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Fig. 2. The maximum yield stress plotted against the ratio of sample size to grain-size. The grain-size was kept constant at 
1 .0 mm and the sample diameter was varied. Below a ratio of 12 the yield stress depends on this ratio. 
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SIR, The weak underbelly of the West Antarctic ice sheet 

Possible collapse of the West Antarctic ice sheet by surges of Thwaites and Pine Island Glaciers into 
the Pine I sland Bay polynya of the Amundsen Sea was a subject ad dressed in papers by Lingle and Clark 
(1979) and Thomas (1979), and in abstracts by Denton and others (1979) and Hughes (1979), that were 
published in Vo!. 24, No. 90 of the Journal of Glaciology. This concept was first developed in 1975 by 
George H. Denton and me as part of our CLIMAP responsibilities to reconstruct the maximum Antarctic 
ice sheet and then to disintegrate the marine West Antarctic portion. Lingle and Clark (1979) have 
acknowledged us and CLIMAP in this regard, and we are grateful to them. 

A brief history of the development of the concept that Pine Island Bay may be the weak underbelly 
of the West Antarctic ice sheet is in order, because the American Society for the Advancement of Science 
(AAAS) and the United States Department of Energy (DOE) sponsored a workshop at the University of 
Maine on B-IO April 19Bo to formulate a science plan that would "elucidate the research that might 
establish once and for all the likelihood and time frame of collapse of the grounded ice" in West 
Antarctica (David M. Burns, Director of the AAAS/DOE Climate Project, letter of I I October 1979) . 

CLIMAP (Climate: Long-range Investigations, Mapping, and Prediction) cond ucted two experi­
ments, reconstructing the maximum ice-age climate IB 000 years ago and the maximum interglaciation 
climate 125 000 years ago. George H. Denton was the Principal Investigator responsible for provid ing 
the areas, elevations, and volumes of ice sheets as input boundary conditions for these two CLIMAP 
experiments. This work was done at the University of Maine, where I was the Task Group Lead er 
responsible for numerically reconstructing and disintegrating ice sheets having areal extents specified by 
Denton. Results of this work are presented in chapter 6 (Hugh es and others, I9BI) and chapter 7 
(Stuiver and others, 19B1) of The last great ice sheets. 
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In the CLIMAP proposal prepared in 1974, Denton and I outlined our plans to disintegrate the 
marine West Antarctic ice sheet for the CLIMAP maximum interglaciation experiment. While discuss­
ing this task in June 1975, Denton and I realized that the Amundsen Sea sector of the West Antarctic 
ice sheet was mostly drained by Thwaites Glacier and Pine Island Glacier (Fig. I ), and that these two 
huge ice streams were not buttressed by a confined and pinned ice shelf. This realization focused our 
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Fig. I . West Antarctica showing the position of Thwaites Glacier and Pine Island Glacier. 
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attention on Pine Island Bay as the weak underbelly of the West Antarctic ice sheet, a concept which 
opened our eyes to what we think will be the mechanism for disintegration of the "Vest Antarctic ice 
sheet during a proposed Super Interglaciation triggered by CO.-induced climatic warming (Stuiver and 
others,lg81). 

POWER OF THE CONCEPT 

Once the concept of Pine Island Bay as the weak underbelly of the West Antarctic ice sheet is 
accepted, several seemingly unrelated facts can be drawn together to formulate a scenario for West 
Antarctic ice-sheet collapse. 

I. Several small ice shelves border Pine Island Bay, which is studded with several small islands. It 
seems possible that an ice shclf could have occupied Pine Island Bay in the past and, by being 
pinned to the islands, would have effectively buttressed Thwaites and Pine Island Glaciers. 

2. Pine Island Bay is presently a polynya that is kept free of sea ice by adiabatically warmed 
katabatic winds flowing down Thwaites and Pine Island Glaciers. If a former ice shelf in Pine 
Island Bay has disintegrated, reforming it under present climatic conditions would be un­
likely. 

3. Tricamera aerial photography and Landsat imagery show that Thwaites and Pine Island 
Glaciers have the heavily crevassed surfaces characteristic of glacial surges, these surfaces are 
summer ablation zones, and the ice-stream termini are floating in Pine Island Bay. The ice 
streams may have surged when a former buttressing ice shelf disintegrated, and retreat of the 
ice-stream grounding lines would be accelerated by the greatly magnified ice thinning rates that 
occur during the summer ablation of heavily crevassed ice. 

