R-SEQUENCES AND HOMOLOGICAL DIMENSION ${ }^{1 \text { 1 }}$

IRVING KAPLANSKY
To Richard Brauer on his 60th birthday

1. Introduction. The motivation for the results in this note comes from a theorem of Macaulay. Let f_{1}, \ldots, f_{n} be elements of a polynomial ring R over a field, and let I be the ideal they generate. Assume $I \neq R$ and $\operatorname{rank}(I)=n$. Then the theorem of Lasker and Macaulay asserts that I is unmixed (all prime ideals belonging to I have rank n). Macaulay [1, p. 51] proved further that any power of I is unmixed.

In the modern formulation of the problem we operate in any commutative ring R with unit, and let $I=\left(a_{1}, \ldots, a_{n}\right)$ where a_{1}, \ldots, a_{n} is an R-sequence. We seek to prove that for any k the homological dimension of R / I^{k} is n. For details on how this implies unmixedness in case R is Noetherian, see [2].

In 1959 I noticed that the methods used by Rees in [2] could be adapted to prove the above theorem. Recently I discovered a still simpler proof that yields information not just on the powers of I, but on ideals generated by monomials in the a 's. Since there are as yet not too many examples where homological dimensions can be computed explicitly, the details are perhaps worthy of public scrutiny.
2. Formulation of results. R will always denote a commutative ring with unit. Let A be an R-module. The homological dimension of A is the smallest integer m such that there exists an exact sequence

$$
0 \rightarrow P_{m} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0
$$

with P_{i} projective ; if no such sequence exists, the homological dimension of A is ∞. We write $d(A)$ for the homological dimension, or $d_{R}(A)$ when it is necessary to call attention to the ring.

The elements a_{1}, \ldots, a_{n} in R form an R-sequence if (a_{1}, \ldots, a_{n}) $\neq R$ and

Received November 12, 1961.

${ }^{1)}$ Research supported in part by the office of ordnance Research, U. S. Army.
for $i=1, \ldots, n, a_{i}$ maps into a non-zero-divisor in the ring $R /\left(a_{1}, \ldots, a_{i-1}\right)$. If R is a local ring, it is known that any permutation of an R-sequence is an R-sequence, so that Theorem 1 below is applicable if R is a local ring.

We shall be concerned with an ideal I which is generated by monomials in the a 's. It is easily seen that (even if we allow an infinite number) a finite number of monomials will suffice to generate I.

The simplest result to state and prove is that $d(R / I) \leqq n$ if every permutation of the given R-sequence is an R-sequence.

Theorem 1. Let R be a commutative ring with unit, and a_{1}, \ldots, a_{n} elements of R constituting an R-sequence in any order. Let Ibe an ideal generated by monomials in the a's. Then $d(R / I) \leqq n$.

If we assume only that a_{1}, \ldots, a_{n} is an R-sequence in the given order, then some extra hypothesis is needed even to get $d(R / I)<\infty$. For instance, it is easily possible to arrange that a_{2} is a divisor of 0 and $d(R / I)=\infty$ with $I=\left(a_{2}\right)$. If it is assumed that I contains a power of each a_{i}, then $d(R / I)$ can be proved equal to n. The argument that proves this also yields the extra information recorded in Theorem 2.

Theorem 2. Let R be a commutative ring with unit and a_{1}, \ldots, a_{n} an R-sequence in R. Let I be an ideal generated by monomials in the a's. Assume that I contains a power of a_{1} for $i=1, \ldots, n-1$. Then $d(R / I) \leqq n$. If further I contains a power of a_{n} then $d(R / I)=n$.
3. Proof of Theorm 1. In the proofs we will use two basic facts on homological dimension which are given as Lemmas 1 and 2. Both already rank as "folk theorems" in this young subject. Lemma 2 is valid for any ring R, and so is Lemma 1 provided x is central.

Lemma 1. Let x be a non-zero-divisor in R, and write $S=R /(x)$. Let A be a non-zero S-module with $d_{s}(A)<\infty$. Then $d_{R}(A)=1+d_{s}(A)$.

Lemma 2. Let A be an R-module, B a submodule, $C=A / B$.
(a) If $d(C)<1+d(B)$, then $d(A)=d(B)$.
(b) If $d(C)>1+d(B)$, then $d(A)=d(C)$.
(c) If $d(C)=1+d(B)$, then $d(A) \leqq d(C)$.

