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From 2d bosonized baryons to 4d Skyrmions

20.1 Introduction

Low energy effective actions associated with four-dimensional QCD, and in par-
ticular the Skyrme model have been very thoroughly studied with an emphasis
on both formal aspects such as anomalies as well as phenomenological ones like
the spectrum of baryons. This chapter is devoted to the Skyrme model. We first
derive the various terms of the Skyrme action. These include the sigma term,
the WZ term, the mass term and the Skyrme term. The first three terms we
have encountered already in the two-dimensional analog, the bosonized QCD
(Chapter 13) whereas the fourth one, the Skyrme term, shows up as a stabi-
lization term only in the four-dimensional case. We then construct the classical
soliton solution, the Skyrmion, of the corresponding equations of motion. Next
we determine the classical mass and radius of the baryon. In a similar manner to
the procedure taken in the two-dimensional model, we quantize the system semi-
classically. This yields mass splitting between the nucleons and the delta particles
and the axial coupling of the nucleons. Most of the discussion will be done for
SU(Nf = 2) but we will also discuss certain properties of the three-flavor case.
The Skyrme model was introduced in [195], [196], [197] and [91].

The topic of baryons as Skyrmions was discussed and reviewed in several
books [53], [157] and reviews [22], [186], [231]. In several sections of this chapter
we follow the latter review.

20.2 The Skyrme action

In two dimensions using the bosonized version of QCD, we were able to integrate
in the strong coupling limit the color degrees of freedom and derive the low energy
effective action of the flavor degrees of freedom. The latter took the form of a
WZW action for the group U(Nf ) of level Nc for massless QCD and modified
flavored WZW action with a mass term for massive QCD. The main point there
was that the action derived was exact. In four dimensions the situation is quite
different. For once we do not have a bosonized version of QCD which enables
us (at least in the massless case) to decouple the flavor and color degrees of
freedom and then integrate over the latter. However, due to confinement, the low
energy degrees of freedom of four-dimensional QCD are also only flavor degrees
of freedom and hence it is natural to use an Nf ×Nf group element g(xμ)
of the flavor group U(Nf ). Since we do not have a systematic way to derive
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356 From 2d bosonized baryons to 4d Skyrmions

the corresponding action, we will now consider various terms that eventually
construct the full Skyrme model.

20.2.1 The Sigma term

Recall that the group element g(x) transforms under left and right transforma-
tions as follows,

g(x)→ Ug(x) g(x)→ g(x)U. (20.1)

As we have shown in two dimensions the sigma term is the term with the lowest
number of derivatives. In two dimensions it takes the form,

S2d =
1

12π

∫
d2xTr [∂μg∂μg−1 ]. (20.2)

It is easy to see that the analog in four dimensions has the form,

S =
1
16

f 2
π

∫
d4xTr [∂μg∂μg−1 ], (20.3)

where fπ has dimensions of mass (it will be shown below that by comparison
to experimental data, for Nf = 3, it has to be taken to be ∼ 93MeV ). This
coefficient is needed since our group element still does not carry classically any
conformal dimension. The sigma term which is clearly the one with the lowest
number of derivatives can also be expressed as,

S =
1
16

f 2
π

∫
d4xTr [LμLμ ] =

1
16

f 2
π

∫
d4xTr [RμRμ ], (20.4)

where,

Lμ = g−1∂μg Rμ = g∂μg−1 . (20.5)

It is important to note that by construction the Lμ obey the so-called Maurer–
Cartan equation,

∂μLν − ∂ν Lμ + [Lμ, Lν ] = 0. (20.6)

and so does Rμ . Note that they are both like pure gauges in a non-abelian gauge
theory, and thus they have Fμν = 0.

Before proceeding to the WZ term let us check the symmetries of this action
in comparison with the known symmetries of QCD. It is easy to check that it
is invariant under global SU(Nf )L × SU(Nf )R × U(1)B transformations. It is
further invariant under the following three discrete transformations,

Transpose : g ↔ gT �x↔ �x, t↔ t

P0 : g ↔ g �x↔ −�x, t↔ t

(−1)NB : g ↔ g−1 �x↔ �x, t↔ t.

