&S) Cs(two-layer) Cs(three-layer)

0.1 1.0010433 1.001043327 1.001043327 1.001043327
0.3 1.0093851 1.009385147 1.009385147 1.009385147
0.5 1.0260381 1.026038075 1.026038075 1.026038075
0.7 1.0509243 1.050924313 1.050924313 1.050924313
0.9 1.0839603 1.083960270 1.083960271 1.083960271
1.10 1.125454 1.125454593 1.125454593 1.125454593
1.20 1.149904 1.149903889 1.149903889 1.149903889
1.30 1.177 1.177754503 1.177754503 1.177754503
1.32 — 1.183901408 1.183901408 1.183901408
1.34 — 1.190327567 1.190327567 1.190327567
1.36 — 1.197125838 1.197125838 1.197125838
1.38 — 1.204514662 1.204514662 1.204514662
1.39 — 1.208645838 1.208645838 1.208645838
1.39 — 1.213326106 1.213326106 1.213326106
1.38 — 1.210675485 1.210675485 1.210675485
1.36 — 1.204401123 1.204401123 1.204401124
1.34 — 1.197369928 1.197369928 1.197369928
1.32 — 1.189740717 1.189740717 1.189740717
1.30 — 1.181506483 1.181506483 1.181506483
1.28 — 1.172510673 1.172510673 1.172510674

Table 1. Here Cs versus kH for two-layer interfacial gravity deep-water waves with density ratio 0.1. The
second and third columns are results from Saffman & Yuen (1982) and Maklakov & Sharipov (2018). The
results in fourth and fifth columns are calculated using the two-layer model in Guan et al. (2021a) and the
current three-layer model with 500 Fourier modes.

The Boussinesq approximation is obtained by setting R1 = R3 = 1 in the kinetic energy
terms of the Bernoulli equations (3.26), (3.27) and the energy, resulting in

(q−
2 )2 − q2

1 + 2(1 − R1)

F2

(
−1

2
+ η−

)
= B−, (3.29)

q2
3 − (q+

2 )2 + 2(R3 − 1)

F2

(
1
2

+ η+
)

= B+, (3.30)

Eb = −F2

2

∫ 1

−1
φs

1
dη−

dτ− dτ− + F2

2

(∫ 1

−1
φ−s

2
dη−

dτ− dτ− −
∫ 1

−1
φ+s

2
dη+

dτ+ dτ+
)

+F2

2

∫ 1

−1
φs

3
dη+

dτ+ dτ+ + R1 − 1
2

∫ 1

−1
(η−)2 dx−

dτ− dτ− + 1 − R3

2

∫ 1

−1
(η+)2 dx+

dτ+ dτ+.

(3.31)

4. Numerical results

4.1. Numerical accuracy
In table 1, we present the results of two-layer interfacial gravity waves previously obtained
by Saffman & Yuen (1982) (second column), Maklakov & Sharipov (2018) (third column),
Guan et al. (2021a) (forth column) and the results of current three-layer model (fifth
column). By choosing R1 = 10, R3 = 1, h1 = 100, h3 = 99 and k = 1, we actually
approach a two-layer interfacial deep-water wave setting whose effective density ratio
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Figure 2. (a) Typical wave profiles of R1 = 10, R3 = 1, h1 = 100, h3 = 99 and k = 1. The upper and lower
interfaces are the solid curves. Due to the chosen parameters, the upper curve is the real interface of a two-layer
system and the lower curve is a streamline. The black dots are solutions of the corresponding two-layer deep
water system with density ratio 0.1. (b) Typical wave profiles of R1 = 1.01, R3 = .99, h1 = 99.5, h3 = 99.5
and k = 1. The black dashed lines denote the mid streamlines of three-layer solutions. The black dots are
solutions of the corresponding two-layer deep water system with density ratio 0.9802. In (a) and (b), H denotes
the crest-to-trough wave amplitude of the blue curve.

