whence

$$
\epsilon^{-n z}=\frac{d v}{d z} ;
$$

giving,

$$
\int 10^{-10^{2}} e^{-n z} d z=-10^{-10 s^{2}} \frac{e^{-n z}}{n}-\frac{\left(\log _{e} 10\right)^{2}}{n} \int 10^{-10^{8} e^{-\left(n-1 \log _{e^{101}}\right.} . d z . ~ . ~}
$$

I am, Sir,
Your very obedient servant,
London, 12 June 1873.
W. M. MAKEHAM.

Erratum.-In the paper "On the Integral of Gompertz's Function," above referred to, there is a misprint. For the second formula on p. 309,

$$
\log \frac{1}{g^{x^{x}} \epsilon^{-(a+\delta) x}} \int_{x}^{\infty} g^{q^{x}} \epsilon^{-(a+\delta)} . d x
$$

should be read,

$$
\log \frac{1}{g^{q^{x}} \varepsilon^{-\{a+\delta x x}} \int_{x}^{\infty} g_{q^{x}}^{q^{x}} \varepsilon^{-(a+\delta) x} . d x
$$

On the relation beiween the net premiun and the RATE OF INTEREST.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-In the current volume of the Journal, p. 227, I gave a demonstration in reference to the relation between the value of a policy and the rate of interest according to which it is calculated, and in the present letter I propose to examine in a similar way the relation between the net premium and the rate of interest.

$$
\text { We have } \begin{aligned}
\mathrm{P}_{x} & =\frac{1}{1+a_{x}}-(1-v) \\
\therefore \quad \frac{d \mathrm{P}}{d v} & \left.=\frac{-\frac{d a}{d v}}{(1+a)^{2}}+1 \text { (omitting the subscript } x\right), \\
& =\frac{(1+a)^{2}-\frac{d a}{d v}}{(1+a)^{2}}
\end{aligned}
$$

Thus, since P_{x} increases or decreases, when v increases, according as $\frac{d \mathrm{P}}{d v}$ is positive or negative, we have only to examine whether

$$
(1+a)^{2}>\text { or }<\frac{d a}{d v}
$$

Now, $\quad(1+a)^{2}=\left(1+a_{x}\right)+p_{x} v\left(1+a_{x}\right)+{ }_{2} p_{x} v^{2}\left(1+a_{x}\right)+\ldots$.

1873.] Formula for the Market Value of a Complete Annuity. 447

and as shown in my former letter,
or

$$
\begin{aligned}
v \frac{d a}{d v} & =a_{x}+p_{x} v a_{x+1}+{ }_{2} p_{x} v^{2} a_{x+2}+\ldots \\
\frac{d a}{d v} & =\frac{a_{x}}{v}+\frac{p_{x} v a_{x+1}}{v}+\frac{{ }_{2} p_{x} v^{2} a_{x+2}}{v}+\ldots
\end{aligned}
$$

If, now, a_{x+1}, a_{x+2}, \ldots are none of them greater than a_{x},
then $\quad \frac{d a}{\bar{d} v}<\frac{a_{x}}{v}+\frac{p_{x} v a_{x}}{v}+\frac{{ }_{2} p_{x} v^{2} a_{x}}{v}+\ldots$.
Hence, under the same condition, we shall certainly have
if

$$
\begin{aligned}
&(1+a)^{2}> \frac{d a}{d v} \\
&\left(1+a_{x}\right)+p_{x} v\left(1+a_{x}\right)+{ }_{2} p_{x} v^{2}\left(1+a_{x}\right)+\ldots \\
&>\frac{a_{x}}{v}+\frac{p_{x} v a_{x}}{v}+\frac{2 p_{x} v^{2} a_{x}}{v}+\ldots
\end{aligned}
$$

that is, if

$$
1+a_{x}>\frac{a_{x}}{v},
$$

or

$$
i \cdot \frac{1}{i}+a_{x}>a_{x}+i a_{x},
$$

$$
\frac{1}{i}>a_{x}
$$

that is, if the value of a perpetuity of 1 is greater than the value of a life annuity of 1 , the rate of interest being the same in both cases.

In other words, since the value of the perpetuity is necessarily the greater, $\frac{d \mathrm{P}}{d v}$ is positive; therefore P_{x}, the net premium, increases as the rate of interest decreases, provided that a_{x} is not less than a_{x+1}, a_{x+2}, \ldots.

I am, Sir,
Your obedient servant,
18 Lincoln's Inn Fields,
W. SUTTON.

1 March 1873.

ON THE FORMULA FOR THE MARKET VALUE OF A COMPLETE ANNUITY.

To the Editor of the Journal of the Institute of Actuaries.
Str,-The usefulness of the expression for the value of a life annuity in terms of d and p, first proposed by the late Griffith Davies, is obvious, whether from a theoretical or practical point of view. From the theoretical, in that it shows the elements of which the value consists; and from the practical, in that it is of universal application, equally valid whether p and d be based on the same rate of interest or not, or when p is a purely arbitrary quantity.

