BULL. AUSTRAL. MATH. SOC. Vol. 40 (1989) [37-48]

BOUNDED MEASURABLE SIMULTANEOUS MONOTONE APPROXIMATION

SALEM M.A. SAHAB

Let X = [a, b] be a closed bounded real interval. Let B be the closed linear space of all bounded real valued functions defined on X, and let $M \subseteq B$ be the closed convex cone consisting of all monotone non-decreasing functions on X. For $f, g \in B$ and a fixed positive $w \in B$, we define the so-called best L_{∞} -simultaneous approximant of f and g to be an element $h^* \in M$ satisfying

$$\max\left(\left\|f-h^*\right\|_w,\left\|g-h^*\right\|_w
ight)=d\leqslant \max\left(\left\|f-h\right\|_w,\left\|g-h\right\|_w
ight),$$

for all $h \in M$, where

$$\|f\|_{w} = \sup_{a \leqslant x \leqslant b} w(x)|f(x)|.$$

We establish a duality result involving the value of d in terms of f, g and w only.

If in addition f, g and w are continuous, then some characterisation results are obtained.

1. INTRODUCTION

Let X = [a, b] be a closed bounded interval of the real line. Let B = B(X) be the linear space of all bounded real valued functions defined on X. Let $M = M(X) \subseteq B$ be the closed convex cone of monotone non-decreasing functions defined on X. Given a fixed $w \in B$, $w(x) \ge \delta > 0$ for all $x \in X$, define a weighted uniform norm $\|.\|_w$ on B by

(1)
$$||f||_{w} = \sup(w(x)|f(x)|: x \in X).$$

The problem we are investigating in this paper is : Given f and g in B, find $h^* \in M$, if one exists, such that

(2)
$$d = \max(\|f - h^*\|_w, \|g - h^*\|_w) = \inf \max(\|f - h\|_w, \|g - h\|_w).$$

where the infimum is taken over all h in M. Such h^* is called a *best* L_{∞} -simultaneous approximant of f and g, abbreviated b.s.a. . Note that if $f \neq g$ then d > 0. Of course, when $w \equiv 1$, we have the usual well known uniform, or Tchebychev, norm.

Received 13 September 1988

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 \$A2.00+0.00.

S.M.A. Sahab

In [1] Ubhaya treated the case of the L_{∞} -approximation to a single function f by elements of M. He gave an explicit formula for computing d in terms of f and w only, where f is the function to be approximated with respect to the norm given by (1). He also characterised the set of all L_{∞} approximants of f, and he established properties of this solution set and its behaviour on some parts of X. In addition, if f, w are continuous, $f \notin M$, he proved the existence of an infinitely differentiable function $h \in M$ which is a best L_{∞} -approximant of f.

Our main objective here is to generalise Ubhaya's results to the simultaneous approximation case. In Section 2 we start with the elimination of the trivial possibilities of values of d compared to the value of the distance between M and either of f or q alone. Then we generalise the duality results established in [1]. We also show the existence of a function $h^* \in M$ satisfying (2), and we give an explicit expression of the set of all such solutions which clearly forms a convex subset of M.

For simplicity, we supress w from the norm notation in (1) and (2).

2. DUALITY AND CHARACTERISATION

LEMMA 1. Suppose that $f, g \in B \cap M$. Then $h^* = (f+g)/2$ is a best L_{∞} simultaneous approximant of f and g.

11.0

PROOF: Suppose there exists $h \in M$ such that

111 0

11 11 7 11 2

Then

$$\begin{aligned} \max\left(\|f-g\|,\|g-h\|\right) &< \max\left(\|f-h^*\|,\|g-h^*\|\right) = \|f-g\|/2.\\ \|f-g\| &= \|f-h+h-g\| \leq \|f-h\| + \|g-h\|\\ &< \|f-g\|/2 + \|f-g\|/2 = \|f-g\|.\end{aligned}$$

This is a contradiction! This establishes the Lemma. However it can be easily seen by П an example that h^* is not unique in general.