(20.7)

The second transformation P0 is a parity transformation and the third is the
number of bosons modulo two. To check whether these discrete symmetries
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are also shared by QCD we first expand g(x) around unity,

g(x) = 1 +
2i

fπ

N 2
f −1∑
1

Taπa(x), (20.8)

in terms of the Goldstone bosons π(x) and then consider Nf = 3. It turns out
that P0 and (−1)NB are not conserved separately but only the combination
P = P0(−1)NB . This is demonstrated by the process K+K− → π+π0π−. Obvi-
ously the number of bosons modulo two is not conserved as well as the parity
P0 since the πi are pseudo scalars. It is thus clear that the action (20.3) cannot
describe the effective action of QCD and another term that does conserve P and
not P0 and (−1)NB separately. It is well known that the parity transformation
P0 is violated by a term which is proportional to the Levi Civita tensor which in
four dimensions reads εμνρσ . However, it is very easy to verify that the only term
proportional to εμνρσ , namely εμνρσ Tr [g−1∂μggg−1∂ν gg−1∂ρgg−1∂σg] vanishes
due to the antisymmetric nature of εμνρσ and the cyclicity of the trace.

20.2.2 The WZ term

Experienced with the two-dimensional WZ term it is clear that this situation
naturally calls for a four-dimensional WZ term: [225], [226]. Recall that the two-
dimensional WZ term was written as a three-dimensional integral over a three-
dimensional ball or a three disk whose boundary is the two-dimensional space-
time. In a similar manner we can construct a term defined on a five-dimensional
disk D5 whose boundary is the four-dimensional space-time and has the form,

SWZ = −i
λS

240π2

∫
D 5

d5xεijklm Tr [g−1∂igg−1∂jgg−1∂kgg−1∂lgg−1∂m g], (20.9)

where now i, j, k, l,m denote coordinates on D5 and λS is a coefficient that has to
be determined. Extending the map g(xμ) from the four-dimensional space-time
to the SU(N) group manifold into a map from D5 to the group manifold is based
on the fact that π4(SU(N)) = 0 and π1(SU(N)) = 0. Now let us check whether
there are any constraints on λS . The analogous two-dimensional case tells us
that λS = Nc . We will now verify this result in two steps. First we show that
on general topological grounds it has to be an integer and then by relating the
action to QCD we show that this integer has to be equal to the number of colors.
To understand the topological nature of the WZ term it is convenient to use a
compactified Euclidean four space of a topology S1 × S3 where the S1 factor
corresponds to a compactified time direction. Now the five-dimensional disk D5

can be taken now to be S3 ×D2 . However as is clear from Fig. 20.1 there are in
fact two options of choosing the disk D2 namely D2

n and D2
s . Requiring that the

independence of the physics on choice translates into,

eiS n
W Z = eiS s

W Z →
∫

(D 2
n +D 2

s )×S 3
w0

5 =
∫

S 2 ×S 3
w0

5 = 2π integer, (20.10)
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Q QM

Fig. 20.1. Two options of choosing the disk D2 .

where we have used the fact that the sum of the two disks (D2
n + D2

s ) is topo-
logically equivalent to S2 , that the five cycles in the group manifold SU(N) of
the topology S2 × S3 can be represented by the cycles of topology S5 and that
π5(SU(N)) = Z and hence any S5 in SU(N) is topologically a multiple of the
basic S5 on which w can be normalized such that

∫
S 5

0
w0

5 = 2π.
We thus conclude that the coefficient λS has to be an integer. As we mentioned

above in two dimensions we have shown that this integer has to be Nc . We will
show below when discussing the phenomenology of the Skyrme model that this
is the case also in four dimensions. Thus we will take from here on that λS = Nc .

