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Abstract

Background. The search for relevant biomarkers of major depressive disorder (MDD) is
challenged by heterogeneity; biological alterations may vary in patients expressing different
symptom profiles. Moreover, most research considers a limited number of biomarkers,
which may not be adequate for tagging complex network-level mechanisms. Here we studied
clusters of proteins and examined their relation with MDD and individual depressive
symptoms.
Methods. The sample consisted of 1621 subjects from the Netherlands Study of Depression
and Anxiety (NESDA). MDD diagnoses were based on DSM-IV criteria and the Inventory
of Depressive Symptomatology questionnaire measured endorsement of 30 symptoms.
Serum protein levels were detected using a multi-analyte platform (171 analytes, immuno-
assay, Myriad RBM DiscoveryMAP 250+). Proteomic clusters were computed using weighted
correlation network analysis (WGCNA).
Results. Six proteomic clusters were identified, of which one was nominally significantly
associated with current MDD ( p = 9.62E-03, Bonferroni adj. p = 0.057). This cluster contained
21 analytes and was enriched with pathways involved in inflammation and metabolism
[including C-reactive protein (CRP), leptin and insulin]. At the individual symptom level,
this proteomic cluster was associated with ten symptoms, among which were five atypical,
energy-related symptoms. After correcting for several health and lifestyle covariates,
hypersomnia, increased appetite, panic and weight gain remained significantly associated
with the cluster.
Conclusions. Our findings support the idea that alterations in a network of proteins involved
in inflammatory and metabolic processes are present in MDD, but these alterations map
predominantly to clinical symptoms reflecting an imbalance between energy intake and
expenditure.

Introduction

Major depressive disorder (MDD) is a leading cause of disability worldwide, with the number
of people affected estimated at 322 million (Institute for Health Metrics and Evaluation, 2018).
Treatment often includes antidepressant medication, although efficacy is mild to moderate
(Murrough & Charney, 2012). Many studies concentrate on attempts to further unravel the
molecular mechanisms underlying MDD in order to identify biomarkers that could be used
as new targets for treatment. Previous large meta-analyses showed that MDD is associated
with immunological and metabolic dysregulations as marked by increased levels of inflamma-
tory markers (interleukin (IL)-6, C-reactive protein (CRP), tumor necrosis factor (TNF)-α)
and metabolic markers (triglycerides, insulin sensitivity, adiposity) (Dowlati et al., 2010;
Hiles, Lamers, Milaneschi, & Penninx, 2017; Howren, Lamkin, & Suls, 2009; Kan et al.,
2013; Köhler et al., 2017; Pan et al., 2012; Smith, Au, Ollis, & Schmitz, 2018; Vancampfort
et al., 2014), although meta-analytic estimates were of small effect size and characterized by
high heterogeneity.

The association with biological dysregulations may vary as a function of depression hetero-
geneity; patients with the same MDD diagnosis endorse very different symptom profiles that,
in turn, may be differentially related to underlying biological dysregulations. For example,
MDD with anxious distress has been associated with increased immunological alterations,
more cortical thinning, and corticolimbic dysfunctions as compared with depression without
anxious distress (Gaspersz, Nawijn, Lamers, & Penninx, 2018). Also, recent evidence suggests
that the link with adverse inflammatory and metabolic dysregulations seems stronger in
patients reporting atypical depressive symptoms characterized by altered energy homeostasis,
such as hypersomnia, increased appetite, weight gain, energy loss and leaden paralysis (Glaus
et al., 2013; Lamers et al., 2020, 2013; Milaneschi et al., 2016; van Reedt Dortland, Giltay, van
Veen, van Pelt, et al., 2010; van Reedt Dortland, Giltay, van Veen, Zitman, et al., 2010).
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Building on this evidence, a recent hypothesis postulates the exist-
ence of an ‘immuno-metabolic depression’ (IMD) dimension
emerging from the clustering of atypical, energy-related clinical
symptoms with inflammatory and metabolic dysregulations
(Milaneschi, Lamers, Berk, & Penninx, 2020).

However, which symptoms best identify depression subtypes,
and which biomarkers best tag the underlying mechanism,
remains to be studied further. Furthermore, most previous
research examining biological dysregulations in MDD and related
individual symptoms considered only a single or few biomarkers,
which may not be sufficient to capture the complexity of bio-
logical mechanisms. We hypothesize that networks of biomarkers
may better capture complex interactions underlying biological
alterations than single biomarkers.

