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PERFECT MCLAIN GROUPS ARE SUPERPERFECT

A.J. BERRICK AND R.G. DOWNEY

It is shown that if a McLain group is perfect, then it is super-

perfect. The proof involves demonstrating that any dense

linearly ordered set has the apparently stronger property of

being superdense.

1. Introduction

The study of McLain groups M(S, F) offers an attractive interplay

between group theory and combinatorial set theory. This arises from the

choice of a linearly ordered set S in the definition. Recall (from, for

example, [4], (6.2)) that this involves considering the vector space V

over the field F whose basis elements v are indexed by elements of

x

S . M(S, F) is then the group of linear transformations of V into

itself generated by those transformations of the form 1 + ae (a e F ,
x < y in S ), where e sends V to v and annihilates the rest of

the basis. A simple example of the interaction referred to is the well-

known result (proved, for convenience, in §3 below).

PROPOSITION 1.1. M(S, F) is perfect if and only if S is dense.

Here we follow standard terminology, calling a group perfect if

generated by commutators of its elements, and a set 5 dense if whenever

x < z in S then there exists y in (x, z) (that is, x < y < z ).
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Our aim is to provide a significant strengthening of this result, as

follows. (A perfect group M is said to be superperfeot if every

homomorphism onto M having central kernel is split.)

THEOREM 1.2. If M(S, F) is -perfect, then it is superperfeot.

The homological interpretation of this result is that (for trivial

integer coefficients) H [M{S, F)) = 0 implies H2[M(S, F)) = 0 . This

naturally leads one to ask whether it also implies that H.[M{S, F)) = 0

for all i > 1 . In other words:

Are perfect McLain groups acyclic?

Although we do not answer the question, this note does suggest that

its answer may well lie in a deeper understanding of the nature of dense

linearly ordered sets. For the proof of Theorem 1.2 given below consists

first in showing that dense linearly ordered sets have an apparently

stronger property. We say that S is superdense if it admits a superdense

filtration S c S c S ... (so that S = US. ) , that is, one for which,

whenever x < z in any S. , there exists y in 5. \5. with

x < y < z . Section 2 below is devoted to proving:

PROPOSITION 1.3. If S is dense, then it is superdense.

This extra structure is employed in Section 3 to give a group-

theoretic proof of the following:

PROPOSITION 1.4. If S is superdense, then M{S, F) is super-

perfect.

Our theorem is of course immediate from the three propositions. It

should be remarked that the theorem can also be established without

invoking the notion of superdensity [2], albeit at the expense of rather

more group theory. The proof of Proposition l.U can be seen as group-

theoretically simpler, in much the same way as the proof of super-

perfectness of Steinberg groups in [I] simplifies that in [3] by exploiting

the canonical filtration of the index set (the natural numbers), and so

avoiding the need to establish the equivalence of all possible candidates

for splittings. Also, of course, Section 2 is likely to be of interest in

its own right.
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2. Set theory

In this section we prove Proposition 1.3- Suppose that S is a dense

linearly ordered set. We shall say a sequence [C.} of non-empty subsets

C C , ... of S is a d-seqvuence for S if

(i) C. r> C . = 0 whenever i # j ,
% 0

( i i ) C is topologiaally dense in UC (that i s , intersects

each interval (x, t/) of UC. J, and

( i i i ) given x < y in any C. , then each C. (j > •£)

intersects (x, y) •

Consider the collection C of d-sequences. I t is non-void, because

the density of S ensures that , up to order-isomorphism (and al l countable

linearly ordered sets without endpoints are, after Cantor, order-

isomorphic), a copy of the rationals $ may be embedded in S . Then a

d-sequence {$•} is defined inductively by setting Q = Z[2 J , and, for

3 > 1 , Q. = z | 2 " 1 , 3"1, 5"1, • • - , P j + J ^ - . ! ' w h e r e Pk denotes the

kth prime number. (Thus 2 2 , 3 , . . . , p, comprises those rationals

that may be expressed as finite sums of the form q = Y \L a -P~

with each a • an integer. So UQ. = Q .)
yi jit i'

Now p a r t i a l l y order C by defining [C.} < {C.} i f C. < C. for a l l

i = 0, 1 , 2 , . . . . Given any chain [c•)X^K » define \C\\ by

<J. = U C. . Then the CT's are pairwise d i s j o i n t , for otherwise

x 6 CT n <J. implies tha t x £ C. n C. for some S G A . Similarly we may
i* 3 i 3

verify that propert ies ( i i ) and ( i i i ) hold for \C-\ • Hence each chain

has an upper bound.