20.2.3 The Skyrme term

Baryons were described in the context of the bosonized theory of two-dimensional
QCD in terms of soliton solutions of the WZW theory in flavor space (see Chapter
13). In a similar manner we anticipate that also in four dimensions solitons are
intimately related to baryons. However, in Section 5.3 it was shown that accord-
ing to Derrick’s theorem, there are no stable solitons in the space dimension
larger that one. To recapitulate this theorem let us analyze the scaling behavior
of the energy of a soliton solution in four dimensions. It is easy to realize that in
D space dimensions the energy that corresponds to the action (20.3) reads,

E =
∫

dD x
f 2

π

4
Tr [LμLμ ]. (20.11)

where a change in normalization was made.
Under a scaling of x→ λx, g(x)→ g(λx) since as mentioned above g(x) has

a zero scaling dimension, and the energy scales as,

Eλ = λ2−D E. (20.12)

Thus for D = 3 the energy of the system can shrink to zero by large scaling and
hence the solutions are not stable against scale transformations. To avoid this
problem we add a term which is quartic in Lμ so that the total Lagrangian is,

L = L2 + L4 =
f 2

π

4
Tr [LμLμ ] +

1
4
e2Tr([Lμ, Lν ]2). (20.13)
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Under scale transformation the energy scales as,

Eλ = λ2−D E(2) + λ4−D E(4) . (20.14)

It is easy to see that for D ≥ 3 there is a minimum at λ = 1 and with

dEλ

dλ
= 0→

E(2)

E(4)
= −4−D

2−D

d2Eλ

dλ2 > 0→ 2(D − 2)E(2) > 0. (20.15)

In fact the energy is bounded from below by the topological charge. The energy
associated with the action (20.13) takes the following form for a static configu-
ration,

E =
∫

d3x

{
−f 2

π

4
Tr [LiLi ]−

1
4
e2 Tr ([Li, Lj ]2)

}
, (20.16)

which can be rewritten as,

E = −f 2
π

4

∫
d3xTr

[
LiL

i +
e2

f 2
π

(
√

2εijkLjLk )2
]
≥

−f 2
π

4

∫
d3x

∣∣∣∣∣Tr

[(
2
√

2e

fπ
εijkLiLjLk

)∣∣∣∣∣ = 12
√

2π2efπ |B|. (20.17)

This is referred to as the Bogomol’ny bound. It is interesting to note that unlike
other cases like instantons (see Section 22.1) there is no configuration that satu-
rates the bound. The configuration that does saturates the bound has the form
Li =

√
2e

fπ
eijkLjLk , however it is easy to see that it does not obey the Maurer–

Cartan equation (20.6).

20.2.4 A mass term

In two dimensions the mass term was shown to be a key ingredient to having
soliton solutions of strong coupling of QCD2 . In four dimensions this is not the
case. Stable soliton solutions do not require a mass term. However, to incorpo-
rate the fact that the pions are not massless, one adds a mass term to the full
Lagrangian. The mass term has the same form as that of the two-dimensional
theory, namely,

Sm =
m2

π f 2
π

16

∫
d4xTr [g + g−1 − 2]. (20.18)

Upon substitution for g(x) in the ansatz (20.8) this term takes the form of a
mass term for the π fields,

Sm =
∫

d4x
1
2
m2

π (πa)2 . (20.19)
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360 From 2d bosonized baryons to 4d Skyrmions

For Nf > 2 one can use a mass term that breaks flavor symmetry by assigning
different masses to different flavors. One can also generalize the mass term by
using general functions of g which in the limit of g → 1 approach g.

