ON HEWITT'S τ-MAXIMAL SPACES

MURRAY R. KIRCH*

(Received 25 May 1970; revised 5 August 1970)

Communicated by B. Mond

Let τ be any cardinal number. Edwin Hewitt [3] has defined a topological space (X, \mathcal{T}) to be τ -maximal if $\Delta(\mathcal{T}) \geq \tau$ and $\Delta(\mathcal{T}') < \tau$ whenever \mathcal{T}' is a topology for X which is strictly stronger that \mathcal{T} (Δ denotes dispersion character, the least cardinality of a nonempty open set). The notion of an \aleph_0 -maximal space was introduced independently by Katětov [4]. In this note we show that the concept of τ -maximality is essentially independent of τ by proving the following generalization of a result which appears in Bourbaki [2, 179–180].

THEOREM 1. Let τ be any infinite cardinal number and let (X, \mathscr{F}) be a topological space which has dispersion character $\geq \tau$. Then the following are equivalent:

(a) (X, \mathcal{T}) is τ -maximal;

(b) (X, \mathcal{T}) is extremally disconnected and every dense set in (X, \mathcal{T}) is open:

(c) Every dense-in-itself set in (X, \mathcal{T}) is open;

(d) Every topology for X which is strictly stronger than \mathcal{T} has isolated points (i.e. (X, \mathcal{T}) is 2-maximal).

We do not assume any separation axioms. In particular, by extremally disconnected we mean only that the closure of each open set is open. The closure and interior operators in the space (X, \mathcal{F}) will be denoted by $cl_{\mathcal{F}}$ and $int_{\mathcal{F}}$, respectively.

PROOF. Suppose (X, \mathscr{F}) is τ -maximal. There exists an extremally disconnected topology for X which is stronger than \mathscr{F} and which has the same dispersion character as \mathscr{F} [5]. The τ -maximality of (X, \mathscr{F}) implies that this extremally disconnected topology must be equal to \mathscr{F} . Using a technique suggested by [1] we now show that each dense set in (X, \mathscr{F}) is open. First observe that if S is a subset of X such that card $(X - S) < \tau$ then $\Delta(\mathscr{F}_S) = \Delta(\mathscr{F})$ and hence $\mathscr{F}_S = \mathscr{F}$. (Here \mathscr{F}_S denotes the simple extension of \mathscr{F} by S [6], i.e. the topology for X which has $\mathscr{F} \cup \{S\}$ as a subbase.) Thus S must be open in (X, \mathscr{F}) . It follows that

* Partially supported by a SUNY-Research Foundation Faculty Research Fellowship.

Murray R. Kirch

every subset of X with cardinality strictly less than τ must be closed in (X, \mathcal{T}) ; therefore no dense set in a τ -maximal space can have cardinality strictly less than τ . Next we observe that τ -maximality is inherited by open subspaces. Now let D be dense in (X, \mathcal{T}) and let G be a nonempty open set in (X, \mathcal{T}_D) . Then there exist sets E and F which are open in (X, \mathcal{T}) such that $G = E \cup (F \cap D)$. Clearly if E is nonempty then

$$\operatorname{card}(G) \geq \operatorname{card}(E) \geq \Delta(\mathscr{T}) \geq \tau.$$

If E is empty then $F \cap D$ must be nonempty. But in this case $F \cap D$ is dense in the τ -maximal space consisting of F with the relative topology of (X, \mathcal{T}) and hence card $(F \cap D) \ge \tau$. Thus, in either case, card $(G) \ge \tau$ and hence $\Delta(\mathcal{T}_D) \ge \tau$. But \mathcal{T}_D is stronger than the τ -maximal topology \mathcal{T} ; therefore $\mathcal{T}_D = \mathcal{T}$ and D is open in (X, \mathcal{T}) . Hence we have shown that condition (a) implies condition (b).