4. Thwaites Glacier termInates as a huge floating ice tongue 200 km long. Floating ice tongues 
form when the ice-stream velocity exceeds the iceberg calving rate, which is most likely toward 
the beginning of a surge. 

5. Pine Island Glacier terminates in a calving bay extending 30 km into the ice stream. Calving 
bays form when the iceberg calving rate exceeds the ice-stream velocity, which is most likely 
toward the end of a surge. 

6. The ice divide of the West Antarctic ice sheet has a high saddle, I 800 m above sea-level, that 
separates the Thwaites Glacier ice drainage basin from the ice drainage basins of fast-moving ice 
streams D and E (Rose, 1979) that feed the Shirase Coast embayment of the Ross Ice Shelf. 
Through downdraw, a growing surge of Thwaites Glacier would create a saddle on the ice divide, 
but ice would not yet be downdrawn enough to lower the saddle and make it migrate toward the 
Ross Ice Shelf. 

7. The ice divide of the West Antarctic ice sheet has a low saddle, only I 250 m above sea-level, 
that separates the Pine Island Glacier ice drainage basin from the ice drainage basin of slow­
moving Rutford Ice Stream (Swithinbank, 1977) that feeds the Ellsworth Land embayment of 
the Ronne Ice Shelf. A declining surge of Pine Island Glacier would leave a low down drawn 
saddle on the ice divide, which would have migrated toward the Ronne Ice Shelf and shrunk the 
ice drainage basin of Rutford Ice Stream, reducing its velocity. 

8. Bentley Subglacial Trench averages I 500 m below sea-level and underlies the ice divide 
separating West Antarctic ice draining into Pine Island Bay from West Antarctic ice draining 
into the Ross and Ronne Ice Shelves. Surges ofThwaites and Pine Island Glaciers into the open 
water of Pine Island Bay will not only allow the Pine Island Bay grounding line to retreat into 
Bentley Subglacial Trench, through downdrawn retreat of the ice divide the surges will also 
shrink the ice drainage basins of ice streams feeding the Ross and Ronne Ice Shelves. This causes 
a negative shift in the mass balance of these ice shelves that would compel their grounding lines 
to also retreat into Bentley Subglacial Trench. 

9. The Shirase Coast is a deep, and relatively recent embayment of the Ross Ice Shelf grounding 
line that probably resulted when RockefeIler Plateau ice was downdrawn into ice streams D and 
E (Lan·gway and others, 1974). These ice streams may be moving rapidly because they enter the 
unpinned northern sector of the Ross Ice Shelf, and retreat of the Shirase Coast grounding line 
would be accelerated if further collapse of Rockefeller Plateau ice was caused by a surge of 
Thwaites Glacier on the other side of the ice divide. 
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10. The West Antarctic ice sheet is less than 600 km wide between the Pine Island Bay and Ronne 
Ice Shelf grounding lines. A prolonged surge of Pine Island Glacier would cause both grounding 
lines to retreat; Pine Island Bay retreat occurs because downdraw is greatest for ice entering an 
unbuttressed ice stream, and Ronne Ice Shelf retreat occurs because down drawn retreat of the 
ice divide has reduced the input from Rutford Ice Stream. 

Linking these ten observations produces a scenario for disintegration of the West Antarctic ice sheet 
in which unstable stream-flow in Pine Island Bay downdraws the more stable sheet-flow in the interior 
and destabilizes metastable shelf-flow along the Ross and Weddell Sea margins. 

PRELIMINARY TEST OF THE CONCEPT 

Our first test of the concept that Pine Island Bay is the weak underbelly of the West Antarctic ice 
sheet was made using the numerical model of ice-sheet disintegration that I developed in the summer of 
1977 for the CLIMAP maximum interglaciation experiment (Stuiver and others, 1981). Our CLIMAP 
ice-sheet disintegration model coupled a grounding-line retreat mechanism published by Thomas (1977) 
to theoretical ice-stream profiles I had derived for our CLIMAP ice-sheet reconstruction model. This 
allowed an ice stream surge to link grounding-line retreat to downdraw and retreat of the ice divide. 
Important variables controlling the surge were ice-ocean interactions related to rising sea-level, ice­
atmosphere interactions related to climatic warming, and ice-rock interactions related to basal melting 
and rebound beneath downdrawn ice. 

