On common fixed points for a family of mappings

S.A. Husain and V.M. Sehgal

Abstract

The purpose of this paper is to obtain some common fixed point theorems for a family of mappings in a complete metric space. The results herein improve some of the recent theorems of Kiyoshi Iséki (BuZZ. Austral. Math. Soc. 10 (1974), 365-370).

1.

In a recent paper [1], Iséki has given some sufficient conditions for the existence of a common fixed point for a sequence of self mappings of a complete metric space. The purpose of this paper is to obtain some common fixed point theorems for a family of mappings under conditions that are considerably weaker than considered in [1]. The results herein improve the results in [1] and several other known results ([2], [3], [4], [5]).

Throughout this paper, let (X, d) be a complete metric space and R^{+} the nonnegative reals. Let ψ denote a family of mappings such that each $\phi \in \psi, \phi:\left(R^{+}\right)^{5} \rightarrow R^{+}$, and ϕ is continuous and nondecreasing in each coordinate variable.

THEOREM 1. Let f, g be self mappings of X. Suppose there exists a $\phi \in \psi$ such that for $a l Z x, y \in X$,
(1) $d(f x, g y) \leq \phi(d(x, f x), d(y, g y), d(x, g y), d(y, f x), d(x, y))$,
where ϕ satisfies the condition: for any $t>0$,
(2)

$$
\phi\left(t, t, a_{1} t, a_{2} t, t\right)<t, a_{i} \in\{1,2\} \text { with } a_{1}+a_{2}=2
$$

Received 26 June 1975.

Then there exists $a \quad u \in X$ such that
(a) $f u=g u=u$ and
(b) u is the unique fixed point of each f and g.

Proof. Define a sequence $\left\{x_{n}\right\}$ in X as follows. Let $x_{0} \in X$, $x_{1}=f x_{0}, x_{2}=g x_{1}$, and inductively, for each $n \in I^{+}$(positive integers),

$$
x_{2 n-1}=f x_{2 n-2}, \quad x_{2 n}=g x_{2 n-1}
$$

Let $\quad d_{n}=d\left(x_{n}, x_{n+1}\right)$. Since $d\left(x_{2 n-1}, x_{2 n+1}\right) \leq d_{2 n-1}+d_{2 n}$, it follows by (1) that, for each $n \in I^{+}$,

$$
\begin{equation*}
d_{2 n}=d\left(f x_{2 n}, g x_{2 n-1}\right) \leq \phi\left(d_{2 n}, d_{2 n-1}, 0, d_{2 n-1}+d_{2 n}, d_{2 n-1}\right) \tag{3}
\end{equation*}
$$

Now, if for some $n \in I^{+}, d_{2 n}>d_{2 n-1}$, then (3) will imply that

$$
d_{2 n} \leq \phi\left(d_{2 n}, d_{2 n}, 0,2 d_{2 n}, d_{2 n}\right)<d_{2 n},
$$

a contradiction. Hence $d_{2 n} \leq d_{2 n-1}$. Similarly, it follows that $d_{2 n+1} \leq d_{2 n}$ for each $n \in I^{+}$. Consequently, $\left\{d_{n}\right\}$ is a nonincreasing sequence in R^{+}and hence there is a $r \in R^{+}$such that $d_{n} \rightarrow r$. Clearly $r=0$, for otherwise, by (3),

$$
r \leq \phi(r, r, 0,2 r, r)<r,
$$

a contradiction. Thus

$$
\begin{equation*}
d_{n}=d\left(x_{n}, x_{n+1}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

We show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. In view of (4) it suffices to show that the sequence $\left\{x_{2 n}\right\}$ is Cauchy. Suppose that $\left\{x_{2 n}\right\}$ is not a Cauchy sequence. Then there is an $\varepsilon>0$ such that for each even integer $2 k, k \in I^{+}$, there exist integers $2 n(k)$ and $2 m(k)$ with $2 k \leq 2 n(k)<2 m(k)$ such that

$$
\begin{equation*}
d\left(x_{2 n(k)}, x_{2 m(k)}\right)>\varepsilon \tag{5}
\end{equation*}
$$

Let, for each integer $2 k, k \in I^{+}, 2 m(k)$ be the least integer
exceeding $2 n(k)$ satisfying (5); that is

$$
\begin{equation*}
d\left(x_{2 n(k)}, x_{2 m(k)-2}\right) \leq \varepsilon \text { and } d\left(x_{2 n(k)}, x_{2 m(k)}\right)>\varepsilon \tag{6}
\end{equation*}
$$