is 0.1. The lower interface is still a real interface separating two different fluids, while
the upper interface now becomes a streamline within the upper fluid. In table 1, we display
the computed values of Cs for different given values of kH, where Cs is the dimensionless
wave speed defined by Saffman & Yuen, k is the wavenumber and H is the wave amplitude
defined as the difference between the displacement at the peak and the displacement at
the trough. For this special deep-water case, Cs can be related to our F by the following
relation:

Cs = F

√
1 − R
1 + R

, (4.1)

where R is the equivalent density ratio for the two-layer model and equals to 0.1 in this
example. In our computations, we let N = 500 to generate the results of three-layer model.
Also, we recalculated the results of the corresponding two-layer model using the method
in Guan et al. (2021a) with 500 Fourier modes. It is clear from the table that our three-layer
result agrees with other authors’ results in the first eight decimals for all wave amplitude
using 500 Fourier modes, which shows that our algorithm has an excellent numerical
accuracy. Two typical solutions with different given wave heights are shown in figure 2(a).
We also plot solutions of the corresponding two-layer deep water system with density
ratio 0.1 (black dots) for comparison. Furthermore, we compare the current three-layer
model with the two-layer model in a different way. Following Rusås & Grue (2002), we
choose R1 = 1.01 and R3 = 0.99 so that they satisfy R1 + R3 = 2, i.e. the middle layer
has the mean density of the other two layers. We let h1 = h3 = 99.5 to approximate the
deep water condition. Due to the thinness of middle layer, one can assume that this whole
layer can be represented by a typical streamline, for example, the middle one. Two typical
wave profiles are plotted in figure 2(b), as well as the middle streamline (black dashed
lines). To compare with these solutions, we choose the density ratio of the two-layer
model to be 0.9802 ≈ 0.99/1.01. Two wave profiles are plotted with black dots. It should
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be pointed out that there is no unique way to determine which solution of the two-layer
model corresponds to the chosen three-layer solution. Matching the crest-to-trough height
is not always possible, for example, the streamline plotted in the lower subpanel of 2(b)
has larger crest-to-trough height than all the two-layer solutions with density ratio 0.9802.
Therefore, we choose the solution of the two-layer model in an ad hoc way so that it
measures the mean shape of the top and bottom interface well. It should be noted that the
agreement between the dashed line and the dotted line is not good when the three-layer
solution develops an overhanging profile, which means the basic assumption that the
middle streamline resembles the two-layer solution breaks down. In fact, it is found that
even for an overhanging solution, most streamlines are still non-overhanging except those
very adjacent to the interface.

4.2. Bifurcations and wave profiles
To clarify the bifurcation structures, we find that it is useful to compare the numerical
solutions with the solutions obtained under the Boussinesq approximation. Hereafter we
shall use the terms ‘Euler’ and ‘Boussinesq’ to distinguish the numerical solutions for the
two systems when they appear in the same figure. Given the large parameter space (R1, R3,
h1, h3 and k are physical parameters) we will mainly restrict our attention to the symmetric
configurations and density stratification cases, assuming that R1 − 1 = 1 − R3 and h1 =
h3. We shall also focus more on cases where the density contrasts are not large. With a
symmetric choice of parameters and under the Boussinesq approximation, the equations
have the symmetry about the midline of the channel referred to above, i.e. the upside-down
symmetry we defined in the preceding section.