20.2.5 Gauging the Skyrme action

In Section 9.3.1 we discussed the gauging of the WZW action. In that case we
were interested in gauging the diagonal SUD (Nc) ∈ SUL (Nc)× SUR (Nc). We
presented there two methods for the gauging procedure: (i) Noether trial and
error method, (ii) covariantization of the associated currents. Here in the case
of the Skyrme action we would like to gauge the U(1) diagonal global abelian
symmetry that corresponds to electromagnetism, as well as the full SU(Nf )×
SU(Nf ) global symmetry of the Skyrme action. Let us first identify the diagonal
abelian symmetry that we want to gauge to incorporate EM gauge fields. In the
particular case of Nf = 3 the EM charge matrix of the u, d, s quarks is given by,

Q =

⎛⎝ 2/3
−1/3

−1/3

⎞⎠ . (20.20)

Thus a local transformation that corresponds to the EM gauge transformation
is,

g(x)→ Ug(x)U−1 U ∼ 1 + iε(x)[Q, g]. (20.21)

As usual the local transformation can be a symmetry of the action only provided
we add to the action gauge fields that transform under the EM gauge transfor-
mation as Aμ → Aμ − 1

e ∂με(x) where e is a unit EM charge. For the sigma term
and the Skyrme term it is obvious that gauge invariance is achieved by replac-
ing the ordinary derivative with covariant ones, namely ∂μ → Dμ = ∂μ + ie∂u .
The gauging of the WZ term Γ ≡ SW Z is more subtle and as was done for the
two-dimensional case; we use a trial and error method. First we compute the
variation of the term under the global U(1) symmetry. We find that,

Γ→ Γ −
∫

d4x∂με(x)Jμ

Jμ =
1

48π2 εμνρσ{Tr [−Q(Rν RρRσ )]

+ Tr [Q(Lν LρLσ )]} (20.22)

where Q is defined in (20.20). The next step in gauging the WZ term is to replace
the original term with,

Γ→ Γ− e

∫
d4xAμJμ . (20.23)
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It turns out that the action after this replacement is still not gauge invariant but
it is invariant with the following addition,

S =
f 2

π

16

∫
d4xTr [DμgDμg−1 ] + Nc Γ̃,

Γ̃(g,Aμ) = Γ(g)− e

∫
d4xAμJμ +

ie

24π2

∫
d4xεμνρσ∂μAν Aρ

×Tr [Q2(Lσ −Rσ )−QgQg−1Rσ ]. (20.24)

In a similar manner one can gauge the full global symmetry or its subgroups.
Since we will not need it in this chapter we refer the reader to references, for
instance [231].

20.3 The baryon as a Skyrmion

The two-dimensional solitonic baryon was analyzed at two levels, firstly the clas-
sical configuration and then at the semi-classical level. At both levels properties
of the baryon such as its mass and conserved charges were computed. In this
section we present the analogous calculations for the 4d Skyrmion and then we
compare the four- and two-dimensional results.1

20.3.1 The classical Skyrmion

The Skyrmion is by definition a solitonic solution of the Skyrme action.
Soliton solutions in two dimensions were discussed in general in Section 5.3 and
in particular the solitons of the low energy effective action of QCD2 in the strong
coupling limit in Chapter 13. In fact the classical solitonic baryons were solu-
tions of a sine-Gordon equation that was derived from an action that included a
sigma term and a mass term since for static configuration the WZ vanishes. The
latter property holds also in four dimensions so the relevant action now includes
the sigma term and the Skyrme term. In fact we will describe here the case of
two flavors and as mentioned above the WZ term vanishes for the SU(2) group
manifold anyhow. The equation of motion derived by computing the variation of
the action with respect to g−1δg is,

∂μLμ − 2
e2

f 2
π

∂μ [Lν , [Lμ, Lν ]] = 0. (20.25)

Obviously, an equivalent equation can be written by replacing Lμ → Rμ . Param-
eterizing the general static configuration as,

g(x) = ei�τ ·r̂F (r) = cos(F (r)) + i�τ · r̂ sin(F (r)). (20.26)

1 The classical properties of the SU (2) baryonic Skyrmion were analyzed in [133], [5] and
afterwards in many other papers.
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362 From 2d bosonized baryons to 4d Skyrmions

For this ansatz the equation of motion reads,

F ′′ +
2
r
F ′ − sin(2F )

r2 + 8
e2

f 2
π

[
sin(2F ) sin2 F

r4 − F ′2 sin(2F )
r2

2F ′′ sin2 F

r2

]
= 0.