Remark 1. (i) When f = g we end up with the single approximation case discussed in [1].

(ii) If $f \neq g$, and there exists an element $f_{\infty} \in M$ such that $||g - f_{\infty}|| \leq ||f - f_{\infty}||$ and f_{∞} is a best L_{∞} -approximant of f, then clearly

$$\max \left(\left\| g - f_{\infty} \right\|, \left\| f - f_{\infty} \right\|
ight) = \left\| f - f_{\infty} \right\| \leqslant \left\| f - h \right\| \leqslant \max \left(\left\| f - h \right\|, \left\| g - h \right\|
ight)$$

for all $h \in M$ and hence f_{∞} is a best L_{∞} -simultaneuos approximant of f and g.

To this end, we shall exclude for all practical purposes the three cases encountered above in Lemma 1 and Remark 1. With this assumption in mind we proceed to the next step.

Let \triangle be the closed triangle given by

$$\triangle = \{(x,y) \in [a,b] \times [a,b] : x \leqslant y\}.$$

We also define the following

$$\begin{split} u(x,y) &= w(x)w(y)/(w(x) + w(y)); \\ \theta_1 &= \sup\{u(x,y)(f(x) - g(y)) : (x,y) \in \Delta\}; \\ \theta_2 &= \sup\{u(x,y)(g(x) - f(y)) : (x,y) \in \Delta\}; \\ \theta &= \max\{\theta_1, \theta_2\}; \\ T_1 &= \{(x,y) \in \Delta : u(x,y)(f(x) - g(y)) = \theta\} \\ T_2 &= \{(x,y) \in \Delta : u(x,y)(g(x) - f(y)) = \theta\}; \\ T &= T_1 \cup T_2; \\ P &= \bigcup\{[x,y] : (x,y) \in T\}; \\ m(x,y) &= (w(x)f(x) + w(y)g(y))/(w(x) + w(y)), \qquad x,y \in X. \end{split}$$

Finally define the functions \underline{h} and \overline{h} on [a, b] by

$$\underline{h}(x) = \sup\{[f(z) \lor g(z) - \theta/w(z)] : z \in [a, x]\},\$$

$$\overline{h}(x) = \inf\{[f(z) \land g(z) + \theta/w(z)] : z \in [x, b]\},\$$

where $f \lor g = \max(f, g)$ and $f \land g = \min(f, g)$.

Remark 2. (i) In general $\theta_1 \neq \theta_2$. We assume here that $\theta_2 \leq \theta_1 = \theta$.

- (ii) $T \neq \emptyset$. However T might consist of a single point (x, y) with $x \leq y$, hence P could consist of a single point $x \in [a, b]$.
- (iii) \underline{h} and \overline{h} are both monotone non-decreasing.
- (iv) $\theta = 0$ if and only if $f = g \in M$.
- (v) If h^* is a best L_{∞} -simultaneous approximant of f and g, then $h^* + c$ is a best L_{∞} -simultaneous approximant of f + c and g + c where c is a constant. Therefore we may assume without loss of generality that both f and g are non-negative and so is h^* .

Example. Let X = [0,1]. Define f and g as follows: f(0) = 3, f(1/3) = 0, f(2/3) = 5, f(1) = 4 and the graph of f is linear between these points. Let g(0) = 3, g(1/2) = 1, g(2/3) = 1, g(1) = 3 and the graph of g is linear between these points. Let $w \equiv 1$. Then $\theta_1 = (5-1)/4 = 2 > \theta_2 = (3-0)/2 = 3/2$, $T = \{(2/3,2/3)\}$ and $P = \{2/3\}$. Notice also that $\underline{h}(2/3) = \overline{h}(2/3) = m(2/3,2/3) = 3$, and $\underline{h}(x) < \overline{h}(x)$ for all $x \neq 2/3$. However $||f - \underline{h}|| = ||g - \underline{h}|| = ||f - \overline{h}|| = ||g - \overline{h}|| = 2 = \theta_1 = \theta$.