James L. Fastook produced a computer solution for our CLIMAP model of ice-sheet disintegration 
and, during the fall of 1977, applied the model to all the ice streams draining the maximum West 
Antarctic ice sheet that we reconstructed for the CLIMAP maximum glaciation experiment. That ice 
sheet was grounded to the edge of the West Antarctic continental shelf, which was taken as the 500 m 
bathymetry contour wherever the actual bathymetry was unmapped. The model reproduced the ten­
point scenario of West Antarctic collapse described above, provided that an ice shelf initially formed in 
Pine Island Bay but disintegrated about 100 years ago. Climatic warming after the Little Ice Age might 
have disintegrated the proposed ice shelf. Future collapse of the West Antarctic ice sheet resulted from 
present surges of Thwaites and Pine Island Glaciers and was complete in only 200 years. We showed our 
results to Robert H. Thomas when he returned from Antarctica early in 1978. Thomas was skeptical 
because Pine Island Bay was one of the sectors having unmapped bathymetry. We assumed that the 
present-day grounding lines of Thwaites and Pine Island Glaciers were 500 m below sea-level. 

Future collapse of West Antarctic ice into Pine Island Bay could be modelled more accurately if both 
the grounding line depth and the ice velocity across the grounding line were known for Thwaites and 
Pine Island Glaciers. I casually mentioned this to Robert J. Alien of the United States Geological 
Survey (USGS) in May 1978, when he was showing me aerial tricamera photographs of Byrd Glacier 
that I needed for my 1978-79 field study of the Byrd Glacier-Ross Ice Shelf interaction. AlIen said that 
he had measured Thwaites Glacier velocities by triangulating moving crevasses located on 1947 tri­
camera photography and 1972 Landsat imagery. It now remained to measure the thickness and slope 
of Thwaites Glacier, especially at its grounding line, and to locate the grounding line. At the Ottawa 
Symposium on the Dynamics of Large Ice Masses in August 1978, I urged David J. Drewry to include 
these measurements in the NSFjSPRljTUD radio echo-sounding program during the 1978-79 Antarctic 
summer. Drewry accomplished this, and he sent me the results in January 1980. By a fortunate 
coincidence, the Thwaites Glacier grounding line was close to 500 m below present-day sea-level. 

I had told Robert H. Thomas about Robert J. Allen's velocity measurements for Thwaites Glacier 
and, when I returned from Antarctica in early 1979, I learned that Thomas had used them to calculate 
a critical ice thickness of 475 m±75 m for irreversible retreat of the Thwaites Glacier grounding line 
(Thomas and others, 1979). I should add that, by USGS policy, Allen's data are available to anyone 
upon request. 

FUTURE WORK 

Now that the NSFjSPRljTUD radio echo-sounding program has been discontinued, we must 
depend on the British Antarctic Survey (BAS) to measure the thickness and slope of Pine Island Glacier. 
This would be a natural extension of BAS radio echo-sounding over Rutford Ice Stream and vicinity 
(Swithinbank, 1977). In the meantime, encouraged by Robert J. AlIen's work, David A. Tyler and I 
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have requested Ig80 Landsat imagery of Thwaites and Pine Island Glaciers that we will compare with 
the 1972 imagery and photogrammetrically measure the surface velocity regimes of these two huge ice 
streams. 

More and better field data will justify improvements in our CLIMAP ice-sheet disintegration model. 
The ability of an ice shelf to buttress ice streams can be modelled. In our model, the grounding line 
retreat rate of an ice stream having a floating terminus is 

(pW/PI) vz+(a-.B) Ux-a-hIEZZ 
v'" = .:..:....--'-'--'---..,:.,.-.:....:.......,.--:---~ 