Starting with mode-1 waves, we find in the Euler case, two closely connected bifurcation
branches which collapse onto one branch in the Boussinesq case. A typical example for
R1 = 1.1, R3 = 0.9, h1 = 1, h3 = 1 and k = 1 is shown in figure 3 where the branches
of the Euler case and the Boussinesq case are shown. Given a solution in the Boussinesq
case, we can construct another solution via operations (2.10). These either lead to the
same solution with upside-down symmetry and a phase shift (symmetric branch) or a
new solution without such symmetry (symmetry-breaking branch). In the latter case,
the new solution and the given solution are mirror images having the same energy E.
The bifurcation diagram for the Boussinesq case has one symmetric branch and one
symmetry-breaking branch which bifurcates near F = 0.3845 from the symmetric branch.
The Boussinesq case is in excellent agreement with the Euler case when the energy is
small. The difference between the Boussinesq and the Euler cases becomes significant
when the wave energy is increased. The solutions in the Euler case do not have the
upside-down symmetry, hence splitting the symmetry-breaking branch of the Boussinesq
curve into two distinct curves which terminate at different points, where one of the
interfaces touches itself. The branches of the Euler’s equations are shown by the blue
and red curves in the figure.

In figure 3 we also display five typical profiles of solutions to the Euler equation along
the two branches. Solution (i) is almost upside-down symmetric (with a phase shift),
while solution (ii) has developed some asymmetry. Solutions of the Boussinesq case
with the same values of F are also plotted in figure 3(b) by the black dots. Solutions (i)
of the Euler case and Boussinesq case are almost indistinguishable, while solutions (ii)
exhibit some slight differences as expected because solutions in the Boussinesq case are
always upside-down symmetric. The three almost limiting waves (iii), (iv) and (v) also
do not exhibit upside-down symmetry although (iv) and (v) are approximately mirror
images, as they are close to the symmetry-breaking Boussinesq bifurcated branch. As in
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Figure 3. Numerical solutions of mode-1 waves with R1 = 1.1, R3 = 0.9, h1 = 1, h3 = 1, k = 1.
(a) Speed–energy bifurcation curves: solid curves (Euler), dashed curves (Boussinesq). (b,c) Typical solutions
of the Euler (solid lines) and Boussinesq (dotted lines) cases labelled in (a) plotted at the same value of the
Froude number. In (bi,ii) and (ciii) the Boussinesq solutions are invariant under the transformation (2.10) (plus
a phase shift of half a wavelength). In (civ) and (cv) the symmetry-breaking bifurcation means that solutions
obtained by the transformation (2.10) are distinct.

the two-layer interfacial gravity wave case (Guan et al. 2021a), the mode-1 waves also
feature overhanging profiles and self-intersecting singularities when the wave energy is
sufficiently large. From the almost limiting waves (iii), (iv) and (v), it is reasonable to
expect that their limiting waves would develop closed fluid bubbles on one of the interfaces
and form a sharp angle at the intersection points. Using a local asymptotic analysis, one
can show that it is possible for the interface to develop a 120◦ angle in contact with a
closed fluid bubble (Guan et al. 2021b). In figure 4, a local blow-up of the almost limiting
profiles (iii) of figure 3 is shown, as well as two dashed lines placed at 120◦ to each other.

For mode-2 waves, more than two bifurcation branches are usually found, which
increases the complexity of the bifurcation structure. An example is shown in figure 5.
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Figure 4. Almost limiting wave profile in figure 3(ciii) in one spatial period. The black dashed line represents
the limiting 120◦ angle.

The corresponding parameters are R1 = 1.01, R3 = 0.99, h1 = 1, h3 = 1 and k = 1.5.
In figures 5(a) and 5(b), we plot the energy–speed bifurcation curves of the Euler
case and the Boussinesq case, respectively. Due to the weak density stratification, the
Boussinesq case displays an excellent agreement with the Euler case, with almost
indistinguishable bifurcation curves. There are now two symmetry-breaking bifurcation
points (F approximately 0.054 and 0.068) on the symmetric Boussinesq branch (blue)
and two folded symmetry-breaking branches (red and yellow) grow from these points.
Solutions (i) to (iv) in figure 5(c) are the almost symmetric solutions which can be
seen both from their profiles and the fact that they lie near the symmetric branch of the
Boussinesq approximation. On the other hand, solutions (v) to (viii) are almost limiting
profiles of the symmetry-broken waves. It is interesting to note that these solutions show
some characteristics of mode-1 waves, which is probably due to the mode-resonance
mechanism described below. Like the mode-1 waves, we also expect the corresponding
limiting waves to have closed bubbles attached to 120◦ angles. Solutions (iv), (vii) and
(viii) are the almost limiting waves of this type. However, there are other possible limiting
waves as solutions (v) and (vi) suggest. Taking solution (v) for example, one can infer that
the upper interface (red) becomes self-intersecting if the local peak (x ≈ ±0.8) touches
the mushroom’s base. In this fashion, there will be two closed fluid bubbles (of the upper
fluid) which are symmetric with respect to the vertical lines x = 0. A further discussion
on this new limiting configuration is beyond the scope of the current paper and shall not
be addressed here.