An applicat ion of Zorn's lemma now yields a maximal d-sequence

\M.\ . We claim tha t UM. - S . To prove t h i s , we dis t inguish two cases.
' u 2.
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CASE 1. Some interval (a, b) of S is disjoint from M = LW. .
Is

In th is event, as (a, b) is dense, we again embed Q in (a, b) .

As before, let \Q•} be a d-sequence for Q , and consider \M. U Q.} .
If 1s Is

This sequence clearly satisfies condition (i), leaving (ii) and (iii) to be

checked in order to demonstrate that it is a d-sequence. First, M <J Q

is dense in U[M. U Q.) 5 for suppose w G M and 2 6 U9. with W < z .
Is tf It

Then there exists x £ U§. such that x < z . However, since
1s

(a, b) r> M = 0 , this implies that W < a < x < z . From the fact that

{Q.} is a d-sequence, there exists y 6 {x, z) <"> Qn , giving

W<a<x<y<z . This clinches ( i i ) . Similar reasoning accounts for

( i i i ) . Thus \M. U Q.} is indeed a d-sequence, contradicting the

maximality of \M.} . Hence this case cannot occur.

1s

CASE 2. Each interval of S intersects M .

Here M i s topologically dense in S . As AL is topologically

dense in M , i t must therefore also be topologically dense in S . Take
any element a e S \ U M. . Define a new sequence \M'.} via

v>X % ^
M' = M' <J {a} and M'. = M. for i > 1 . Again we assert that this is a

u u % if

d-sequence. Only ( i i i ) needs to be checked. Therefore suppose x £ M

with a < x , say. Because M is topologically dense in S , we may find

y £ (a;, a) n Mn . From the fact that {M.} is a d-sequence, for any
\S Is

j > 1 , M'. = M. intersects (x, y) and thereby (x, a) . So [Ml] is a
3 3 ^

d-sequence too. Maximality of {Af.} now ensures that each M[ = M. ; in
If U Is

particular a £ M. • So M = 5 , as earlier claimed.

i
Now define (for i = 0, 1, . . . ) S. = U M. . Then S c 5, c . . .

* j=0 J ° 1

is evidently a superdense f i l t rat ion of S •

The proof above may be adapted to show that i f 5 is dense, then

S = UT. where the y . ' s are topologically dense, pairwise disjoint sub-
"If 1r

orderings of 5 . (In particular, for S = Q , our given d-sequence has
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this property.) On the other hand, dense S may have a superdense

filtration S c S c . . . with no S. topologically dense in S . (For
0 1 l*

example, given any non-trivial linearly ordered set L , consider S = © L
M

(summed finitely and ordered lexicographically), and define S. to
Is

comprise those elements of S that are everywhere zero after the (i+l)st

coordinate. In particular, this applies to S = Q by choice of L = Q

again.) It is an open question whether such a filtration is possible for

arbitrary dense S .

3. Group theory

We first establish Proposition 1.1. Both for this and subsequent

arguments it is helpful to have a presentation for M(S, F) . We already

have {l+ae | a 6 F, x < y in s} as a generating set. Moreover the

composition laws e e = e and e e = 0 if y # z readily lead to
* xy yz xz xy zt a J

relations (for arbitrary a, b £ F and x, y, z, t E S )

(3-1) (l+ae }{l+be } = 1 + {a+b)e
v xy v xyJ xy

( 3 . 2 ) l1+aexy> 1+beyzl = X + abexz '

and

(3-3) [l+ae , 1+be^ = 1 if x * t and y * z .

(Here [g, h] is the commutator ghg~ h~ .)

To decide whether or not any other relation is a consequence of these,

consider any finite product of the generators which is not made trivial by

(3-l)-(3-3). The given relations enable such a product to be rewritten in

the form

(l+ae ) T T (l+fo e ) T T (l+e e )
¥ o x>x X ̂ 0 x ** "V

y<y0

for suitable xQ < yQ in 5 and non-zero a in F . However, as a

product of transformations this expression sends the basis element v to
X0
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some linear combination which includes v with coefficient a , and is
yo

therefore non-trivial. This means

LEMMA 3.4. M(S, F) is generated by all 1 + ae with a e F ,
xy

x < y in S , subject only to the relations (3.l)-(3.3).