We performed cluster analysis using weighted correlation net-
work analysis (WGCNA) (Langfelder & Horvath, 2008), which
has been applied in the past to gene expression (Jansen et al.,
2016) and proteomic data (Zhang et al., 2018) to reveal network-
level mechanisms (Vella, Zoppis, Mauri, Mauri, & Di Silvestre,
2017). For example, MacDonald and colleagues used WGCNA
to identify alterations in the expression of glutamate signaling
pathway proteins in schizophrenia patients (MacDonald et al.,
2015). In the present study, we used a proteomic assay with 171
markers that quantifies serum proteins involved in hormonal,
immunological and metabolic pathways. We investigate which
clusters of these proteins are most strongly associated to MDD
and which depressive symptoms are major drivers of these
associations.

Methods

Sample description

The data originated from the Netherlands Study of Depression
and Anxiety (NESDA), a longitudinal cohort study on factors
that influence the development and course of anxiety and depres-
sive disorders (Penninx et al., 2008). The baseline sample of the
NESDA cohort consists of 2981 participants (age 18–65) with
and without (a history of) depressive or anxiety disorders. The
subjects were recruited from the general population (N = 564),
primary care (N = 1610) and specialized mental health care
(N = 807). All participants completed the baseline assessment,
consisting of a face-to-face interview, written questionnaires and
biological measurements. The research protocol was approved
by the Ethical Committee of the participating centers, and all
subjects provided written informed consent. Proteomic analytes
were determined in the subset of NESDA participants who
participated in both baseline and 2-year follow-up assessments
and for whom sufficient serum (∼1 ml) from the baseline
assessment was available (N = 1837). This data has been used
before to study associations with depression (Bot et al., 2015)
and depression subtypes (Lamers et al., 2016).

Major depressive disorder and depressive symptoms

The presence of depressive disorders (MDD and dysthymia) and
anxiety disorders (panic disorder, social phobia, generalized anx-
iety disorder and/or agoraphobia) was established using the
Composite Interview Diagnostic Instrument (CIDI, version 2.1,
World Health Organization, 1997). For this study, we removed
participants with lifetime anxiety disorder and lifetime dysthymia
from the healthy controls. This lead to a selection of 1621

samples: healthy controls (no depressive or anxiety disorder in
a lifetime, N = 426), remitted MDD (lifetime MDD, but not in
past 6 months, N = 483) and current MDD (MDD in past 6
months, N = 712). The severity of specific depressive symptoms
in the week before the baseline interview was measured using
the 30-item self-report Inventory of Depressive Symptomatology
(IDS-SR30), which includes core symptoms of MDD, melancholic
and atypical features, and other commonly associated symptoms
(Rush, Gullion, Basco, Jarrett, & Trivedi, 1996). The specific
depressive symptoms and a measure for the overall depression
severity (total IDS score) – defined as the sum of the score of
all items – were derived from the IDS. To study the individual
symptoms, the four answer categories of the IDS-SR30 were
dichotomized, that is, levels 0 and 1 code for low and levels 2
and 3 for high symptom endorsement, as has been done before
(Khan et al., 2006). For each symptom, a 4-level factor was cre-
ated: (1) controls, (2) remitted MDD, (3) current MDD with
low symptom endorsement and (4) current MDD with high
symptom endorsement. The five energy-related symptoms as
identified with the IDS questionnaire are increased appetite,
increased weight, energy loss, leaden paralysis and hypersomnia
(Lamers et al., 2020; Milaneschi et al., 2020)

Proteomic analytes

Protein measures have been described in detail previously (Bot
et al., 2015; Lamers et al., 2016). In short, after an overnight
fast, blood samples were taken in five research sites
(Amsterdam, Leiden, Groningen, Emmen and Heerenveen), and
stored at −80°C. The samples were shipped on dry ice to a
Clinical Laboratory Improvement Amendments-certified labora-
tory (Myriad RBM; Austin, TX, USA). A panel of 243 analytes
(Myriad RBM DiscoveryMAP 250+) involved in various hormo-
nal, immunological, metabolic and neurotrophic pathways were
assessed in serum using multiplexed microbead immunoassays.
Three duplicate quality controls with different protein concentra-
tions were included for each batch. Average inter- and intra-assay
variability were respectively 10.6% (range 5.5–32.5%) and 5.6%
(range 2.5–15.8%). Proteomic analytes with more than 30% miss-
ing data were excluded from the analysis, leaving 171 analytes for
current analyses (online Supplementary Table S1).