S.M.A. Sahab

Remark 3. By [1], the L_{∞} -distance between f and M is given by

$$heta_f = \sup_{(x,y)\in \Delta} u(x,y)(f(x) - f(y)).$$

Clearly $\theta \ge \max(\theta_f, \theta_g)$, because of the assumption following Remark 1.

THEOREM 2. Let f, g and w be as specified in Section 1. Let θ be as defined above. Then

(3)
$$\theta = d = \inf_{h \in M} \max(\|f - h\|, \|g - h\|)$$

Hence $\theta \leq \max(\|f\|, \|g\|)$.

PROOF: We show first that $\theta = \theta_1 \leq \eta = \max(\|f - h\|, \|g - h\|)$ for any arbitrary $h \in M$. So let $(x, y) \in \Delta$. Then

and $w(x)|f(x)-h(x)|\leqslant \|f-h\|\leqslant\eta,$ $w(y)|g(y)-h(y)|\leqslant \|g-h\|\leqslant\eta.$

By monotonicity of h, we have $h(y) - h(x) \ge 0$, so we obtain

$$\begin{split} f(x) - g(y) &\leq f(x) - g(y) + h(y) - h(x), \\ &\leq (w(x)|f(x) - h(x)|/w(x)) + (w(y)|g(y) - h(y)|/w(y)), \\ &\leq \|f - h\| / w(x) + \|g - h\| / w(y), \\ &\leq (1/w(x) + 1/w(y))\eta = (w(x) + w(y))\eta / w(x)w(y), \\ &\quad u(x,y)(f(x) - g(y)) \leq \eta. \end{split}$$

or

Since $(x, y) \in \Delta$ is arbitrary, we conclude that $\theta \leq \eta$. Since h was arbitrary, we get $\theta \leq d$. Next we show that $\theta = \max(\|f - \underline{h}\|, \|g - \underline{h}\|)$. Let $x \in [a, b]$. By the definition of \underline{h} , we have $\underline{h}(x) \geq f(x) \vee g(x) - \theta/w(x)$, or equivalently

(4)
$$w(x)(\underline{h}(x) - f(x)) \ge -\theta,$$

and

(5)
$$w(x)(\underline{h}(x) - g(x)) \ge -\theta.$$

Now, let $\varepsilon > 0$ be given. Then there exists $z \in [a, x]$ such that

$$\underline{h}(x) \leqslant f(z) \lor g(z) - \theta/w(z) + \epsilon$$

We have two symmetric cases to consider. It suffices to treat one of them:

Case 1. $f(z) \ge g(z)$, so

(6)
$$\underline{h}(x) \leq f(z) - \theta/w(z) + \varepsilon$$

By the definition of θ we have

(7)
$$\theta \ge (1/w(z) + 1/w(x))^{-1}(f(z) - g(x)),$$

or
$$f(z) - \theta/w(z) \le g(x) + \theta/w(x).$$

Combining (6) and (7) we obtain

$$\underline{h}(x) \leqslant g(x) + \theta/w(x) + \varepsilon.$$

Since ϵ was arbitrary, we conclude that $\underline{h}(x) \leq g(x) + \theta/w(x)$, or

(8)
$$w(x)(\underline{h}(x) - g(x)) \leq \theta$$

Thus (5) together with (8) imply that $\|\underline{h} - g\| \leq \theta$. It remains to show that $w(x)(\underline{h}(x) - f(x)) \leq \theta$. Indeed we have by the definition of θ together with Remark 3 that

or

$$\begin{aligned} \theta \ge \theta_f \ge (1/w(z) + 1/w(x))^{-1}(f(z) - f(x)), \\ f(z) - \theta/w(z) \le f(x) + \theta/w(x). \end{aligned}$$

It follows from (6) that $\underline{h}(x) \leq f(x) + \theta/w(x) + \epsilon$. Since ϵ was arbitrary, we conclude that $\underline{h}(x) \leq f(x) + \theta/w(x)$, or

(9)
$$w(x)(\underline{h}(x) - f(x)) \leq \theta.$$

Combining (4),(5),(8) and (9) shows that

$$\theta \ge \max\left(\left\|f - \underline{h}\right\|, \left\|g - \underline{h}\right\|\right).$$

This establishes the main part of the theorem. The inequality is obtained by putting $h \equiv 0 \in M$.