Then, for each integer $2 k, k \in I^{+}$,

$$
\varepsilon<d\left(x_{2 n(k)}, x_{2 m(k)}\right) \leq d\left(x_{2 n(k)}, x_{2 m(k)-2}\right)+d_{2 m(k)-2}+d_{2 m(k)-1}
$$

Therefore, by (4) and (6), we obtain

$$
\begin{equation*}
d\left(x_{2 n(k)}, x_{2 m(k)}\right) \rightarrow \varepsilon \text { as } k \rightarrow \infty \tag{7}
\end{equation*}
$$

It now follows immediately from the triangular inequality that

$$
\left|d\left(x_{2 n(k)}, x_{2 m(k)-1}\right)-d\left(x_{2 n(k)}, x_{2 m(k)}\right)\right| \leq d_{2 m(k)-1}
$$

and

$$
\left|d\left(x_{2 n(k)+1}, x_{2 m(k)-1}\right)-d\left(x_{2 n(k)}, x_{2 m(k)}\right)\right| \leq d_{2 m(k)-1}+d_{2 n(k)}
$$

and hence, by (6) as $k \rightarrow \infty$,

$$
\begin{equation*}
d\left(x_{2 n(k)}, x_{2 m(k)-1}\right) \rightarrow \varepsilon, \quad d\left(x_{2 n(k)+1}, x_{2 m(k)-1}\right) \rightarrow \varepsilon \tag{8}
\end{equation*}
$$

For simplicity of the notation, let, for each $k \in I^{+}$,

$$
\begin{aligned}
& r(2 k)=d\left(x_{2 n(k)}, x_{2 m(k)}\right) \\
& s(2 k)=d\left(x_{2 n(k)}, x_{2 m(k)-1}\right)
\end{aligned}
$$

and

$$
t(2 k)=d\left(x_{2 n(k)+1}, x_{2 m(k)-1}\right)
$$

Then, since $r(2 k) \leq d_{2 n(k)}+d\left(f x_{2 n(k)}, g x_{2 m(k)-1}\right)$, it follows by (1) that

$$
r(2 k) \leq d_{2 n(k)}+\phi\left(d_{2 n(k)}, d_{2 m(k)-1}, r(2 k), t(2 k), s(2 k)\right)
$$

and hence it follows by (2), (7), and (8) that

$$
\varepsilon \leq \phi(0,0, \varepsilon, \varepsilon, \varepsilon)<\varepsilon,
$$

contradicting the existence of an $\varepsilon>0$. Consequently, $\left\{x_{n}\right\}$ is a Cauchy sequence and hence, by completeness, there is a $u \in X$ such that $x_{n} \rightarrow x$. We show that $f(u)=g(u)=u$. Now, since $x_{2 n}=g x_{2 n-1}$,

$$
d\left(f u, x_{2 n}\right) \leq \phi\left(d(u, f u), d_{2 n-1}, d\left(u, x_{2 n}\right), d\left(x_{2 n-1}, f u\right), d\left(x_{2 n-1}, u\right)\right)
$$ Therefore, as $n \rightarrow \infty$ in the above inequality, we obtain

$$
d(f u, u) \leq \phi(d(u, f u), 0,0, d(u, f u), 0),
$$

and hence, by the nondecreasing property of ϕ, it follows that $f u=u$. A similar argument applied to $d\left(x_{2 n+1}, g u\right)$ yields $g u=u$. This proves (a). To prove (b) suppose there is a $v \neq u$ for which $g v=v$. Let $r=d(u, v)>0$. Then

$$
r=d(f u, g v) \leq \phi(0,0, r, r, r)<r,
$$

contradicting $r>0$. Thus $v=u$. A similar argument shows that u is the unique fixed point of f also. This proves (b).
2.

In the following, let F denote a family of self mappings of X and, for each $f, g \in F$, let $a=a(f, g)$ indicate that a depends on f and g.

The following is an immediate consequence of Theorem 1.
THEOREM 2. Let F satisfy the condition: for each pair $f, g \in F$, there exists a $\phi=\phi(f, g) \in \psi$ satisfying (1) and (2). Then there is a $u \in X$ such that
(a) $f u=u$ for each $f \in F$ and
(b) u is the unique fixed point for each $f \in F$.

