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1. Introduction

Let s/ be a class of rings, and let L{stf) denote the lower radical class deter-
mined by s/. In [3] Yu-Lee Lee showed that L{s/) may be constructed in the
following manner: Let H(s/) be the class of all homomorphic images of rings in
j&. For each ring R, let Dt (R) be the set of all ideals of R, and by induction define
Dn+l(R) to be the family of all rings which are ideals of some ring in Dn(R) and
set D(R) = u {Dn(R): n = 1, 2, 3, • • •} which is commonly known as the here-
ditary closure of R. A ring R is called an L(s/) — ring if D(R/I) contains a non-
zero ring which is isomorphic to a ring in H(s/) for each ideal / of R and / # R
i.e., if each non-zero homomorphic image of R contains an accessible subring
isomorphic to a ring in H(s/). In [4] Yu-Lee Lee proved that any class stf of rings
determines an upper radical property <&(J</).

The following theorem was conjectured by Yu-Lee Lee: Let s/t be a homo-
morphically closed and hereditary class of rings (/ = 1, 2). Then L(s2\ n J&2) =
L(jtft) n L(stf2). The purpose of this paper is to prove this theorem and, in ad-
dition, to prove an "intersection theorem" for upper radicals. In this paper we
shall use the following notation: I ^ R signifies that / is an ideal of the ring R.

We shall use the following theorem which is due to A. E. Hoffman and W. G.
Leavitt [2]. Theorem. If ^ is a hereditary class, then L(s&) is hereditary.

Since we shall be concerned with the intersections of radical classes, we shall
often employ (without specifically noting it) the following useful proposition.
We mention that T. L. Jenkins in [1 ] proved an analogous proposition for here-
ditary radicals.

PROPOSITION. Let Px and P2 be radical classes in some universal class "W of
rings, and define T(R) = P^R) n P2(R), and set T = {ReW : T{R) = R). Then
T = P1nP2.

PROOF. R e T iff R = T(R) = /\(R) n P2(R)

iff R = Pt(R) = P2(R)

P1 nP2.
1 This research was supported partially by Kansas State University Research Grant No.
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2.

THEOREM 1. Let stf\ be a homomorphically closed and hereditary class of
rings (i = 1, 2). Then L(^t n s/2) = L(s#\) n L(s/2).

PROOF. Since L{$2\ n s/2) £ ^O^j) for i = 1, 2, we have L(s/t n J ^ 2 )

£ L ( J ^ I ) n L(s/2). Thus let ReL(^t) n L ( J ^ 2 )
 a n d let / be a proper ideal of

/?. Now ReL^i) implies D(R/I)ns/1 # 0, hence let Ae D(R/I) n J^^
Since Z.(^i) n £ (^2) is hereditary [2] and since RjIeL^^) n L(JI/2), we have
£(#//) £ L(j/i) n L(s/2); and so ^ eZ,(j/x) n L(«s/2), viz., vi eL(s/2). But
^ e L ( J / 2 ) implies Z)(^) n «a/2 # 0. Thus let 0 # 5 e O(^) n J / 2 . Now ^ is
hereditary, and 4̂ e J / X , so that D(A) ̂  ja^j. Hence B e J / X n ^/2 . But D{A)
£ i)(^//) so that BeD(R/I) n ( J ^ ! n ja/2). Therefore Z>(i?//) n ( J / X n j ^ 2 )
# 0. Thus ReL^i) n L{s/2) implies ReL(stf1 n J / 2 ) . This completes the
proof of Theorem 1.

NOTE. By an inductive argument L(f)"=1 =J/,) = f)"=1 L(s/i), where ^/, is a
class of rings which is both homomorphically closed and hereditary for i =
1, 2, •••,«. Next we provide an example for which L(s/ n £%) is a proper subset
of L(s/) n

EXAMPLE. Let Z denote the ring of integers, and let (4) denote the principal
ideal of Z generated by the integer 4. Let Z/(4) denote the ordinary quotient ring,
and let R = {0 + (4), 2 +(4)}. Let stf = H({(Z/(4))/R, R}) and 38 = H({Z/(4)})
denote the homomorphic closures of the classes {(Z/(4))/R, R} and {Z/(4)}
respectively. It is easy to see that the only proper ideal of Z/(4) is R and the ring
Z/(4) cannot be mapped homomorphically onto its ideal R. We also note that the
only subrings of Z/(4) are Z/(4), R, 0 • • • none of which is a field (hence none is
isomorphic with (Z/(4))/R).

Now s/ n@ = H{{(Z/(4))/R}), and (Z/(4))/i? is simple; therefore each ring
in s/ n 38 is either 0 or else isomorphic with (Z/(4))/R. Since Z/(4) has no subring
isomorphic to the field (Z/(4))/R, then Z/(4) $ L(3? n 38), in fact, L(s/ n 38)
(Z/(4)) = 0. Certainly Z/(4) e L{38), and also Z/(4) e L(s/), because each non-
zero homomorphic image of Z/(4)[(Z/(4))/R, Z/(4)] contains a non-zero subring
in stf. Thus Z/(4) e L(s/) n L(38) and hence L(s/ n 38) is a proper subset of

We note that s/ is hereditary, because both (Z/(4))/R and R are simple
rings. However, 28 is not hereditary, because R ^ Z/(4) e 38, but R$ 38.

For a class ^ of rings, let @(~#) denote the upper radical class determined
by the class Jt'. The following theorem is similar to 2.3.3 of [1, p. 28].

THEOREM 2. Let J / and 38 be classes of rings. Then <B(s^ u 38) =
n ©(#).

PROOF. First, since each ring in ^ / is in s/ u ^ , then each ring in s/ is
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3( . j / u 88) - semi-simple. Then since <3(<s/) is the largest radical for which
every ring in si is semi-simple, we must have <B(s/ KJ 38*) <=, <S>(s/.) Similarly
® ( ^ u J1) £ ©( J1), and so @(j/ u J1) £ ©(<*/) n ©( J1). Now let tf e J / u ®.
If Res/, then (©(<£/))(/?) = 0 and so (@00 n <S(&))(R) = 0. Similarly, for
R e @, ( @ ( J / ) n @(^))(i?) = 0. Thus every ring in s/ u ^ is @ ( J / ) n ©(^)-
semi-simple. Since @(«s/ u ^") is the largest radical for which every ring in
•$/ u -3S is semi-simple, we must have @(ja/) n @(^) £ &($/ u ^ ) . Hence
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