ON INTERSECTIONS AND UNIONS OF RADICAL CLASSES

YU-LEE LEE and R. E. PROPES¹

(Received 20 August 1969; revised 12 November 1969

Communicated by B. Mond

1. Introduction

Let \mathscr{A} be a class of rings, and let $L(\mathscr{A})$ denote the lower radical class determined by \mathscr{A} . In [3] Yu-Lee Lee showed that $L(\mathscr{A})$ may be constructed in the following manner: Let $H(\mathscr{A})$ be the class of all homomorphic images of rings in \mathscr{A} . For each ring R, let $D_1(R)$ be the set of all ideals of R, and by induction define $D_{n+1}(R)$ to be the family of all rings which are ideals of some ring in $D_n(R)$ and set $D(R) = \bigcup \{D_n(R): n = 1, 2, 3, \cdots\}$ which is commonly known as the hereditary closure of R. A ring R is called an $L(\mathscr{A})$ – ring if D(R/I) contains a nonzero ring which is isomorphic to a ring in $H(\mathscr{A})$ for each ideal I of R and $I \neq R$ i.e., if each non-zero homomorphic image of R contains an accessible subring isomorphic to a ring in $H(\mathscr{A})$. In [4] Yu-Lee Lee proved that any class \mathscr{A} of rings determines an upper radical property $\mathfrak{S}(\mathscr{A})$.

The following theorem was conjectured by Yu-Lee Lee: Let \mathscr{A}_i be a homomorphically closed and hereditary class of rings (i = 1, 2). Then $L(\mathscr{A}_1 \cap \mathscr{A}_2) = L(\mathscr{A}_i) \cap L(\mathscr{A}_2)$. The purpose of this paper is to prove this theorem and, in addition, to prove an "intersection theorem" for upper radicals. In this paper we shall use the following notation: $I \leq R$ signifies that I is an ideal of the ring R.

We shall use the following theorem which is due to A. E. Hoffman and W. G. Leavitt [2]. Theorem. If \mathscr{A} is a hereditary class, then $L(\mathscr{A})$ is hereditary.

Since we shall be concerned with the intersections of radical classes, we shall often employ (without specifically noting it) the following useful proposition. We mention that T. L. Jenkins in [1] proved an analogous proposition for hereditary radicals.

PROPOSITION. Let P_1 and P_2 be radical classes in some universal class \mathscr{W} of rings, and define $T(R) = P_1(R) \cap P_2(R)$, and set $T = \{R \in \mathscr{W} : T(R) = R\}$. Then $T = P_1 \cap P_2$.

PROOF.

$$R \in T \text{ iff } R = T(R) = P_1(R) \cap P_2(R)$$

iff
$$R = P_1(R) = P_2(R)$$

iff
$$R \in P_1 \cap P_2.$$

¹ This research was supported partially by Kansas State University Research Grant No. F 440.

354

2.

THEOREM 1. Let \mathscr{A}_i be a homomorphically closed and hereditary class of rings (i = 1, 2). Then $L(\mathscr{A}_1 \cap \mathscr{A}_2) = L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$.

PROOF. Since $L(\mathscr{A}_1 \cap \mathscr{A}_2) \subseteq L(\mathscr{A}_i)$ for i = 1, 2, we have $L(\mathscr{A}_1 \cap \mathscr{A}_2) \subseteq L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$. Thus let $R \in L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$ and let I be a proper ideal of R. Now $R \in L(\mathscr{A}_1)$ implies $D(R/I) \cap \mathscr{A}_1 \neq 0$, hence let $A \in D(R/I) \cap \mathscr{A}_1$. Since $L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$ is hereditary [2] and since $R/I \in L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$, we have $D(R/I) \subseteq L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$; and so $A \in L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$, viz., $A \in L(\mathscr{A}_2)$. But $A \in L(\mathscr{A}_2)$ implies $D(A) \cap \mathscr{A}_2 \neq 0$. Thus let $0 \neq B \in D(A) \cap \mathscr{A}_2$. Now \mathscr{A}_1 is hereditary, and $A \in \mathscr{A}_1$, so that $D(A) \subseteq \mathscr{A}_1$. Hence $B \in \mathscr{A}_1 \cap \mathscr{A}_2$. But $D(A) \subseteq D(R/I)$ so that $B \in D(R/I) \cap (\mathscr{A}_1 \cap \mathscr{A}_2)$. Therefore $D(R/I) \cap (\mathscr{A}_1 \cap \mathscr{A}_2) \neq 0$. Thus $R \in L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$ implies $R \in L(\mathscr{A}_1 \cap \mathscr{A}_2)$. This completes the proof of Theorem 1.

NOTE. By an inductive argument $L(\bigcap_{i=1}^{n} \mathscr{A}_{i}) = \bigcap_{i=1}^{n} L(\mathscr{A}_{i})$, where \mathscr{A}_{i} is a class of rings which is both homomorphically closed and hereditary for $i = 1, 2, \dots, n$. Next we provide an example for which $L(\mathscr{A} \cap \mathscr{B})$ is a proper subset of $L(\mathscr{A}) \cap L(\mathscr{B})$.