The following special case of Theorem 2 provides an extension of Theorem l in [1].

COROLLARY 1. Let F satisfy the condition: for each pair $f, g \in F$ there exist nonnegative reals $\alpha=\alpha(f, g), \beta=\beta(f, g)$, and a $\gamma=\gamma(f, g)$ with $2 \alpha+2 \beta+\gamma<1$ such that for all $x, y \in X$,

$$
d(f x, g y) \leq \alpha(d(x, f x)+d(y, g y))+\beta(d(x, g y)+d(y, f x))+\gamma d(x, y) .
$$

Then F has a unique common fixed point.
Proof. Define $\phi=\phi(f, g):\left(R^{+}\right)^{5} \rightarrow R^{+}$by

$$
\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=\alpha\left(t_{1}+t_{2}\right)+\beta\left(t_{3}+t_{4}\right)+\gamma t_{5} .
$$

Then $\phi \in \psi$ and satisfies (2). Clearly, each pair $f, g \in F$ satisfies (1) with respect to $\phi=\phi(f, g)$. The conclusion now follows by Theorem 2.

The following result contains some of the results of Srivastava and Gupta [5], Reich [2], Sehgal [3, 4], and others.

COROLLARY 2. Let F satisfy the condition: for each pair $f, g \in F$, there exist positive integers $m=m(f, g)$ and $n=n(f, g)$ and $a \phi=\phi(f, g) \in \psi$ satisfying (2) such that for alZ $x, y \in X$,
(9) $d\left(f^{m} x, g^{n} y\right) \leq \phi\left(d\left(x, f^{m} x\right), d\left(y, g^{n} y\right), d\left(x, g^{n} y\right), d\left(y, f^{m} x\right), d(x, y)\right)$.

Then F has a common fixed point which is the unique fixed point of each $f \in F$.

Proof. Let $f_{1}=f^{m}$ and $g_{1}=g^{n}$. Then the pair f_{1}, g_{1} satisfies the conditions of Theorem I and hence there is a $u \in X$ with $f^{m} u=g^{n} u=u$ and u is the unique fixed point of f^{m} and g^{n}. Since $f^{m}(f u)=f\left(f^{m} u\right)=f u$, it follows that $f u=u$ and, similarly, $g u=u$ and u is the unique fixed point of f and g. If $h \in F$, then by the above argument, the pair f, \hbar has a common fixed point $v \in X$ and v being a fixed point of f, it follows that $v=u$.

3.

In this section we obtain some generalizations of Theorem 2 and Theorem 3 in [1].

THEOREM 3. Let g and a sequence $\left\{f_{n}\right\}$ be self mappings of X such that $f_{n} \rightarrow g$ uniformly. Suppose for each $n \geq 1, f_{n}$ has a fixed point x_{n} and g satisfies the condition: for all $x, y \in X$,

$$
\begin{equation*}
d(g x, g y) \leq \phi(d(x, g x), d(y, g y), d(x, g y), d(y, g x), d(x, y)) \tag{10}
\end{equation*}
$$ for some $\phi \in \psi$ satisfying (2). If x_{0} is the fixed point of g and $\sup d\left(x_{n}, x_{0}\right)<\infty$, then $x_{n} \rightarrow x_{0}$.

Proof. Note that g has a unique fixed point x_{0} by Theorem 1.

Since $f_{n} x_{n}=x_{n}$ and $f_{n} \rightarrow g$ uniformly, it follows that $d\left(f_{n} x_{n}, g x_{n}\right)=d\left(x_{n}, g x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let $\varepsilon=1$ im sup $d\left(x_{n}, x_{0}\right)$. Then, since $d\left(g x_{n}, x_{0}\right) \leq d\left(g x_{n}, x_{n}\right)+d\left(x_{n}, x_{0}\right)$, it follows by (10) that

$$
\begin{aligned}
& d\left(x_{n}, x_{0}\right) \leq d\left(x_{n}, g x_{n}\right)+d\left(g x_{n}, g x_{0}\right) \\
& \leq d\left(x_{n}, g x_{n}\right)+\phi\left(d\left(x_{n}, g x_{n}\right), 0, d\left(x_{n}, x_{0}\right), d\left(g x_{n}, x_{n}\right)\right. \\
&\left.+d\left(x_{n}, x_{0}\right), d\left(x_{n}, x_{0}\right)\right) .
\end{aligned}
$$