Covariates

Covariates were a priori selected based on previous research and
include batch number (total of 26 batches), research site, sex,
age, years of education and various somatic and lifestyle variables:
number of self-reported chronic diseases under treatment, alcohol
consumption (drinks/week), current smoking status (yes/no),
physical activity and body mass index (BMI). Physical activity
was measured with the International Physical Activity
Questionnaire (Craig et al., 2003) and expressed as metabolic
equivalent minutes per week (Lamers et al., 2016).

Statistical methods

In line with previous studies (Bot et al., 2015; Lamers et al., 2016),
missing values were imputed by the median value of the corre-
sponding analyte. Values outside the range of detection were
imputed with the upper or lower limit of detection. Prior to ana-
lysis, all analytes were quantile-normal transformed to stabilize
the variance.
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Clusters of correlated proteins were identified using correlation
networks constructed with WGCNA (version 1.67) package in the
R programming environment. A detailed description of the algo-
rithm can be found elsewhere (Langfelder & Horvath, 2008).
WGCNA co-expression networks were constructed using the
unsigned similarity measure, where the connection strength
between two proteins reflected the absolute value of their correl-
ation regardless of positive or negative direction.

The Pearson correlation matrix was raised to the fourth power
to meet the scale-free topology criterium. Clusters of analytes
were detected using hierarchical clustering, where a dendrogram
is constructed with branches corresponding to the clusters. The
minimum number of analytes per cluster was set to five. The
other settings remained at default values. The eigenprotein, repre-
senting the weighted average level of the corresponding cluster,
was calculated for each of the identified clusters, defined as the
first principal component of the cluster. Furthermore, the import-
ance of each analyte in a cluster was quantified by the ‘module
membership’ as computed by WGCNA, which is defined as the
correlation between the circulating levels of the individual pro-
teins of the cluster and its eigenprotein. Next, the biological func-
tions of the proteins contained in each of the clusters were
investigated. We studied whether the identified clusters were
enriched for categories from the Gene Ontology Biological
Process (GO), Reactome, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and BioCarta databases using the over-
representation analysis of ConsensusPathDB (FDR < 0.1)
(Kamburov et al., 2011; Kamburov, Wierling, Lehrach, &
Herwig, 2009). In this analysis, all included proteomic analytes
(n = 171) were used as the background set.

First, the association of each identified cluster with current
MDD was assessed. These results were used as a criterion for
selecting cluster(s) to investigate these proteins in more detail.
Linear models were constructed with each of the cluster eigenpro-
teins as dependent variable and MDD status (3 level factor: con-
trol (reference), remitted MDD and current MDD) as an
independent variable. We restricted our attention to the differ-
ences between current MDD subjects and controls, as previous
research showed that proteomic differences are largest for subjects
with a current – and not remitted – state of depression (Bot et al.,
2015). Next, the clusters were included in a symptom-level ana-
lysis, where the relationship with the individual items of the
IDS-SR30 was explored. Linear models were constructed with
each of the cluster eigenproteins as a dependent variable and
the IDs items (a four-level factor: (1) controls, (2) remitted
MDD, (3) current MDD with low symptom endorsement and
(4) current MDD with high symptom endorsement) as an inde-
pendent variable. From these models, we performed tests compar-
ing the controls v. the current MDD group with high symptom
endorsement. The obtained p values were adjusted for multiple
testing using the Bonferroni correction, where the p values are
multiplied by the number of tests considered. Thus, for the ana-
lysis of current MDD with high symptom endorsement v. control
the p values are multiplied by the number of identified clusters,
and for the symptom-level analysis by the number of symptoms
multiplied by the number of clusters that were significantly asso-
ciated with current MDD in the main analysis. A significance
level of 5% was used.

All linear models were adjusted for batch, research site, sex,
age, and years of education. To investigate the effect of other
health and lifestyle factors, the models were additionally adjusted
for the number of self-reported chronic diseases, smoking status,

alcohol consumption, and physical activity, in a separate analysis.
The effect of BMI was studied by an additional correction to the
health and lifestyle adjusted model.