For longer periodic mode-2 waves (k decreasing) the complexity of the bifurcation
curves increases as there is the possibility of important resonances between the mode-2
waves and the mode-1 waves. Analogous to the well-known case of Wilton ripples in
capillary–gravity surface waves (Wilton 1915), it is possible to find two wavenumbers k1
and k2 such that

cp1(k1) = cp2(k2), mk1 = nk2, n > m are two positive integers, (4.2)

where cp1(k1) is the phase speed of the mode-1 waves for k = k1 and cp2(k2) is the phase
speed of the mode-2 waves for k = k2. A similar mechanism has been pointed out by Chen
& Forbes (2008) who focused on the case m = 1. These resonances can be seen from
figure 6, where we plot the dispersion relation curves for R1 = 1.1, R3 = 0.9, h1 = 1 and
h3 = 1. For simplicity, we shall use the term (m, n) resonance to denote such conditions.
Three examples corresponding to (1, 2), (1, 3) and (1, 10) are shown in figure 6 by the
three dashed horizontal lines. There exist a countable number of resonant pairs since
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Figure 5. Numerical solutions of mode-2 waves with R1 = 1.01, R3 = 0.99, h1 = 1, h3 = 1, k = 1.5.
(a) Speed–energy bifurcation branches of the Euler case. (b) Speed–energy bifurcation branches of the
Boussinesq case. (c,d) Typical wave profiles of Euler case which are labelled in (a) and plotted in two spatial
periods.

n/m → ∞ when k2 → 0. These resonant pairs imply that if one chooses the wavenumber
to satisfy (4.2), then, linearly, a mode-1 component and a mode-2 component coexist. This
has consequences in the nonlinear solution branches.

In figure 7, we display the special example corresponding to the (1, 2) resonance of
figure 6. In figure 7(a), the blue curve is the speed–energy bifurcation branch of solutions
with k = 0.97651 (which corresponds to one branch of Wilton ripple-like solution), and
the black dashed curve is the speed–energy bifurcation mode-1 waves with k = 1.953
for which the energy is calculated in two spatial periods. Solution (i), which is labelled
by a black dot, is a small-amplitude linear wave, so we plot the corresponding upper
interface (red) and lower interface (blue) in figure 7(b), respectively. In the bottom
subpanel of figure 7(b), we plot |θ̂−| versus n in a log-scale, where θ̂− denotes the Fourier
coefficient of the lower interfacial inclination θ−, and n is the order of the Fourier modes.
It is clear that only the first two Fourier modes are significant while the rest are tiny
enough to be neglected. Because of the existence of the resonant pair, the wave profile
of (i) exhibits a mixture of the mode-1 and mode-2 waves. When the value of F increases,
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Figure 7. (a) Speed–energy bifurcation curves with R1 = 1.1, R3 = 0.9, h1 = 1, h3 = 1, k = 0.97651 (blue,
mode-2), and k = 1.953 (black, mode-1). The energy of the mode-1 waves are calculated in two spatial periods.
The figure in the inset box shows the wave profile of solution (ii). (b) The top and middle subpanels are the
upper and lower interfaces of solution (i) in (a). The bottom subpanel displays the absolute value of θ̂− of
solution (i) in a log-scale, where θ̂− is the Fourier coefficient of the lower interfacial inclination angle θ−, and
n is the order of the Fourier modes.