(X- f3( 1- pW/ PI) 
(I) 

where pw and pr are water and ice densities, a and f3 are surface and bed slopes, Vz is the rate of rising 
sea-level, Ux is ice velocity, a is the net ice accumulation rate, hI is ice thickness, and EzZ is the vertical 
creep-rate of ice, all measured at the grounding line (Stuiver and others, I g8 I). When the ice stream is 
buttressed by an ice shelf 

where .p quantifies floating stream-flow diverging to become shelf-flow, A and n are the hardness coeffi­
cient and viscoplastic exponent in the creep law EZZ = (azz/A) n for ice, g is gravity acceleration, w is the 
width of the ice stream at the grounding line, s is the length of the ice-stream flow-band from the ground­
ing line to the calving front of the ice shelf, r is the radius of an ice rise that pins the ice shelf in the 
flow-band originating from the ice stream, 'Ts is the lateral shear stress on the sides of this flow-band, 
and ac is the compressive stress at the ice rise. Part of the floating tongue ofThwaites Glacier has buckled 
laterally and seems to be rotating about a pinning point, in which case ac is important. The floating 
tongue of Pine Island Glacier is confined on both sides, in which case 'Ts is important. These are the 
buttressing stresses provided by a pinned and/or confined ice shelf, and they oppose the creep-spreading 
of floating ice specified by the first term in Equation (2) . A photogrammetric determination of the surface 
velocity regimes of Thwaites and Pine Island Glaciers will permit these buttressing effects to be investi­
gated in some detail. 

We evaluated u'" using our CLIMAP ice-sheet reconstruction model. In that model, the ice surface 
elevation above sea-level at !1x step i+ I measured from the ice-sheet margin along a surface flow line is 

where h, hR, and 'To are the ice surface elevation, bed elevation, and basal shear stress at step i, !1x is the 
step length, and i is an integer. Taking i = 0 at the calving front of an ice shelf, 'To = 0 for all !1x steps 
from the calving front to the grounding line and 'To is determined from theory for all !1x steps from the 
grounding line to the ice divide. Theoretical values of 'To were derived across frozen and thawed beds, 
across melting and freezing beds, along ice streams and ice lobes, and from saddles to domes along ice 
divides (Hughes, Ig81). Glacial geology and topography were used to identify these surface and bed 
conditions. 

The value of u'" in Equation (I) is obtained from the continuity equation: 

u'" = - L [(a-uz) wJi!1x/(h-hR ) w 

i 

where Uz is the vertical creep thinning rate, the summation is over all values of a, Uz, and w for each !1x 
step from the grounding line to the ice divide, and h, hR, and w in the denominator are measured at the 
grounding line. We evaluate Uz for each step of grounding-line retreat by reconstructing surface flow-line 
profiles before and after the retreat step, using Equation (3), and then measuring the difference in h 
between the profiles at each step. This surface lowering occurs in time !1x/vx, where v'" is given by 
Equation (I). An iterative computer solution is required. This surface lowering is downdraw resulting 
from grounding-line retreat. It causes the ice divide of the Thwaites and Pine Island Glacier drainage 
basins to retreat as their grounding lines retreat (Stuiver and others, Ig81). 

Another source of surface lowering is downdraw resulting from the increasing length of an ice stream 
as it accelerates during a surge. Since ice streams have concave surface profiles, changes in their length 
can strongly influence Uz in Equation (4). Length changes would be caused by changes in basal melt­
water production that are proportional to changing rates of basal frictional heat generated during the 
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surge. Since Uz is almost entirely due to basal sliding in an ice stream, the rate of frictional heat 
production at the bed is (UzTo)i, evaluated at each /::'x step i along the ice stream. The change in length 
/::'Is of an ice stream due to a change in velocity /::'uz in time t = /::'x/uz is 

/::'Is = 2hI/::'uz/::'x
z L (To/hI)i 

PIHMAuz 
(5) 

where HM is the latent heat of melting (measured in energy units), the grounding line retreats one !::"'x 
step in time t, A is the thickness of the basal water layer at the grounding line, hI and Uz are ice thickness 
and velocity at the grounding line, and the summation is over values of TO and hI along an ice stream of 
length Is (Hughes, Ig81). Equation (5) expresses the enhanced downdraw that would occur during the 
early stage of surges of Thwaites and Pine Island Glaciers, when increasing Uz causes these ice streams to 
lengthen. 

The theoretical variation of TO along an ice stream of length Is is 

(6) 

where k quantifies sheet-flow converging to become stream-flow, m is the viscoplastic exponent in the 
sliding law Uz = (To/B ) m of glacial ice, TM is the basal shear stress for sheet-flow over a thawed bed, 
TO = TM over the region x ;;;. 2Is of sheet-flow, x = Is at the grounding line if a floating ice tongue 
forms, x = 0 at the grounding line if a grounded ice lobe forms,! = 0 for sheet-flow,j = I for stream­
flow, and 0 < j < I for lobate-flow at the ice margin (Hughes, Ig81). Substituting Equation (6) into 
Equation (3) produces concave ice-stream profiles that can be fitted to Thwaites and Pine Island Glaciers, 
once their ice thicknesses and surface slopes are mapped by radio echo-sounding. 