It follows immediately from (3.2) that M = M{S, F) is perfect when-

ever S is dense. On the other hand, if S is not dense, then let

[x , y ) be empty in 5 . Map M to the additive group of F by sending

1 + ae to a , and all other generators 1 + ae to 0 £ F . In

xQyQ m
view of (3-l)-(3-3) this defines a non-trivial homomorphism from M to an

abelian group; thus no element 1 + ae can be a product of
(TO

commutators and M cannot be perfect. This clinches Proposition 1.1.

For consideration of Proposition l.U wo first perform a

simplification, based on the fact that the homology of a group is the

direct limit of the homology of its finitely generated subgroups. Note

that, for a fixed superdense filtration S c S c S c ... on S , any

finite subset of S is contained in some subset S' of S such that each

S' = S. n S is finite and 5' <= S' c S' c . .. is a superdense filtration
1' t- U 1 d

on S' . I t therefore suffices to show that each such M{S', F) is super-

perfect; accordingly, since each such S' is dense in i tself , we may as

well assume that our original S and i t s superdense f i l t rat ion have this

"locally-finite" form.

In order to prove Proposition l.U we s tar t with an arbitrary

epimorphism (J> : G •+• M whose kernel K l ies in the centre Z(G) of G .

We produce a spl i t t ing a : M -*• G (that i s , [l+ae )a<i> = 1 + ae for
xy xy

all a j x, y \ • To this end we use the superdense filtration

5 n c S-. <= So ••• on S , to filter M as U M. with Af < M < ...
o s. d i2Q i o i

where M. is the subgroup generated by all elements of the form
v

1 + ae > a G F , x, y ̂  S. • For each i > 1 we shall define

a. : M. , •*• G splitting 6 over M. . These splittings are compatible
i, t—± 1—x

(that is, combine as a splitting over the inductive limit M of the
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subgroups M. ) because of the following lemma applied to the fact (obvious

from (3.2)) that M. < [M. , M.] .

LEMMA 3.5. Let \ : [H, H] + H and K ; J •+ J/Z(J) denote the

obvious inclusion and projection homomorphisms. If a, 3 : H •*• J have

a< = BK j then la = \& .

This lemma is a consequence of the observation that, because a and

& agree modulo Z(J) , then for any h, h' G g ,

[(h)a, (h')a] = [(h)BZ(J), (h')BZ(J)] = [(h)&, (h')$] .

Our task, once o. has been defined, is to show that it is a

homomorphism, in other words, respects the relations (3.l)-(3-3). For the

definition first, for each x in 5. choose an element y of S.\S.
1—1 I' 1—X

such that x < y < z whenever x < z in S. (possible, since the
t'—J.

superdense f i l t ra t ion is also locally f in i te ) . Then, with a denoting
wv

the X-coset [l+ae^f in G , let

By virtue of the centrality of K , the right-hand expression determines a

single element of G . In particular, because g = K , so

yz

Next, recall the following facts from [7, p. 68].

In any group G , for u, v, w e G ,

[ i u , v ] , w]
(a) = [u, v][w, v][v, wu]

(b) = [ [ a , v ] , [ w , v ] ] [ [ v , w ) , u] i f [ u , w] G Z(G)

( c ) = 1 if also [v, w] G Z(G) .

Here (a) i s obtained by straightforward mul t ip l ica t ion , and (b) by

subst i tu t ion for [u, wu] = [u, uw] in ( a ) . Let us use (c) to prove tha t

0 respects (3 -3) , by noting t h a t , for s , t , u, v G S. ,
1r
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(d) \fst> = 1 if s + v and t + u .

To see t h i s , take w G S. \S • with s < w < t and observe that

&st = r s u ' ^wt\ ' N e x t> b y u s i n S (a) (after rearrangement) and (d) i

turn, we have that

(l+aee ) ~\\ga [g1 / T 1 !
sj ayz' \^xy' yz]

l a+b\ Va -b
xy' 9yz [5 9

( e )

Thus o. also respect relations of type (3-1) • Lastly, for (3-2) we apply

(b), then (d), then (e), as follows;

If at' *«/a_| * t '

-ail fl

Thus O is a homomorphism after a l l , completing the proof of Proposition
l.U and hence Theorem 1.2.
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