In any case $d(A) \leqq \max (d(B), d(C))$.

The spirit of the next lemma is that the "relative primeness" of the a 's that is built into the definition of an R-sequence can be extended to more complicated objects.

Lemma 3. Let a_{1}, \ldots, a_{n} be elements constituting an R-sequence in any order. Let J be an ideal generated by monomials in a_{2}, \ldots, a_{n}. Then $t a_{1} \in J$ implies $t \in J$.

Proof. We may suppose that a_{2} actually occurs in one of the monomials generating J. Write $J=\left(a_{2} K, L\right)$ where K is generated by monomials in a_{2}, \ldots, a_{n} and L just by monomials in a_{3}, \ldots, a_{n}. We have $t a_{1}=u a_{2}+v, u \in K$, $v \in L$. We pass to the ring $R /\left(a_{1}\right)$, noting that the homomorphic images of a_{2}, \ldots, a_{n} constitute an R-sequence. Writing $*$ for homomorphic image, we have $u^{*} a_{2}^{*} \in L^{*}$. By induction on $n, u^{*} \in L^{*}$, whence $u \in\left(a_{1}, L\right)$, say $u=w a_{1}$ $+x$ with $x \in L$. Since $u \in K$, this implies $w a_{1} \in(K, L)$. We make an induction on the sum of the degrees of the monomials generating J, and deduce $w \in(K$, $L)$. Next we substitute for u in the equation $t a_{1}=u a_{2}+v$, and find $\left(t-w a_{2}\right) a_{1}$ $\in L$. Since $a_{1}, a_{3}, a_{4}, \ldots, a_{n}$ is also an R-sequence we have, again by induction on $n, t-w a_{2} \in L$. Hence $t \in\left(a_{2} K, L\right)=J$.

Proof of Theorem 1. We may suppose that a_{1} actually occurs in one of the monomials generating I. Let $I_{0}=\left(a_{1}, I\right)$. We study the module R / I in the two steps $R / I_{0}, I_{0} / I$.
(1) R / I_{0} is annihilated by a_{1} and so may be regarded as an S-module where $S=R /\left(a_{1}\right)$. As such, it has the same form relative to a sequence of length $n-1$ (the images of a_{2}, \ldots, a_{n}) which is an R-sequence in any order, as R / I does relative to a_{1}, \ldots, a_{n}. By induction on $n, d_{s}\left(R / L_{0}\right) \leqq n-1$. By Lemma $1, d_{R}\left(R / I_{0}\right) \leqq n$.
(2) I_{0} / I is a cyclic module, generated by a_{1}. The annihilator is the set of all s with $s a_{1} \in I$. Write $I=\left(a_{1} I^{\prime}, J\right)$ where J is generated by monomials in a_{2}, \ldots, a_{n}. Now if $s a_{1} \in I$, then $s a_{1}=y a_{1}+z, y \in I^{\prime}, Z \in J$. Thus $(s-y) a_{1} \in J$. By Lemma 3, $s-y \in J$, whence $s \in\left(I^{\prime}, J\right)$. Hence I_{0} / I is isomorphic to $R /\left(I^{\prime}, J\right)$. By induction on the sum of the degrees of the monomials generating $I, d\left(R /\left(I^{\prime}\right.\right.$, $J)$) $\leqq n$. Hence $d\left(I_{0} / I\right) \leqq n$.

To complete the proof of Theorem 1 it remains only to put these two pieces together with the aid of Lemma 2.
4. Proof of Theorem 2. The plan of proof is the same as soon as we have the appropriate analogue of Lemma 3.

Lemma 4. Suppose a_{1}, \ldots, a_{n} is an R-sequence and $t a_{1} \in J$ where J is generated by monomials in a_{2}, \ldots, a_{n} and contains a power of a_{i} for $i=2$, ..., $n-1$. Then $t \in J$.

It turns out that to give a smooth inductive proof of Lemma 4 it is advisable to prove simultaneously a companion lemma.

Lemma 5. Suppose a_{1}, \ldots, a_{n} is an R-sequence and $t_{n} \in J$ where J is generated by monomials in a_{1}, \ldots, a_{n-1} and contains a power of each. Then $t \in J$.

Proof of Lemmas 4 and 5. We assume both to be true for $n-1$. Furthermore for the given n we make an induction on the sum of the degrees of the monomials generating J.