In our original CLIMAP ice-sheet reconstruction model, theoretical basal shear-stress variations TF 

and TM for sheet-flow over frozen and thawed beds were calculated for ice sheets having an accumulation 
zone over their entire surface (Hughes, I g8 I) . This is realistic for the ice-age and present-day Antarctic 
ice sheet, but climate warming during a Super Interglaciation might create an ablation zone over the 
ice-sheet surface along the margin. For a surface flow line oflength L from the margin to the ice divide, 
and having a surface equilibrium line at distance E from the margin with average accumulation and 
ablation rates a and b, mass conservation requires that: 

a(L-EHbE = N 

where N is the net positive or negative mass balance that would cause the ice sheet to thicken or thin. 
Define B as the coefficient in the sliding law Uz = (To/B) m for glacial ice and hE as ice surface elevation 
at the equilibrium line. When the ablation zone is over a frozen bed (x .;; E), 

TF = {hE(Zn+2)/n_~ (n+2)l/n[(N_ bX)(n+l)/n_(N_bE)(n+t)/n]}I/(n+l). 
pIgb 2 

When the accumulation zone is over a frozen bed (x ;;;. E), 

TF = {hE(zn+2)/n_ :~ [ (n:2) a] I/n [(L-E)(n+l)/n- (L-x) (n+t) /n] } l/(n+t) . 

When the ablation zone is over a thawed bed (x .;; E), 

B(N-bx)l /m 

™ = {hE(zm+l)/m_ (2m+l) ~ [(N_bX)(m+t)/m_(N_bE)(m+t)/m]}I/(Zm+t). 
m+1 PIgb 

When the accumulation zone is over a thawed bed (x ;;;. E), 

B[a(L-x)]'/m 

hE(zm+t)/m- ~ _a __ [(L-E)(m+l)/m- (L-x) (m+t)/m] ™ = { ( +) 11mB }1/(Zm+t) . 

m+1 pIg 

(8) 

(9) 

( 10) 

(I1) 
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Values of hE over frozen and thawed beds are eliminated by setting x = E and equating Equation (8) 
with Equation (9) and Equation (IQ) with Equation ( I1 ). Since x = i tlx in the finite-difference 
scheme of Equation (3), these equations give changes in the position of the surface equilibrium line 
during retreat of the grounding line of an ice stream. Thwaites and Pine Island Glaciers have heavily 
crevassed summer ablation zones, so that the mean ablation rate b in Equation (IQ) is particularly high 
because heavy crevassing magnifies the ablating area. Using these equations for TM to compute To for 
ice streams in Equation (6) will be a substantial improvement in our CLIMAP ice-sheet reconstruction 
and disintegration models, linking ice-ocean to ice-atmosphere interactions. 

Isostatic adjustments have also been improved in our CLIMAP ice-sheet reconstruction and dis­
integration models. Equation (3) can be used to obtain a best-fit match between computed and actual 
flow-line profiles of the West Antarctic ice sheet. However, if the ice sheet were removed and isostatic 
rebound were complete, the West Antarctic ice sheet could be reconstructed on the rebounded bed using 
the equation 

where ho is the elevation of the ice-sheet surface at the grounding line measured from the higher sea-level 
that exists after the ice sheet is gone, hR' is the fully rebounded bed elevation at each step measured from 
this higher sea-level, and T is the ratio of isostatic bed depression to ice elevation above the ice flotation 
line after the ice sheet re-forms and again depresses the bed. Comparing Equations (3) and (12) shows 
that 

Equation (12) constructs surface profiles that have been lowered by isostatic sinking of the bed under the 
ice sheet. In the original CLIMAP ice-sheet reconstruction model, ice-sheet profiles were constructed 
above the present-day undepressed bed using Equation (3), and then the bed was isostatically depressed 
at each tlx step and a new surface profile was constructed (Hughes and others, Ig8I). 