the energy monotonically grows until the mode-2 wave bifurcation curve intersects the
mode-1 wave bifurcation curve near F = 0.1787. The final solution (ii) is a mode-1 wave
and is shown in the inset in figure 7(a). In general, this mode resonance still exists when
k1/k2 is a rational number rather than just an integer. In this case, we expect to see n
mode-1 wave components coexist with m mode-2 waves, at least in the linear region.
Figure 8 displays an example with parameters: R1 = 1.01, R3 = 0.99, h1 = 1, h3 = 1 and
k = 0.2525. According to the dispersion relation, the (2, 7) resonance is predicted when
k1 ≈ 1.7679 and k2 ≈ 0.5051. Therefore, we choose the length of the computing domain to
support two mode-2 waves with k = 0.5051 or seven mode-1 wave with k = 1.7679. Three
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Figure 8. (a) Speed–energy bifurcation curves with R1 = 1.01, R3 = 0.99, h1 = 1, h3 = 1 and k = 0.2525.
(b) Three typical wave profiles corresponding to the labelled solutions in (a). The red and blue curves are the
upper and lower interfaces.

typical solutions are labelled on the local energy–speed bifurcation curve in figure 8(a),
their wave profiles are plotted in figure 8(b). As the figure clearly shows, solution (i)
is almost a standard mode-2 wave having two spatial periods. Solution (ii) has already
generated some mode-1 components and clearly lost the double periodicity. Solution (iii)
almost becomes a mode-1 wave and develops seven quasiperiodic mode-1 waves.

In fact, due to the nonlinearity, the resonant condition (4.2) only needs to be satisfied
approximately to support the resonance. In figure 9, we plot six speed–energy bifurcation
branches of the mode-2 waves with R1 = 1.1, R3 = 0.9, h1 = 1, h3 = 1 and k = 1. The
black dashed lines are the speed–energy bifurcation curve of the mode-1 waves with
k = 2. The blue curve and part of the red curve are of the (1, 2) resonant type. The wave
profiles of solutions (i) and (ii) are shown in the two insets. This clearly indicates that they
become the mode-1 waves with wavenumber k = 2. Nine almost limiting wave profiles
are shown in figure 10. Note that the blue curve is not the only one which intersects
the mode-1 bifurcation curve, the cyan branch also has an intersection at solution (x).
The corresponding profile is a rather nonlinear mode-1 wave with an overhanging upper
interface. This means that the mode-resonance exists not only in the weakly nonlinear
region but also when solutions become highly nonlinear. Solutions (v) to (ix) are similar
to those shown in figure 5. However, solutions (iii), (iv) and (xi) suggest the existence of a
new limiting wave, but we shall not discuss it in the current paper.

An important question is how the bifurcation structure and wave profiles change when
the five related parameters R1, R3, h1, h3 and k are gradually varied. In general, if we
change the depth h1 and h3 but keep the other parameters fixed, the bifurcation structures
and solutions are quantitatively similar. Wave profiles become spatially longer (shorter)
if the depth is increased (decreased). On the other hand, if we gradually change the
values of R1 and R3 away from the weak density stratification, but keep (R1 − 1)/(1 − R3)
constant, i.e. the lower and the upper layer have the same density variation to the density
of the middle layer, then one generally observe that the adjacent solution branches
gradually get farther away from each other in the speed–energy bifurcation space. In
figure 11, we display two numerical results with h1 = h3 = 1, k = 1, R1 = 1.3, R3 = 0.7
(figure 11a) and R1 = 1.5, R3 = 0.5 (figure 11b). For these two cases, the bifurcation
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Figure 9. Energy–speed bifurcation curves and two related wave profiles of the mode-2 solutions with R1 =
1.1, R3 = 0.9, h1 = 1, h3 = 1 and k = 1. Associated (almost) limiting waves are labelled by black dots on
curves. The black dashed line is the energy–speed bifurcation of the mode-1 solutions for the same values
of R1, R3, h1, h3 and k = 2 whose energy is calculated in two spatial periods. The two insets show the wave
profiles corresponding to (i) and (ii).
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Figure 10. Almost limiting wave profiles corresponding to the nine labelled solutions (iii) to (xi) in figure 9.
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Figure 11. (a) Speed–energy bifurcation curves of the mode-2 waves with R1 = 1.3, R3 = 0.7, h1 = 1, h3 = 1
and k = 1. (b) Speed–energy bifurcation curves of the mode-2 waves with R1 = 1.5, R3 = 0.5, h1 = 1, h3 = 1
and k = 1. The black dashed curve is the bifurcation of the mode-1 waves with the same parameters except
k = 2. The corresponding energy is calculated in two spatial periods.