EXAMPLE. Let Z denote the ring of integers, and let (4) denote the principal ideal of Z generated by the integer 4. Let Z/(4) denote the ordinary quotient ring, and let $R = \{0+(4), 2+(4)\}$. Let $\mathscr{A} = H(\{(Z/(4))/R, R\})$ and $\mathscr{B} = H(\{Z/(4)\})$ denote the homomorphic closures of the classes $\{(Z/(4))/R, R\}$ and $\{Z/(4)\}$ respectively. It is easy to see that the only proper ideal of Z/(4) is R and the ring Z/(4) cannot be mapped homomorphically onto its ideal R. We also note that the only subrings of Z/(4) are Z/(4), R, $0 \cdots$ none of which is a field (hence none is isomorphic with (Z/(4))/R).

Now $\mathscr{A} \cap \mathscr{B} = H(\{(Z/(4))/R\})$, and (Z/(4))/R is simple; therefore each ring in $\mathscr{A} \cap \mathscr{B}$ is either 0 or else isomorphic with (Z/(4))/R. Since Z/(4) has no subring isomorphic to the field (Z/(4))/R, then $Z/(4) \notin L(\mathscr{A} \cap \mathscr{B})$, in fact, $L(\mathscr{A} \cap \mathscr{B})$ (Z/(4)) = 0. Certainly $Z/(4) \in L(\mathscr{B})$, and also $Z/(4) \in L(\mathscr{A})$, because each nonzero homomorphic image of Z/(4)[(Z/(4))/R, Z/(4)] contains a non-zero subring in \mathscr{A} . Thus $Z/(4) \in L(\mathscr{A}) \cap L(\mathscr{B})$ and hence $L(\mathscr{A} \cap \mathscr{B})$ is a proper subset of $L(\mathscr{A}_1) \cap L(\mathscr{A}_2)$.

We note that \mathscr{A} is hereditary, because both $(\mathbb{Z}/(4))/\mathbb{R}$ and \mathbb{R} are simple rings. However, \mathscr{B} is not hereditary, because $\mathbb{R} \leq \mathbb{Z}/(4) \in \mathscr{B}$, but $\mathbb{R} \notin \mathscr{B}$.

For a class \mathcal{M} of rings, let $\mathfrak{S}(\mathcal{M})$ denote the upper radical class determined by the class \mathcal{M} . The following theorem is similar to 2.3.3 of [1, p. 28].

THEOREM 2. Let \mathscr{A} and \mathscr{B} be classes of rings. Then $\mathfrak{S}(\mathscr{A} \cup \mathscr{B}) = \mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B})$.

PROOF. First, since each ring in \mathscr{A} is in $\mathscr{A} \cup \mathscr{B}$, then each ring in \mathscr{A} is

 $\mathfrak{S}(\mathscr{A} \cup \mathscr{B})$ – semi-simple. Then since $\mathfrak{S}(\mathscr{A})$ is the largest radical for which every ring in \mathscr{A} is semi-simple, we must have $\mathfrak{S}(\mathscr{A} \cup \mathscr{B}) \subseteq \mathfrak{S}(\mathscr{A})$. Similarly $\mathfrak{S}(\mathscr{A} \cup \mathscr{B}) \subseteq \mathfrak{S}(\mathscr{B})$, and so $\mathfrak{S}(\mathscr{A} \cup \mathscr{B}) \subseteq \mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B})$. Now let $R \in \mathscr{A} \cup \mathscr{B}$. If $R \in \mathscr{A}$, then $(\mathfrak{S}(\mathscr{A}))(R) = 0$ and so $(\mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B}))(R) = 0$. Similarly, for $R \in \mathscr{B}, (\mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B}))(R) = 0$. Thus every ring in $\mathscr{A} \cup \mathscr{B}$ is $\mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B})$ semi-simple. Since $\mathfrak{S}(\mathscr{A} \cup \mathscr{B})$ is the largest radical for which every ring in $\mathscr{A} \cup \mathscr{B}$ is semi-simple, we must have $\mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B}) \subseteq \mathfrak{S}(\mathscr{A} \cup \mathscr{B})$. Hence $\mathfrak{S}(\mathscr{A} \cup \mathscr{B}) = \mathfrak{S}(\mathscr{A}) \cap \mathfrak{S}(\mathscr{B})$.

References

- [1] T. L. Jenkins, *The theory of radicals and radical rings* (Ph.D. thesis, University of Nebraska, 1966).
- [2] A. E. Hoffman & W. G. Leavitt, 'Properties inherited by the lower radical' (to appear).
- [3] Yu-Lee Lee, 'On the construction of lower radical properties of rings', *Pacific Journal of Math.* (to appear).
- [4] Yu-Lee Lee, 'On the construction of upper radical properties', Proc. Amer. Math. Soc. 19, No. 5, (1968).

Kansas State University and New York State University College at Potsdam