(20.27)
The boundary conditions are taken to be,

F (r = 0) = π F (r →∞) = 0. (20.28)

The mass of the classical Skyrmion is derived by substituting a solution of the
equation of motion into (20.16) getting,

Ms = 4π
∫ ∞

0
r2dr

f 2
π

2

[
F ′2 +

2 sin2 F

r2

]
+ 4e2 sin2 F

r2

[
2F ′2 +

sin2 F

r2

]
. (20.29)

Using the virial property this reduces to,

Ms = 4π
√

2e

∫ ∞

0
x2dx

[(
dF

dx

)2

+
2 sin2 F

r2

]
, (20.30)

where x = fπ

e
√

2
r is dimensionless. The value of the integral is ∼ 11.7. One can

either use the mass of the proton combined with the mass of the delta, to deter-
mine fπ and the coefficient of the Skyrme term, or use the experimental values
of fπ and the axial coupling to be discussed shortly.

Let us now analyze the radial profile of the soliton F (r). Asymptotically for
r →∞ only the terms inside the square brackets can be neglected leading to
a solution of the form F (r)→ 16e2

f 2
π

A 2

r 2 , where again A can be determined by
comparing to experimental data and is found to be A ∼ 1.08. On the other limit
around the origin it is easy to see that the equation is solved by F (r) ∼ nπ − ar.
The numerical solution of F (r) that interpolates between these two boundary
conditions is drawn in Fig. 20.2.

In addition to the mass, we have also extracted in two dimensions from the
classical soliton the flavor properties and baryon number. For the Skyrmion we
should also be able to determine these properties as well as its spin. When we
insert the classical soliton solution in the baryon density we get,

B0 =
i

24π2 εijkLiLjLk =
1

2π2 sin2 F
F ′

r2 , (20.31)

so that the baryonic charge is,

B = 4π
∫ ∞

0
drr2B0(r) =

1
π

(F (0)− F (∞)) + 12π[sin(2F (∞))− sin(2F (0))] = 1.

(20.32)
where we have used the boundary conditions of F (r) specified above. Using the
distribution of the baryonic charge, one can define the rms radius of the baryon
as follows,

rrms =
e

πfπ

(
−
∫ ∞

0
dxx2 sin2 FF ′

)1/2

, (20.33)

which is of the order of 0.48 for the B = 1.
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r (fm)

F (r)

3

3 4210

2

1

0

Fig. 20.2. The numerical solution of F (r).

Fig. 20.3. The Skyrmion hedgehog configuration.

The hedgehog configuration, see Fig. 20.3, used as an ansatz for the Skyrmion,
is by construction invariant under the operation of,

K ≡ J + I = (L + S) + I, (20.34)

where L, S and J are the orbital angular momentum, the spin and the total
angular momentum, and I is the isospin.
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It follows from,

[K, g(x)] = i sin F

[
[(r ×−∇) , �τ · r̂] +

[
�τ

2
, �τ · r̂

]]
= 0. (20.35)

Hence the Skyrmion carries a charge of K = 0. It is straightforward to notice
that it is also an invariant under the parity operator defined in (20.7), so that
altogether it is K = 0+ state.