This implies that

$$
\varepsilon \leq \phi(0,0, \varepsilon, \varepsilon, \varepsilon)
$$

and hence $\varepsilon=0$ and, consequently, $x_{n} \rightarrow x_{0}$.
REMARK. If in Theorem 3, condition (10) is replaced by

$$
d(g x, g y) \leq \alpha(d(x, g x)+d(y, g y))+\beta(d(x, g y)+d(y, g x))+\gamma d(x, y),
$$

where α, β, γ are some nonnegative reals with $2 \alpha+2 \beta+\gamma<1$, then it is easy to show [1] that $\sup d\left(x_{n}, x_{0}\right)<\infty$. Thus Theorem 3 improves Theorem 2 in [1].

THEOREM 4. Let $\left\{f_{n}\right\}$ be a sequence of self mappings of X satisfying the condition: there is $a \phi \in \psi$ satisfying (2) such that for aZZ $x y \in X$ and $n \geq 1$,

$$
d\left(f_{n} x, f_{n} y\right) \leq \phi\left(d\left(x, f_{n} x\right), d\left(\dot{y}, f_{n} y\right), d\left(x, f_{n} y\right), d\left(y, f_{n} x\right), d(x, y)\right)
$$

Let x_{n} be the fixed point of f_{n} (given by Theorem 1) and Let $g: X \rightarrow X$ such that $f_{n} \rightarrow g$. If x_{0} is any cluster point of the sequence $\left\{x_{n}\right\}$ then $g x_{0}=x_{0}$.

Proof. Let $x_{n_{i}} \rightarrow x_{0}$. Since $f_{n} \rightarrow g$, therefore $d\left(f_{n_{i}} x_{0}, g x_{0}\right) \rightarrow 0$. Furthermore, for each $i \geq 1$,

$$
d\left(x_{n_{i}}, f_{n_{i}} x_{0}\right) \leq a_{i}=d\left(x_{n_{i}}, x_{0}\right)+d\left(x_{0}, g x_{0}\right)+d\left(g x_{0}, f_{n_{i}} x_{0}\right) \rightarrow d\left(x_{0}, g x_{0}\right)
$$

and

$$
d\left(x_{0}, f_{n_{i}} x_{0}\right) \leq b_{i}=d\left(x_{0}, g x_{0}\right)+d\left(g x_{0}, f_{n_{i}} x_{0}\right) \rightarrow d\left(x_{0}, g x_{0}\right)
$$

Thus for each $i \geq 1$,

$$
\begin{aligned}
d\left(x_{0}, g x_{0}\right) & \leq d\left(x_{0} x_{n_{i}}\right)+d\left(f_{n_{i} n_{i}}, f_{n_{i}} x_{0}\right)+d\left(f_{n_{i}} x_{0}, g x_{0}\right) \\
& \leq d\left(x_{0}, x_{n_{i}}\right)+\phi\left(0, b_{i}, a_{i}, d\left(x_{n_{i}}, x_{0}\right), d\left(x_{n_{i}}, x_{0}\right)\right)
\end{aligned}
$$

Therefore, as $i \rightarrow \infty$,

$$
d\left(x_{0}, g x_{0}\right) \leq \phi\left(0, d\left(x_{0}, g x_{0}\right), d\left(x_{0}, g x_{0}\right), 0,0\right)
$$

which implies $g x_{0}=x_{0}$.

References

[1] Kiyoshi Iséki, "On common fixed points of mappings", Bull. Austral. Math. Soc. 10 (1974), 365-370.
[2] Simeon Reich, "Some remarks concerning contraction mappings", Canad. Math. Bull. 14 (1971), 121-124.
[3] V.M. Sehgal, "On fixed and periodic points for a class of mappings", J. London Math. Soc. (2) 5 (1972), 571-576.
[4] V.M. Sehgal, "Some fixed and common fixed point theorems in metric spaces", Canad. Math. BuZl. 17 (1974), 257-259.
[5] Pramila Srivastava and Vijay Kumar Gupta, "A note on common fixed points", Yokohama Math. J. 19 (1971), 91-95.

Department of Mathematics, University of Wyoming,

Laramie,
Wyoming,
USA.