Balancing gravity forces for exponential isostatic rebound of bedrock having density PR gives 

T = h"/h' = To exp(-I/Io) 

where To = PI/(PR-PI) for full isostatic equilibrium, 10 is the time constant, ice thickness h' above the 
flotation elevation of marine ice isostatically depresses the bed an amount h", full isostatic equilibrium 
before rebound gives T = To at t = 0, and full isostatic equilibrium after rebound gives r = 0 at I = 00 . 

Equation (3) will reconstruct the present-day West Antarctic ice sheet over the present-day bed. 
Equation (12) will reconstruct the present-day West Antarctic ice sheet over the fully rebounded bed, 
provided that the present-day bed is in isostatic equilibrium. Since it is not, forcing profiles from 
Equations (3) and (12) to coincide will give the present-day non-equilibrium value ofro to be used in 
Equation (14) for I = 0 at present. 

Once a marine ice sheet is reconstructed at t = 0 for a given value of To using Equations (12) and (13) 
to compute surface and bed profiles along flow lines, collapse of the ice sheet and rebound of the bed can 
be computed from values of Tat t > o. Since a floating ice shelf may form beyond the retreating ground­
ing line during collapse, it is necessary to keep the origin of coordinates x, z at the initial ice-sheet calving 
margin, and to replace Equation (12) by: 

h h (ToW+2TSh)jtlx 
j+1 = i+[(I+T)(h-ho)-(I+r)l(hR'-ho)]iPlgw-Tstlx 

(15) 

where W is the width of the ice stream and, moving along the x-axis, 'To = 0 for shelf-flow, 'To increases 
up-stream and 'Ts decreases up-stream for stream-flow, and TS = 0 for sheet-flow (Hughes, Ig81). 
Since h ~ W in an ice stream, the 'Ts terms in Equation (15) are important only for a confined ice shelf. 
If the ice shelf is unconfined, TS = 0 and ice-shelf thickness is constant except for mass-balance variations. 
After the ice-stream grounding line retreats one t::.x step in time tl = ( t::.X/VX)1 due to changes in vz, Ux, 
a, or €zz in Equation (I), a lowered surface profile is constructed from Equation (15) using T computed 
for 1= tl in Equation (1 4). The partially rebounded bed is constructed from Equation (13), also using T 

computed at time t l . After time t2 = (tlx/VX) 1+ (t::.x/vx). has elapsed, the grounding line has retreated 
a second t::.x step and caused further surface lowering and basal rebound. In general Vx is different at 
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tl and t 2. The new bed and surface profiles are constructed from Equations (13) and (15) using r 
computed for t = t2 in Equation (14). This procedure is repeated until grounding-line retreat has 
removed the marine ice sheet, or Equation (I) no longer allows the grounding line to retreat. 

During and after collapse of a marine ice sheet, basal rebound continues beneath both grounded and 
floating ice until r = 0 and t = 00 in Equation (14). This allows us to examine the possibility that new 
ice rises can form on an ice shelf wherever isostatic rebound re-pins the ice shelf to the bed. Such events 
would increase the ability of ice shelves to buttress ice streams, thereby slowing grounding-line retreat. 
This could be a factor if surges of Thwaites and Pine Island Glaciers cause further retreat of the Ross and 
Ronne Ice Shelf grounding lines. 

I have examined the question of un-pinning versus re-pinning on the present-day Ross Ice Shelf, 
and have concluded from a stress analysis that un-pinning is more probable (Stuiver and others, 198 I). 
In this event,"Ts is decreasing in Equation (15), and the Ross Sea sector of the West Antarctic ice sheet is 
becoming unbuttressed. 

CONCLUSIONS 

The concept that Pine Island Bay may be the weak underbelly of the West Antarctic ice sheet leads 
directly to a synthesis of field observations that permits a scenario of ice-sheet disintegration to be 
postulated. This scenario is duplicated by our preliminary CLIMAP ice-sheet disintegration model. 
New field data will justify improvements in the model which treat ice-ocean interactions at ice-stream 
grounding lines, ice-atmosphere interactions that influence the position of the surface equilibrium line, 
and ice-bed interactions that regulate ice-stream downdraw through basal melting and ice-shelf 
buttressing through isostatic rebound. 

Department of Geological Sciences and Institute for Q]lQternary Studies, 
University of Maine at Orono, 

Orono, Maine 04469, V.S.A. 
I September I980 (revised I6 October I98o) 
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