Now assume that condition (b) holds. Let A be any dense-in-itself set in (X, \mathcal{T}) and let

$$K = A - \operatorname{cl}_{\operatorname{\mathscr{T}}}\operatorname{int}_{\operatorname{\mathscr{T}}} A.$$

Clearly $\operatorname{int}_{\mathscr{T}} K$ is empty. Hence K is closed in (X, \mathscr{T}) since its complement is dense. Similarly every subset of K is closed, i.e. K is totally isolated. Let x be any point in K. Then there exists an open set W in (X, \mathscr{T}) such that $W \cap K = \{x\}$. Thus

$$W \cap (X - \operatorname{cl}_{\operatorname{\mathcal{T}}}\operatorname{int}_{\operatorname{\mathcal{T}}} A)$$

is open in (X, \mathcal{F}) and its intersection with A is simply $\{x\}$, contradicting the assumption that A is dense-in-itself. Therefore K must be empty and hence $A \subset cl_{\mathcal{F}} int_{\mathcal{F}} A$. This implies that

$$A = (\operatorname{cl}_{\mathscr{F}}\operatorname{int}_{\mathscr{F}} A) \cap (A \cup (X - \operatorname{cl}_{\mathscr{F}} A)).$$

But $cl_{\mathcal{F}}int_{\mathcal{F}}A$ is open since (X,\mathcal{F}) is extremally disconnected and $A \cup (X - cl_{\mathcal{F}}A)$ is open since it is dense. Thus A is open in (X,\mathcal{F}) and we have shown that condition (b) implies condition (c).

The validity of the remaining implications is clear.

The following result improves upon a theorem of Hewitt on the existence of τ -maximal spaces.

THEOREM 2. Let (X, \mathcal{T}) be a topological space with infinite dispersion character. Then there exists a $\Delta(\mathcal{T})$ -maximal topology \mathcal{T}' for X which is stronger than \mathcal{T} and such that $cl_{\mathcal{T}}S = cl_{\mathcal{T}}int_{\mathcal{T}}cl_{\mathcal{T}}S$ whenever S is open in (X, \mathcal{T}') .

PROOF. Let $\mathscr{F}_0 = \{E \subset X : \operatorname{card} (X - E) < \Delta(\mathscr{T})\}$. An application of Zorn's lemma enables one to obtain a filter \mathscr{F} of sets which are dense in (X, \mathscr{T}) such that $\mathscr{F}_0 \subset \mathscr{F}$ and \mathscr{F} is not properly contained in any other filter of \mathscr{T} -dense sets. Let \mathscr{T}'' be the topology for X which has $\mathscr{T} \cup \mathscr{F}$ as a subbase and define

46

On Hewitt's τ -maximal spaces

$$\mathscr{B} = \{ G \cap D \colon G \in \mathscr{T} \text{ and } D \in \mathscr{F} \}.$$

Since \mathscr{B} is clearly closed under finite intersections and $\mathscr{T} \cup \mathscr{F} \subset \mathscr{B} \subset \mathscr{T}''$, it follows that \mathscr{B} is a base for \mathscr{T}'' . We shall prove, in fact that

(1)
$$\mathcal{T}'' = \mathcal{B}$$

First observe that every member of \mathscr{F} meets every member of \mathscr{B} and hence must be dense as well as open in (X, \mathscr{T}'') . Thus every \mathscr{T}'' -dense set must meet each member of \mathscr{F} in a \mathscr{T}'' -dense (and hence \mathscr{T} -dense) set. The maximality of \mathscr{T} implies that each \mathscr{T}'' -dense set is a member of \mathscr{F} and hence

(2) each
$$\mathscr{T}''$$
-dense set is \mathscr{T}'' -open.

Let S be any \mathscr{T}'' -open set and let $x \in X - \operatorname{cl}_{\mathscr{T}''}S$. Since \mathscr{B} is a base for \mathscr{T}'' , there exist $G \in \mathscr{T}$ and $D \in \mathscr{F}$ such that $x \in G \cap D$ and $G \cap D \cap S$ is empty. Thus $G \cap S$ must be empty since it is a \mathscr{T}'' -open set which does not meet the \mathscr{T}'' -dense set D. But G is a \mathscr{T} -neighborhood of x and therefore $x \notin \operatorname{cl}_{\mathscr{T}}S$. Thus we have shown that $\operatorname{cl}_{\mathscr{T}''}S = \operatorname{cl}_{\mathscr{T}}S$ for each $S \in \mathscr{T}''$. Hence for each $S \in \mathscr{T}''$ we have