Finally, we performed a stability analysis on the selected clus-
ters by repeating the network analysis (1000 iterations) on the
protein data of resampled sets of the original sample. For every
iteration, the original sample was divided into two random sub-
sets of size 811 and 810, and WGCNA was performed on each
subset. For each network, the cluster that has the most overlap
with the (original) current MDD-associated cluster was studied.
Furthermore, the number of times each of the 171 proteins was
contained in this cluster was reported.

Results

Sample characteristics

The participants (N = 1621 subjects) included in the analysis are
characterized in Table 1. As compared to controls, subjects with
current MDD (712 cases) were more likely to be female, had
higher depression severity, poorer lifestyle profiles – i.e. higher
BMI, more smoking, higher alcohol intake, more chronic diseases
and lower physical activity – and were less educated.

Proteomic clusters

We identified six clusters of correlated proteins, using WGCNA
(online Supplementary Table S2). For each cluster, we assessed
the pathways that were enriched, using the 171 included proteins
as reference (FDR<5%, online Supplementary Table S3). Cluster 1
contained 24 proteins and was enriched with 160 pathways
involved in cytokine pathways, cell migration (e.g. chemotaxis),
cell response and cell signaling. Cluster 2 (21 proteins) was
enriched with 12 pathways, mainly pathways of the innate
immune system and metabolic processes. The third cluster was
enriched with 26 pathways involved in (myeloid) leukocyte
immune response. Cluster 4 (10 proteins) was enriched with path-
ways of various metabolic processes (175 pathways) mainly driven
by five apolipoproteins (ApoA1, ApoA2, ApoC1, ApoC3, ApoE).
Cluster 5 consisted of seven proteins and was enriched with 17
multiple metabolic pathways. Lastly, cluster 6 (six proteins) was
enriched with adaptive immune system pathways, especially
T-cell mediated immunity (32 pathways). More than half of the
proteins (90 of the 171) were not included in any cluster, meaning
that these were not strongly connected with other groups of ana-
lytes that met the minimal cluster size of five.

Clusters v. MDD

Only one of the identified clusters (cluster 2) was significantly
associated with current MDD in a model including batch,
research site, sex, age and years of education ( p = 9.62E-03,
Fig. 1, online Supplementary Table S4), although the Bonferroni
corrected p-value only reached borderline significance (adj. p =
0.057). The other clusters were not significantly associated with
current MDD (adj. p > 0.3). We, therefore, chose to only focus
on the cluster with the strongest association with current MDD
in subsequent analyses.

Cluster 2 contained 21 proteomic analytes involved in cell
communication and signal transduction (leptin, insulin-like
growth factor binding protein (IGFBP)-1, IGFBP2, fatty acid-
binding protein-adipocyte (FABPa), insulin, C peptide,
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vitronectin, fetuin A, urokinase plasminogen activator (UPA),
vitamin K-dependent protein S), immune response (CRP, com-
plement C3, haptoglobin), metabolism (adiponectin, glutathione
S-transferase (GSTa), phosphoserine aminotransferase (PSAT),
serum amyloid p component (SAP), tissue plasminogen activator
(TPA), cathepsin D, prostasin) and lipid transport (apolipopro-
tein B). Moreover, many of these proteins play a role in inflamma-
tion or energy balance. The correlations between the proteins in
cluster 2 showed that some proteins (adiponectin, IGFBP1,
IGFBP2 and UPA) were negatively correlated with respect to
the other analytes of the cluster (online Supplementary Fig. S1).
The average absolute correlation between the 21 proteins in the
cluster was 0.265. In order to quantify the relevance of each indi-
vidual protein on cluster 2, we report the correlation between the
proteins and cluster 2 eigenprotein (Table 2). SAP, complement
C3, C peptide and insulin had the (absolute) highest correlation,
indicating that these proteins play an important role in the cluster.
There were four proteins that had a negative correlation with the
cluster (adiponectin, IGFBP1, IGFBP2 and UPA), which is in line
with the intercorrelations between the analytes within the cluster.