20.3.2 Semiclassical quantization of the soliton

Recall that the quantization of the collective coordinates of the two-dimensional
soliton was performed by elevating the static group element to a space-time
dependent one in the following way,

g(x)→ g(x, t) = A(t)g(x)A−1(t) A(t) ∈ U(Nf ). (20.36)

Nothing in this prescription is two dimensional and hence we now use the same
ansatz also for the four-dimensional soliton. In two dimensions we discussed the
general Nf case, here we start with the simplest case of Nf = 2 and then we
discuss the Nf = 3 and comment about the general case. As discussed above for
SU(Nf = 2) there is no WZ term, thus we have to substitute (20.36) into the
action that includes the sigma term and the Skyrme term (for simplicity we do
not add the mass term). The collective coordinates A(t) can be parameterized
in the following ways either,

A(t) = a0(t) + i�a(t) · �σ (aμ)2 = 1, (20.37)

or,

A−1Ȧ ≡ i

2
�σ · �w. (20.38)

It is easy to verify that in terms of A(t) the Lμ defined in (20.5),

L0 = A(t)g−1(x)(A−1Ȧ)(t)g(x)A−1(t) Li = A(t)g−1∂ig(x)A−1(t). (20.39)

The result of the substitution of the Lμ expressed in terms of w into the
Lagrangian is,

L = Lcl +
1
2
α2w2 , (20.40)

where the constant of proportionality α2 is computed as a spatial integral over
the chiral angle to be 53.3

e3 fπ
. In terms of spin and isospin operators the Hamiltonian

can be rewritten in terms of a second Casimir operator,

H = Ecl +
1

2α2 J2 = Ecl +
1

2α2 I2 . (20.41)

In terms of the aμ variables the Lagrangian density takes the form,

L = Lcl + λ(ȧμ)2 , (20.42)
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where λ is the moment of inertia given by,

λ =
8π

3
f 2

π

∫ ∞

0
drr2 sin2 F

[
1 +

8e2

f 2
π

(
F 2 +

sin2 F

r2

)]
. (20.43)

The corresponding Hamiltonian is therefore,

H = πμ ȧμ − L = Ecl +
1
8λ

π2
μ = Ecl +

1
8λ

(
− ∂2

∂a2
μ

)
, (20.44)

where in the last step we introduced the canonical quantization namely,

[aμ , πν ] = iδμν πμ = − i∂

∂aμ
, (20.45)

subjected to the constraint (aμ)2 = 1.
The Noether charges associated with the angular momentum and isospin

expressed in terms of aμ take the form,

Ik =
i

2

(
a0

∂

∂ak
− ak

∂

∂a0
− εklm al

∂

∂am

)
Jk =

i

2

(
ak

∂

∂a0
− a0

∂

∂ak
− εklm al

∂

∂am

)
. (20.46)

Choosing a fermionic rather than bosonic wave function, namely, odd under
changing A→ −A, implies that the wave function of baryons of I = J = 1

2 is
linear in aμ , for instance the proton wave function is |p>= 1

π (a1 + ia2) and
those of I = J = 3

2 cubic in aμ like |Δ++>=
√

2
π (a1 + ia2)2 . It is thus obvious

that the mass difference between the Δ and the nucleon is,

MΔ −MN =
3

2α2 . (20.47)

Expectation values of flavor charges can be computed in the semi-classical
approximation by expressing the Noether currents and charges in terms of the
aμ(t) and their corresponding momenta πμ = − i∂

∂aμ
(20.46) and sandwiching

these operators in between quantum states, like N and Δ. For instance the
space components of the Baryonic current is given by,

Bi = i
eijk

2π2

sin2 F

r
r̂k Tr [Ȧ−1Aτj ]. (20.48)

We use this expression to compute the isoscalar magnetic moment, defined by,

μI=0 =
1
2

∫
d3r�r × �B, (20.49)

of the proton as follows,

(μI=0)3 = − 2i

3π

∫
drr2F <p, 1/2|Tr (τ3Ȧ−1A)|p, 1/2>

i

3
<r2>I=0<p, 1/2|Tr (τ3Ȧ−1A)|p, 1/2>=

1
6I

<r2>I=0 .