We first treat Lemma 4. If a_{n} does not occur in a generating monomial, induction applies at once. Otherwise write $J=\left(K, a_{n} L\right)$; here K is generated by monomials in a_{2}, \ldots, a_{n-1} and contains a power of each. Say $t a_{1}=u+a_{n} v$, $u \in K, v \in L$. We pass to the ring $R /\left(a_{1}\right)$, using $*$ for homomorphic image. Then $v^{*} a_{n}^{*} \in K^{*}$, whence $v^{*} \in K^{*}$ by our inductive assumption of Lemma 5 for $n-1$. Thus $v \in\left(a_{1}, K\right)$, say $v=w a_{1}+x(x \in K)$. This implies $w a_{1} \in(K, L)$ whence $w \in(K, L)$ by our second induction. Now $t a_{1}=u+a_{n}\left(w a_{1}+x\right)$, $\left(t-w a_{n}\right) a_{1}=u+x a_{n} \in K, t-w a_{n} \in K$ by Lemma 4 for $n-1, t \in\left(K, a_{n} L\right)=J$.

We proceed to the proof of Lemma 5. This time we write $J=\left(a_{1} K, L\right)$, where L is generated by monomials in a_{2}, \ldots, a_{n-1} and contains a power of each. Say $t a_{n}=u a_{1}+v, u \in K, v \in L$. We look at this equation $\bmod \left(a_{1}\right)$, and apply Lemma 5 for $n-1$. The result is $t \in\left(a_{1}\right), t=w a_{1}$. Then $\left(w a_{n}-u\right) a_{1}$ $=v \in L$. By the case $n-1$ of Lemma 4 , $w a_{n}-u \in L$, so $w a_{n} \in(K, L)$, and $w \in(K, L)$ by the induction on the sum of the degrees of the monomials. Finally $t=a_{1} w \in\left(a_{1} K, L\right)=J$.

Froof of Theorem 2. That $d(R / I) \leqq$ is proved verbatim as in Theorem 1 (except for citing Lemma 4 in place of Lemma 3), and we shall not repeat the proof.

If I contains a power of a_{n}, then by induction we get both $d\left(R / I_{0}\right)$ and
$d\left(I_{0} / I\right)$ to be n, whence $d(R / I)=n$ by Lemma 2. (To be absolutely accurate we should distinguish the case $a_{1} \in I$; but then $I_{0}=I$ and we are finished when we show $\left.d\left(R / I_{0}\right)=n\right)$.
5. Further remarks. We append three concluding remarks.

1. If R is Noetherian, it is possible to sharpen Theorem 2 by showing that $d(R / I)=n-1$ or n and that $d(R / I)=n$ if a_{n} "actually occurs" in I (in a sense easily made precise). Whether this holds in the non-Noetherian case I have been unable to determine.
2. Let us say that a module A has a finite free resolution if there exists an exact sequence

$$
0 \rightarrow F_{n} \rightarrow \cdots \rightarrow F_{0} \rightarrow A \rightarrow 0
$$

with the modules F_{i} free and finitely generated. It is known that the analogues of Lemmas 1 and 2 are valid in the context of finite free resolutions. By tracing through the proofs we then see that under the hypothesis of either Theorem 1 or Theorem $2, R / I$ has a finite free resolution.
3. Lemma 4 has a corollary of some interest. Let m_{1}, m_{2}, \ldots be monomials in the a 's and suppose we have a relation $t_{1} m_{1}+t_{2} m_{2}+\cdots=0$. Suppose further that m_{1} is not a formal multiple of any other of the m 's. Then: $t_{1} \in\left(a_{1}, \ldots, a_{n}\right)$. The deduction of this form Lemma 4 is simple and is left to the reader.

Here is a further consequence which shows that the resemblance between R-sequences and independent indeterminates is more than a resemblance. Let R be a commutative ring with unit containing a field F (with the same unit). Let a_{1}, \ldots, a_{n} be an R sequence in R. Then $F\left[a_{1}, \ldots, a_{n}.\right]$ is a polynomial ring, i.e. the a 's are independent indeterminates over F.

References

[1] F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge, 1916.
[2] D. Rees, The grade of an ideal or module, Proc. Camb. Phil. Soc. 53 (1957), 28-42.

University of Chicago