Clusters v. depressive symptoms

Next, the association with each of the 28 selected symptoms from
the IDS was investigated, while correcting for batch, research site,
sex, age and years of education. As compared to controls, current
MDD subjects with a high endorsement of the following symp-
toms had a significantly higher level of cluster 2: increased appe-
tite ( p = 3.79–08), hypersomnia ( p = 4.79 × 10−5), leaden
paralysis ( p = 5.34 × 10−5), panic ( p = 6.14 × 10−5), difficulty fall-
ing asleep ( p = 6.75 × 10−5), weight gain ( p = 7.56 × 10−5), other
bodily symptoms ( p = 7.74 × 10−5), pain ( p = 3.12 × 10−4),
reduced energy level ( p = 8.72 × 10−4), and mood related to
time of day ( p = 1.55 × 10−3) (Fig. 2 and online Supplementary
Table S5). When comparing the expression of the cluster between
current MDD subjects with low symptom endorsement of each
symptom and healthy controls, there were no significant associa-
tions (online Supplementary Fig. S2 and Table S6). As post-hoc
analysis, we repeated the symptom-level analysis for the remain-
ing five clusters (online Supplementary Table S7). There were
no significant associations between the five clusters and any of
the symptoms, after Bonferroni correction.

Stability of the cluster

The stability of cluster 2 was investigated by repeating the
WGCNA network analysis on the protein data of resampled
sets of the original sample. For 1000 iterations, we divided the ori-
ginal sample into two random subsets and WGCNA was per-
formed on both subsamples, resulting in 2000 sets of clusters.
For each set, the cluster that had the most overlap with cluster
2 was investigated. The average size of this cluster was 18.8 (S.D.
= 4.7) and the mean overlap with cluster 2 was 15.2 (S.D. = 3.9),
out of 21 proteins. This shows that the identified cluster is highly
stable and not dependent on a specific subsample. The number of
iterations each protein was contained in the most-overlapping
cluster was used to identify the proteins that are important and
stable in the MDD-associated cluster. Especially SAP, C3, CRP,
Cpep, insulin, FABPa, leptin, HP and IGFBP2 appeared to play
an important role, since these proteins were contained in the lar-
gest overlapping cluster in more than 90% of the iterations. Also
VN, fetuin A, IGFBP1, UPA, APN, VKDPS and ApoB were con-
tained in this cluster in more than 50% of the iterations (Fig. 3,
online Supplementary Table S8). TPA, GSTa, prostasin and cathe-
psin D appeared to be the least stable proteins of cluster 2.

Health and lifestyle factors

To investigate the influence of health and lifestyle factors on the
relationship between the clusters and MDD status, the following
covariates were added to the models: the number of self-reported
chronic diseases, alcohol consumption, smoking and physical
activity. None of the clusters was significantly associated with cur-
rent MDD when adding these variables (online Supplementary
Table S4). However, in the symptom-level analyses, the significant
relation between the following symptoms and cluster 2 remained
(online Supplementary Table S5): increased appetite ( p = 8.39 ×
10−7), weight gain ( p = 9.70 × 10−4), panic ( p = 1.11 × 10−3) and
hypersomnia ( p = 1.50 × 10−3). The additional correction for
BMI in the model that investigated the relationship between
MDD status and the clusters led to a large change in the corre-
sponding regression coefficients (online Supplementary
Table S4). In the symptom level analysis, none of the results
remained significant after correcting for BMI (online
Supplementary Table S5).

Table 1. Sample characteristics.

Current MDD Remitted MDD Healthy control

p valuen = 712 n = 483 n = 426

Female (n, %) 477 (67.0) 341 (70.6) 258 (60.6) 5.42 × 10−3

Age, years (mean, S.D.) 41.4 (12.3) 43.3 (12.8) 38.9 (14.8) 1.74 × 10−5

Education, years (mean, S.D.) 11.6 (3.2) 12.3 (3.2) 12.7 (3.1) 4.28 × 10−9

Body mass index, kg/m2 (mean, S.D.) 26 (5.5) 25.8 (4.9) 24.8 (4.6) 3.34 × 10−4

Chronic diseases (mean nr, S.D.) 0.7 (0.9) 0.6 (0.9) 0.4 (0.7) 2.36 × 10−8

Physical activity, 1000 met/day (mean, S.D.) 3.36 (3.06) 3.99 (3.23) 3.96 (3.29) 1.76 × 10−5