structure is complex and the Boussinesq approximation is no longer valid since the density
stratification is no longer weak. Comparing the bifurcations and the almost limiting wave
profiles displayed in figure 12 with the numerical results shown in figures 9 and 10, it
is noted that the number of bifurcation branches is decreased to four and some typical
solutions in figure 10 vanish. In fact, this was also found in the two-layer interfacial
waves that some bifurcation branches gradually shrink and ultimately disappear in the
bifurcation space when the related parameters are varied (Guan et al. 2021a). Note that
the (1, 2) resonance exists when k ≈ 1.1 for R1 = 1.3, R3 = 0.7 and when k ≈ 1.43 for
R1 = 1.5, R3 = 0.5. Therefore, we do not directly observe the mode-resonant phenomenon
for these two cases since the wavenumbers that we choose is not very close to these
critical wavenumbers. However, solutions (i), (ii) and (iii) still display some characteristics
of resonance and can be thought of as the nonlinear evolution of mode resonance. The
waves in figure 12 show that the possible limiting configurations are either a closed bubble
attached to a 120◦ angle, or two closed bubbles located symmetrically to the vertical line
x = 0, or special mode-1 waves having larger wavenumber. It is interesting to note that
the almost closed bubble on the upper interface could have both upward and downward
orientations.

If we fix the values of R1, R3, h1 and h3, but gradually decrease k, then we obtain
a family of long waves which converges to generalised solitary waves. In this process,
the bifurcation structure becomes even more complex since there emerge a number of
new resonant pairs. In figures 13–15, we exhibit the numerical solutions for R1 = 1.01,
R3 = 0.99, h1 = 1, h3 = 1 and k = 0.096. According to the linear theory, we can predict
the critical values of F at which the mode-resonance occurs:

F = cp1(nk), n is a positive integer, (4.3)
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Figure 12. Almost limiting wave profiles corresponding to the labelled solutions (i) to (vii) in figure 11.
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Figure 13. (a) Speed–energy bifurcation curves for R1 = 1.01, R3 = 0.99, h1 = 50, h3 = 50 and k = 0.096.
The vertical dashed lines denote the predicted value of F where the mode-2 waves are resonant with the mode-1
waves having waves number nk. The corresponding values of n are shown close to the vertical lines. (b) Typical
wave profiles and related absolute value of one of θ̂± of the labelled solutions (i) to (iv) in (a), where θ̂− and
θ̂+ are the Fourier coefficients of the inclination angle of the lower and upper interface.