(20.50)

In a similar manner one can compute the isovector magnetic moment.

https://doi.org/10.1017/9781009401654.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.021


366 From 2d bosonized baryons to 4d Skyrmions

Another important property of nucleons that can be extracted from the
description of baryons as semiclassical solitons is the axial coupling gA defined
via,

<N ′(p2)|JA
μ

a |N(p1)>=<ū(p2)
τa

2
[gA (q2)γμγ5 + hA (q2)qμγ5 ]u(p1)>, (20.51)

where JAa

μ is the axial current and q = p2 − p1 . In the chiral limit hA (q2) has a
pion pole whose residue is −2fπ gπN N namely,

hA (q2) =
dA (q2)

q2 dA (0) = −2fπ gπN N , (20.52)

where gπN N is the pion nucleon coupling. Current conservation implies that,

2MN gA (q2) + q2hA (q2) = 0. (20.53)

In the nucleon rest frame the nonrelativistic limit q → 0, taken in a symmetric
form qiqj → 1

3 δij q
2 yields,

lim
q→0

<N ′(p2)|JA
i a|N(p1)>= lim

q→0
< u(p2)

τa

2
[gA (0)σi

+hA (q2)�σ · �̂qq̂i ]u(p1)>=

= lim
q→0

gA (0)(δij − q̂i q̂j ) <N ′(p2)|σi
τa

2
|N(p1)>

=
2
3
gA (0) <N ′(p2)|σi

τa

2
|N(p1)>, (20.54)

where we have made use of the Goldberger–Triman relation,

gA (0) =
gπN N fπ

MN
. (20.55)

In the Skyrme model we can extract the axial coupling gA (0) in the following
way. First we compute the space integral over the axial current,∫

d3xJA a

i (x) = −1
2
d Tr [τiA

−1τaA], (20.56)

where d is the space integral over a function that depends only on the classical
soliton configuration. We then sandwich this operator in between nucleon states
to find,

lim
q→0

∫
d3xei�q ·�x <N ′|JA a

i (x)|N> =
2
3
d <N ′|σi

τa

2
|N> . (20.57)

Equating the last expression with (20.54) it was found that the Skyrme model
value of gA (0) = 0.61 whereas experientially it is equal to 1.33.

20.3.3 The Skyrme model and large Nc QCD

In Section 19.2 it was shown that the scattering amplitude or quadrilinear cou-
pling of mesons in the large Nc limit behaves like 1

Nc
. Recall that in this limit we
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take Nc →∞ while keeping λt′Hooft = g2Nc finite. The amplitude that is pro-
portional to g2 behaves like 1

Nc
. By comparing this result to the quadrilinear

coupling of the Skyrme model we are able to determine the dependence of the
Skyrme coefficients on Nc . Let us start by expanding the sigma term in terms of
the pion fields,

Lσ =
f 2

π

4
Tr [∂μg∂μg−1 ] ∼ 1

2
∂μ�π · ∂μ�π+

1
6f 2

π

[
(�π · ∂μ�π)2 − π2∂μ�π · ∂μ�π

]
+O(π6).

(20.58)
The quadrilinear coupling behaves like 1

f 2
π
. If we expand the Skyrme term in a

similar manner we find that in that case the coupling behaves like 1
e2 f 4

π
, and

hence we conclude in agreement with (19.12) that,

fπ ∼
√

Nc e ∼ 1√
Nc

. (20.59)

This enables us to check the Nc dependence of the classical Skyrmion mass and
its semi-classical extension,

Mcl ∼
fπ

e
∼ Nc Msc ∼

1
α2 ∼ e3fπ ∼

1
Nc

. (20.60)

Recall for comparison that the two-dimensional solitonic baryons were shown to
have classical mass which is also order Nc , but the semi-classical correction term
behaves like N 0

c and not 1
Nc

.