Current smoker (n, %) 295 (41.4) 181 (37.5) 120 (28.2) 3.88 × 10−5

Alcohol intake (mean nr drinks, S.D.) 5 (5.5) 4.9 (4.4) 4.7 (3.6) 3.45 × 10−2

Depression severity, IDS score (mean, S.D.) 31.9 (12.1) 17.6 (10.1) 8.3 (7.2) 2.20 × 10−16

p values are from a chi-square test for categorical variables or the Kruskal–Wallis test for continuous variables.
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Discussion

By applying WGCNA on proteomic assay data, we identified six
clusters of correlated proteins, from which one cluster was nom-
inally associated with current MDD. This cluster contained 21
proteins - including leptin, insulin and CRP - mainly involved
in inflammation and metabolism. The cluster was associated
with ten depressive symptoms, among which five energy-related
symptoms that are thought to be closely linked to an immuno-
metabolic form of depression (IMD), and the strongest relations
were with the energy-related symptoms increased appetite and
hypersomnia. CRP, leptin and insulin are known to be among
the key biomarkers altered in MDD, and even more pronouncedly
in patients with IMD (Milaneschi et al., 2020). Here we showed
that not only these three proteins, but a larger correlated protein
network including also IGFBP2, FABPa and C3, is associated with
symptoms linked to IMD. These results support the idea that a
network of inflammatory and metabolic proteins represents
network-level mechanisms that are related to the full spectrum
of energy-related IMD symptoms.

In a previous study using the same proteomic immunoassay
data measured in NESDA, we evaluated changes in individual
protein levels in two data-driven MDD subtypes that were most
distinguished by the direction of appetite and weight change dur-
ing a depressive episode (Lamers et al., 2016). In contrast with the
present study, endorsed symptoms were first clustered into sub-
types and thereafter the associations of these subtypes with

individual proteins was investigated. From the 23 proteomic mar-
kers associated with the atypical depression subtype characterized
by increased appetite and weight in this prior work, we found that
16 of these were included in a cluster that differed between current
MDD subjects and controls. Five of the individual symptoms
associated with the cluster are also linked to the atypical depres-
sion subtypes studied in Lamers et al. (2016). Thus, these results
are similar to the findings of the present study, despite the differ-
ent approaches used. This suggests consistent relations between
the proteins (cluster) and atypical, energy-related symptoms, irre-
spective of the analytical approach. In other NESDA research,
latent class analysis (LCA) was used to cluster patients based on
36 biomarkers (not including the proteomic assay used for the
current study) (Beijers et al., 2019). The three identified classes
were partially determined by the biomarkers CRP and leptin,

Fig. 1. Unadjusted difference in the six proteomic clusters between current MDD sub-
jects and healthy controls. All models were adjusted for batch, research center, age,
sex and level of education. * Bonferroni adjusted p < 0.05.

Table 2. Module membership of the proteomic analytes in cluster 2, defined as
the correlation between the levels of each protein and the eigenprotein of the
cluster, and the corresponding p values.

Analyte Full name
Module

membership P value

APN Adiponectin −0.463 9.33 × 10−87

ApoB Apolipoprotein B 0.392 1.03 × 10−60

Cpep C-peptide 0.718 1.62 × 10−257

CRP C-reactive protein 0.562 1.02 × 10−135

CathD Cathepsin D 0.526 8.62 × 10−116

C3 Complement C3 0.726 2.97 × 10−265

FABPa Fatty acid-binding
protein, adipocyte

0.554 6.86 × 10−131

FetA Fetuin A 0.350 4.69 × 10−48

GSTa Glutathione
S-transferase alpha

0.608 1.07 × 10−164

HP Haptoglobin 0.455 9.82 × 10−84

INS Insulin 0.707 1.43 × 10−245

IGFBP1 Insulin-like growth
factor-binding
protein 1

−0.461 2.78 × 10−86

IGFBP2 Insulin-like growth
factor-binding
protein 2

−0.512 4.34 × 10−109

Leptin Leptin 0.516 3.31 × 10−111

PSAT Phosphoserine
aminotransferase

0.562 7.47 × 10−136

Prost Prostasin 0.522 9.83 × 10−114

SAP Serum amyloid
p-component

0.735 1.11 × 10−275

TPA Tissue type
plasminogen
activator

0.630 4.49 × 10−180

UPA Urokinase-type
plasminogen
Activator

−0.429 9.46 × 10−74

VKDPS Vitamin K-dependent
protein S

0.573 2.50 × 10−142

VN Vitronectin 0.480 3.05 × 10−94
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however, the classes were not characterized by differences in
depressive symptom endorsement, showing that the classes
found by Beijers do not overlap with energy-related symptoms
(profiles).