$$\begin{aligned} X - \operatorname{int}_{\mathscr{F}} \operatorname{cl}_{\mathscr{F}} S &= \operatorname{cl}_{\mathscr{F}} \operatorname{int}_{\mathscr{F}} (X - S) = \operatorname{cl}_{\mathscr{F}''} \operatorname{int}_{\mathscr{F}} (X - S) \subset \operatorname{cl}_{\mathscr{F}''} \operatorname{int}_{\mathscr{F}''} (X - S) \\ &= X - \operatorname{int}_{\mathscr{F}''} \operatorname{cl}_{\mathscr{F}''} S \end{aligned}$$

and therefore we have

$$\operatorname{int}_{\mathcal{T}'}\operatorname{cl}_{\mathcal{T}'} S \subset \operatorname{int}_{\mathcal{T}}\operatorname{cl}_{\mathcal{T}} S.$$

Hence

$$S = \operatorname{int}_{\mathscr{T}'} S \subset \operatorname{int}_{\mathscr{T}'} \operatorname{cl}_{\mathscr{T}'} S \subset \operatorname{int}_{\mathscr{T}} \operatorname{cl}_{\mathscr{T}} S.$$

Define $D' = S \cup (X - \operatorname{cl}_{\mathcal{T}''}S)$. Clearly D' is \mathcal{T}'' -dense and hence, as we have shown, must be a member of \mathcal{F} . But $S = D' \cap \operatorname{int}_{\mathcal{T}}\operatorname{cl}_{\mathcal{T}}S$ and therefore S is a member of \mathcal{B} . Thus condition (1) has been established. One can easily show that \mathcal{T} and \mathcal{T}'' have the same dispersion character by using condition (1) and the fact that $\mathcal{F}_0 \subset \mathcal{F}$. Let \mathcal{T}' be an extremally disconnected topology for X such that the following hold (see [5]):

(3)
$$\mathcal{T}'$$
 is stronger that \mathcal{T}'' ,

(4)
$$S \subset cl_{\mathcal{T}'} int_{\mathcal{T}'} S$$
 whenever S is open in (X, \mathcal{T}') .

Conditions (3) and (4) imply that \mathscr{T}'' and \mathscr{T}' have the same dispersion character. Conditions (2) and (3) imply that each \mathscr{T}' -dense set is \mathscr{T}' -open. Thus, by Theorem 1, \mathscr{T}' is a $\Delta(\mathscr{T})$ -maximal topology which is stronger than \mathscr{T} . Now let S be any open set in (X, \mathscr{T}') . By condition (1) we may select $G \in \mathscr{T}$ and $D \in \mathscr{F}$ such that $\operatorname{int}_{\mathscr{T}'}S = G \cap D$. Then we obtain

$$S \subset cl_{\mathscr{F}'}int_{\mathscr{F}'}S = cl_{\mathscr{F}'}(G \cap D) \subset cl_{\mathscr{F}}(G \cap D) = cl_{\mathscr{F}}G = cl_{\mathscr{F}}int_{\mathscr{F}}G$$

 $\subset \operatorname{cl}_{\mathscr{F}} \operatorname{int}_{\mathscr{F}} \operatorname{cl}_{\mathscr{F}} G \subset \operatorname{cl}_{\mathscr{F}} \operatorname{int}_{\mathscr{F}} \operatorname{cl}_{\mathscr{F}} S.$

Thus $S \subset cl_{\mathcal{F}}int_{\mathcal{F}}cl_{\mathcal{F}}S$ which is equivalent to $S = cl_{\mathcal{F}}int_{\mathcal{F}}cl_{\mathcal{F}}S$.

References

- D. R. Anderson, 'On connected irresolvable Hausdorff spaces', Proc. Amer. Math. Soc. 16 (1965), 463-466.
- [2] N. Bourbaki, Éléments de Mathématique, Topologie Générale Book III, Chap. 1 (Hermann, Paris, 1961).
- [3] E. Hewitt, 'A problem of set-theoretic topology', Duke Math. J. 10 (1943), 309-333.
- [4] M. Katětov, 'On topological spaces containing no disjoint dense sets', Mat. Sb. (N.S.) 21 (1947), 3-12.

[5] M. R. Kirch, 'Weakly equivaent topologies', Bull. Acad. Polon. Sci. (to appear).

[6] N. Levine, 'Simple extensions of topologies', Amer. Math. Monthly 71 (1964), 22-25.

State University of New York Buffalo

U.S.A.