where cp1(k) is the phase velocity of the mode-1 waves with wavenumber k. In figure 13(a),
five critical values of F corresponding to n = 9 to 13 are shown by the five vertical dashed
lines. To show the existence of the resonant mode-1 component, we select four typical
solutions in the region close to the predicted critical values of F, display their profiles,
as well as the corresponding |θ̂±| in a log-scale, where θ̂± are the Fourier coefficients of
the inclination angles of the upper and lower interfaces. It is interesting to note that this
prediction gives fairly good agreement with the numerical results. More importantly, it
indicates that close to these critical values there are new bifurcation branches. Therefore,
the bifurcation structure is like a comb. Every branch has a part that belongs to the
almost symmetric branch, and the symmetry-breaking part becomes a tooth of the comb
at some turning points close to the predicted critical values of F. The second part of the
whole bifurcation is shown in figure 14 as well as the four predicted critical values of F
corresponding to n = 5 to 8. As can been clearly seen, the positions of these turning points
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labelled solutions (v) to (viii) in (a).

gradually differ from the predictions when waves become nonlinear, and the solutions
gradually develop profiles of typical mode-2 generalised solitary wave type. The |θ̂−| plot
does not clearly show the resonant mode-1 component since more Fourier modes come
into play.

If we follow different comb-teeth bifurcation curves and let the energy increase, then
the wave profiles could develop rather different limiting configurations. In figure 15, we
show six typical highly nonlinear solutions following those branches shown in figures 13
and 14. From top to bottom, these solutions come from the (1, 12), (1, 10), (1, 9), (1, 8),
(1, 7) resonance teeth, and the rightmost almost symmetric branch in figure 14(a), i.e. the
lower magenta branch. It turns out solutions could become pure mode-1 waves as shown
in figure 15(a), or the long mode-1 waves with a distorted midsection and periodic mode-1
tails shown in figure 15(b–d), or the long mode-2 waves with periodic mode-1 tails shown
in figure 15(e,f ).

Figure 16 shows bifurcation curves for R1 = 1.01, R3 = 0.99, h1 = h3 = 0.1 and k =
0.1. Here, the middle-layer is deep relative to the upper and lower layer, and the wave
is relatively long. The main central pules of the resonant mode-2 waves in this case are
found to be concave (that is, the upper interface is of depression, and the lower is of
elevation). Note that in this case, the branches are found to cross the linear long-wave
speed of mode-1, which for these parameters is given by F ≈ 0.0316. This feature was
also observed for mode-2 solitary waves (Barros et al. 2020; Doak et al. 2022), and indeed
when the magenta branch exits the linear spectrum, the resulting solutions are true mode-2
solitary waves with no resonances (solution B in the figure). Although linear waves do
not exist for speeds F > 0.0316, nonlinear mode-1 solitary and periodic waves do, and
the other branches which exit the spectrum still have resonances with nonlinear mode-1
waves.

When R1 − 1 /= 1 − R3, there exists a kind of ‘trapped waves’ solution as shown by the
typical solutions in figure 17. The related parameters are R1 = 1.01, R3 = 0.95, h1 = 1,
h3 = 1 and k = 1. According to the dispersion relation, a (1, 7) resonance exists when k ≈
0.98472. This explains the profile in figure 17(a) where seven oscillations are generated
on the top interface in one spatial period. Surprisingly, there appears only one single
wave on the lower interface. These waves are very similar to those previously obtained
by Lewis, Lake & Ko (1974) and Chen & Forbes (2008). When the amplitude of the
lower interface gradually increases, it develops a bell-shaped profile and the oscillations
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Figure 17. Four typical wave profiles with R1 = 1.01, R3 = 0.95, h1 = 1, h3 = 1 and k = 1.

on the upper interface gathered in the region above the trough of the lower interface. It is
worth mentioning that similar solutions have been previously discovered in Liapidevskii
& Gavrilov (2018) experimentally and in Doak et al. (2022) numerically. Figures 17(c)
and 17(d) show that the waves could become even more nonlinear so that the upper
interface develops an overhanging profile and tends to become self-intersecting. One or
several closed bubbles are almost formed for solutions on different bifurcation branches.
These overhanging structures are locally similar to those profiles shown before, except
that the bubble size is greatly decreased. The lower interface also becomes steep and even
overhanging. If the value of R3 is further decreased to zero, then the three-layer model
approaches an ‘air–water–water’ setting. In this case, there are even more tiny oscillations
on the upper interface and a large amplitude internal wave on the lower interface, which is
a rough approximation of the real ‘surface-internal waves’ oceanic scenario.