It should be noted that the identified cluster is not exclusively
associated with symptoms linked to IMD. These other symptoms
were mood in relation to the time of day, panic, pain, other bodily
symptoms, and difficulty falling asleep. Their association could be
explained by the possibility that the cluster represents more than
the biological mechanism underlying IMD. For instance, the latter
three symptoms could represent underlying somatic disease that
is linked to cluster 2 proteins. Alternatively, this finding could
indicate that the biological mechanism reflected by the cluster is
linked to a broader range of symptoms than only IMD symptoms.

It is known that CRP, insulin and leptin interact in metabolism
pathways and it was proposed that their joint measurement may
be an improved marker for cardiovascular disease, obesity and
depression (Hribal, Fiorentino, & Sesti, 2014; Milaneschi,
Simmons, van Rossum, & Penninx, 2019; Sudhakar,
Silambanan, Chandran, Prabhakaran, & Ramakrishnan, 2018).
We showed that CRP, insulin and leptin are amongst the most
stable proteins in the network, but also SAP, C3, Cpep, FABPa,
HP and IGFBP2 appear to play an important role based on the
cluster-stability analysis. Some of these proteins are known to
interact: SAP, CRP, and HP are acute phase (inflammatory) pro-
teins, CRP and SAP have 51% sequence homology, and C-peptide
(Cpep) is crucial in the insulin biosynthesis pathway. Fatty acid-

binding protein adipocyte (FABPa) has been associated with
lipid metabolism disorders, diabetes and obesity and interacts
with leptin (Gan, Liu, Cao, Zhang, & Sun, 2015). Complement
component 3 (C3) is a protein of the immune system, with a cen-
tral role in the complement system. C3 expression is increased in
the prefrontal cortex (PFC) of depressed subjects, and selective
overexpression of C3 in PFC of mice was sufficient to cause
depressive-like behavior in mice (Crider et al., 2018). Also, leptin
levels were reduced in mice in C3(-/-) mice, indicating the inter-
action between leptin and C3 and the role of C3 in energy balance
(Murray, Havel, Sniderman, & Cianflone, 2000). Insulin-like
growth factor-binding protein 2 (IGFBP2) is linked to insulin sen-
sitivity (Yau et al., 2018). Although pairwise interactions from
many of the 23 proteins in the immuno-metabolic cluster are
known, we show that they may jointly contribute to a network-
level mechanism, which is dysregulated in patients with IMD.

In other studies using single marker protein measures in
NESDA, higher CRP was associated with increased appetite
(Lamers, Milaneschi, de Jonge, Giltay, & Penninx, 2018) and
higher leptin with mood dependent on the time of day, decreased
appetite, increased appetite, weight gain, reduced energy level,
pains, other bodily symptoms and leaden paralysis (Milaneschi,
Lamers, Bot, Drent, & Penninx, 2017). Compared to these single
analyte analyses, the cluster we identified was associated with
more atypical, energy-related symptoms, which may indicate
that a single protein marker does not capture complete symptom
profiles. However, it should be noted that in this previous
research, the associations between individual symptoms and
serum levels of CRP and leptin were only investigated within
the currently depressed sample. In the present study, the
symptom-level results were obtained from the analysis that com-
pared current MDD patients with high symptom endorsement to
healthy controls. We also evaluated differences in cluster 2
between cases with low symptom endorsement and healthy con-
trols, and none of the symptoms differed significantly between the
two groups. Therefore, we hypothesize that the high endorsement
of specific symptoms drives the associations, rather than the pres-
ence of MDD in general.

In the present analyses, correction for various health and life-
style covariates reduced the effect size of the associations between
the protein cluster and individual symptoms. As in previous
research, this suggests that a substantial proportion of the protein-

Fig. 2. Unadjusted difference in the cluster between MDD patients with a high
endorsement of specific depressive symptoms and healthy controls. All models
were adjusted for batch, research center, age, sex and level of education. *
Bonferroni adjusted p < 0.05.