20.4 The Skyrme model for Nf = 3

Phenomenologically we should obviously be interested in the case of Nf = 3
rather than only two flavors. Moreover, to let the WZ term play a role we
also have to go beyond Nf = 2. So we have two reasons to discuss now the
U(Nf = 3) classical solitons and their semi-classical quantization. The action
is now the sum of a sigma term (20.3), the Skyrme term (20.13) and the WZ
term (20.9). We can further add a mass term (20.18). The latter can be used
to introduce an explicit breaking of the flavor symmetry by assigning different
masses to the different flavor degrees of freedom. In fact one can add additional
flavor symmetry breaking terms which, to simplify the treatment, we would
not do.

We first need to choose a parametrization for the U(Nf = 3) group element.
The analog of (20.8) including the U(1) factor now reads,

g(x) = ei
√

2√
3 f π

η 0 (x)eiΦ(x) = ei
√

2√
3 f π

η 0

ei
∑ a = 8

a = 1

√
2

f π
λa φa

, (20.61)
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where λa are the SU(3) Gell–Mann matrices. In terms of the pions, kaons and
η we have,

Φ ≡

⎛⎝ 1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 2√
6
η8

⎞⎠ . (20.62)

Next we have to choose an ansatz for the static classical configuration g0(x).
Recall that in the two-dimensional case we took an embedding of the U(1) in

U(Nf ) of the form g0(x) = Diag(1, 1, . . . , e
−i
√

4 π
N c

φ(x)). In analogy in the four-
dimensional case we embed the SU(2) hedgehog configuration in the SU(3)
group element as follows,

g0(x) =

⎛⎝ 0
eiF (r)�τ ·�̂r 0

0 0 1

⎞⎠ . (20.63)

Since the WZ term vanishes for an SU(2) group the solution for F (r) is iden-
tical to that discussed in Section 20.3 and hence the elevation to Nf = 3 shows
up basically only in the semi-classical quantization of the collective coordinates.
Recall that the latter are introduced via g0(x)→ A(t)g0(x)A−1(t). In two dimen-
sions we parameterized the quantum fields A(t) in terms of the Zi, i = 1, . . . , Nf

variables which was adequate for the CPNf −1 that the collective coordinates
span in that case. Clearly in the present case since the g0(x) ∈ SU(2) a differ-
ent ansatz is required. The most straightforward one is in terms of the angular
velocities wa that generalize those of (20.38) as follows,

A−1(t)Ȧ(t) =
i

2

8∑
a=1

λawa. (20.64)

When substituting this into the Lagrangian one finds,

LSU (3) = Lcl +
1
2
α2

3∑
a=1

w2
a +

1
2
β2

7∑
a=4

w2
a −Nc

B

2
√

3
w8 . (20.65)

Note that the WZ term which is proportional to Nc and linear in the angular
velocity w8 associated with λ8 that commutes with the classical ansatz [λ8 , g0(x)].
This is very reminiscent of the structure of the WZ term in two dimensions that
is also linear in the angular velocity associated with the hypercharge with Nc as
a coefficient.

The quantization of the system is performed as if it is an “SU(3) rigid top”
namely one defines the right generators,

Ra = −
∂LSU (3)

∂wa
= −α2wa = −Ja , a = 1, 2, 3

−β2wa, a = 4, .., 7
NC B

2
√

3
, a = 8,

(20.66)
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and imposes the quantization condition,

[Ra ,Rb ] = −ifabcRc , (20.67)

where fabc are the structure constants of SU(3).
The Hamiltonian of the system takes the form,

H = Ecl +
1
2

[
1
α2 −

1
β2

]
J2 +

1
2β2 C2 −

3
8β2 . (20.68)

Again this form of the Hamiltonian is similar to the one we found in two dimen-
sions which is also proportional to the second Casimir operator. One can now
apply the Hamiltonian on states associated with representations of the SU(3) and
compute the corresponding masses. Using the eigenvalues of the second Casimir
operator of the representations 8, 10, 1̄0, 27 which are given by 3, 6, 6, 8,
respectively we can determine the masses of the various Skyrme hadrons. The
full analysis of the Nf = 3 baryons is beyond the scope of this book. We refer the
interested reader to literature. For a review of the topic see for instance [231].
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