5. Concluding remarks

In this paper, we present numerical calculations of periodic interfacial gravity waves in
a three-layer fluid system. We assume that each layer has a finite depth and constant
density, and impose two rigid lid conditions at the bottom and top (see figure 1). Density
constants have non-increasing values from the bottom layer to top layer to ensure a
statically stable configuration. Travelling wave solutions are calculated in a moving frame
of reference where waves are steady. Using the analyticity of the complex velocity, we
obtain four boundary integral equations from the Cauchy’s integral formula. Together
with the Bernoulli equations and several other constraints imposed on the two interfaces,
a nonlinear algebraic system is obtained and solved via Newton’s iteration. To achieve a
high numerical accuracy, we apply the Fourier series technique. By setting the parameters
to get an essentially two-layer deep water solution, we compare the wave speed for
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different given wave heights with other authors’ results and find an eight decimal-places
accuracy. Using this algorithm, we explore the mode-1 and mode-2 wave solutions and
find fruitful bifurcation structures. For clarity, we mainly focus on the weak stratification
case for which the Boussinesq approximation is suited. Under this approximation, exactly
symmetric solutions, which are invariant under the upside-down transformation, are found
to form a symmetric solution branch. However, asymmetric solutions can coexist and
their bifurcations connect to this symmetric branch. On the other hand, without using
the Boussinesq assumption, solution branches are of a different nature, namely they are
separated rather than connected (see figure 3), a sign of an imperfect bifurcation. For
mode-1 waves, we observe one symmetry-breaking bifurcation, whereas for mode-2 waves
we observe two. Limiting waves which are located at the endpoint of each branch show
similar bubble–crest structure to those found in two-layer interfacial gravity waves. For
mode-2 waves, more bifurcations and other possibilities of limiting waves are found.
Among them, a mode-resonance mechanism is particularly interesting. Roughly speaking,
this is similar to the well-known ‘Wilton ripple’ phenomenon in capillary–gravity waves.
When the resonance condition (4.2) is satisfied, wave profiles can display a hybrid
character of mode-1 and mode-2 waves because these modes have the same phase speed
and thus coexist. Due to this mechanism, bifurcations can connect waves of different
modes which results in a far more complicated structure than that of mode-1 waves (see
figure 9 for example). When density ratios are gradually changed and beyond the weak
stratification region, we observe the separation of bifurcation curves that are gathered
initially, as well as the distortion of related wave profiles (see figures 12 and 17). When
we decrease the wavenumber to get a long wave approximation of generalised solitary
waves, we find the comb-shaped bifurcation structure (figures 13 and 14). Following each
tooth of the comb, we get generalised solitary waves having different numbers of periodic
mode-1 tails. Surprisingly, these numbers can be well predicted by the resonant condition
(4.2).

From a physical perspective, any finite-amplitude interfacial gravity wave suffers from
the Kelvin–Helmholtz instability, making the layered-Euler equations mathematically
ill-posed for time evolution. Without regularising effects, the instability grows
unboundedly fast as the wavenumber increases. However, in real two-layer fluid
configurations or fluids with a continuous sharp density stratification, the Kelvin–
Helmholtz instability can be suppressed by the stratification profile or other effects,
preventing the breakdown of large-scale wave motion (Chumakova et al. 2009a).
Therefore, we can expect that stable solutions exist in a long-wave region (Chumakova
et al. 2009b). Recently, Carr, Davies & Hoebers (2015) observed stable mode-2 waves
in their laboratory experiments. Some of the waves are very similar to our numerical
solutions (figure 5ci) and those in figures 13 and 14). In addition, the experiments
performed by Liapidevskii & Gavrilov (2018) suggest that the waves in figure 17(a,b) may
be stable.
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