Fig. 3. Percentage of iterations (of 2000) that the proteins were contained in the clus-
ter that had most overlap with the immune-metabolic cluster. Only proteins that
were contained in the original cluster are displayed.
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symptoms associations is explained by health and lifestyle, which
may be an indicating that lifestyle adjustments could reduce the
deviance of protein levels in patients with depression. In add-
itional analyses further correcting for BMI, all protein-symptom
associations were substantially reduced and no longer significant.
However, evidence suggests that MDD shares genetic risk factors
with both inflammation and BMI (Milaneschi, Lamers, Peyrot,
et al., 2017; Van Den Broek et al., 2018; Wray et al., 2018), and
the position of BMI in the pathways that link inflammation and
depression is complex. Therefore, adjusting for BMI may lead
to overadjustment in the association between inflammatory mar-
kers and MDD (Lasserre et al., 2014; Luppino et al., 2010).
Antidepressant use was not included in the analyses as a potential
confounder because earlier NESDA analyses using the same
proteome platform found that antidepressant use did not play a
confounding role in the relationship between MDD and proteo-
mics (Lamers et al., 2016). Despite indications that robust cluster
structures are absent in a subset of the proteomic dataset that was
used in the present paper (Beijers et al., 2020), our analyses
showed that most of the proteins from cluster 2 are strongly cor-
related and together form a stable cluster. Moreover, our results
converge with previous studies on symptoms and inflammatory/
metabolic markers (Lamers et al., 2018; Milaneschi, Lamers,
Bot, et al., 2017).

The present finding may have several implications. The iden-
tified cluster could contribute to the stratification of patients by
immuno-metabolic dysregulation in combination with the
endorsement of specific IMD symptom patterns. There is evi-
dence that there is a specific subgroup of MDD patients with
an underlying immune dysregulation that does not respond to
antidepressant treatment (Kopschina Feltes et al., 2017). It is
hypothesized that this subgroup could benefit from anti-
inflammatory treatment. The presence of the atypical,
energy-related symptom patterns linked to IMD associated with
the identified cluster suggest immunological and metabolic altera-
tions, and might be used as stratification for anti-inflammatory
treatment (Milaneschi et al., 2020). However, more research is
required to investigate the relationship between the cluster and
the depressive symptoms in more detail, and the usability of
measuring a protein cluster in routine practice. The proteomic
platform used here measured a limited amount of proteins: the
identified cluster may be part of a larger protein network not cap-
tured by this platform. Which, and how many markers of this
network are optimal for representing this network, in order to
stratify patients, has to be studied further.

Strengths of this study include the relatively large sample size
with subjects recruited from the general population, primary care
and specialized mental health care. Second, this study has inves-
tigated the association of the clusters with MDD status as well as
specific symptoms. This provides insight into the relation of the
clusters with depression in general, as well as with more homo-
genous symptom patterns. Third, by using clusters we were able
to evaluate the combined effect of many correlated proteins on
several depressive symptoms simultaneously. Analyzing such a
large number of proteins separately would require many more
tests, which would lead to a substantial loss of power due to cor-
rection for multiple testing.

Limitations of this study include the fact that some analytes
could not be investigated due to many missing values. Besides
the information loss, the exclusion of analytes can cause altera-
tions in the constructed network (Pei, Chen, & Zhang, 2017).
Ideally for WGCNA, the missing values of each analyte would

be replaced according to some imputation method. However,
these methods become inaccurate with an increasing number of
missing values (Lazar, Gatto, Ferro, Bruley, & Burger, 2016).
Therefore, we have excluded analytes with >30% missing values.
Finally, our proteomic platform is covering a rather selective
part of the proteome. Consequently, there may be (many) more
proteomic pathways related to MDD that were not captured
through our methods.

In conclusion, by using WGCNA to cluster proteomic ana-
lytes, we were able to identify a cluster – consisting of proteins
involved in inflammation and metabolism – that is linked to
MDD, and more specifically to MDD patients with specific symp-
toms that are thought to be important characteristics of IMD
(Milaneschi et al., 2020). Our findings suggest that CRP, leptin
and insulin are part of a larger network of proteins that plays
an important role in the biological processes underlying IMD.
This cluster of biomarkers in conjunction with an endorsement
of behavioral IMD symptoms may provide to a more suitable
tool for patient stratification compared to single biomarkers.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721004888.
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