Remark 4. In light of Theorem 2, we see that in order to exclude the case given by Remark 1(ii) we can not have $\max g \leq \max f$ and $\min f \leq \min g$ where both of f and g are continuous on [a, b].

[5]

THEOREM 3. (Characterisation). Let \underline{h} , \overline{h} , θ and d be as defined earlier. Then \underline{h} , $\overline{h} \in M$, $\underline{h} \leq \overline{h}$ and $\theta = d = \max(\|f - \underline{h}\|, \|g - \underline{h}\|) = \max(\|f - \overline{h}\|, \|g - \overline{h}\|)$. Furthermore, for $h^* \in M$

(10)
$$\theta = d = \max(\|f - h^*\|, \|g - h^*\|)$$

holds if and only if $\underline{h} \leqslant h^* \leqslant \overline{h}$.

PROOF: By Remark 2(iii) we have \underline{h} , $\overline{h} \in M$. By Theorem 2 and a similar argument for \overline{h} we obtain

$$\theta = d = \max\left(\left\|f - \underline{h}\right\|, \left\|g - \underline{h}\right\|\right) = \max\left(\left\|f - \overline{h}\right\|, \left\|g - \overline{h}\right\|\right)$$

Suppose now that $h^* \in M$ and $\theta = \max(\|f - h^*\|, \|g - h^*\|) = d$. Let $x \in [a, b]$ be arbitrary but fixed, and let $\varepsilon > 0$ be given. By the definition of \underline{h} , there is $z \in [a, x]$ such that $\underline{h}(x) \leq f(z) \vee g(z) - \theta/w(z) + \varepsilon$. But

$$heta \geqslant \max\left(w(z)(f(z)-h^*(z)),w(z)(g(z)-h^*(z)))
ight),$$

which implies that

$$egin{aligned} & heta/w(z) \geqslant f(z) - h^*(z), & ext{and} & heta/w(z) \geqslant g(z) - h^*(z). \ & heta^*(z) \geqslant f(z) \lor g(z) - heta/w(z). \end{aligned}$$

Hence,

Thus $\underline{h}(x) \leq h^*(z) + \epsilon \leq h^*(x) + \epsilon$. Since ϵ was arbitrary we get $\underline{h}(x) \leq h^*(x)$. Letting $h^* = \overline{h}$ we end up with $\underline{h} \leq \overline{h}$. Similarly we show $h^* \leq \overline{h}$.

Next, let $\underline{h} \leq h^* \leq \overline{h}$. We show that $\max\left(\left\|f - h^*\right\|, \left\|g - h^*\right\|\right) = \theta$. Let $x \in X$.

$$\begin{array}{lll} \text{Then} & \theta \geqslant \max\left(w(x)(f(x) - \underline{h}(x)), w(x)(g(x) - \underline{h}(x)))\right), \\ & \geqslant \max\left(w(x)(f(x) - h^*(x)), (w(x)(g(x) - h^*(x)))\right) \\ \text{Also} & \theta \geqslant \max\left(w(x)(\overline{h}(x) - f(x)), w(x)(\overline{h}(x) - g(x))\right), \\ & \geqslant \max\left(w(x)(h^*(x) - f(x)), w(x)(h^*(x) - g(x))\right). \\ \text{This says that} & -\theta \leqslant w(x)(f(x) - h^*(x)) \leqslant \theta, \\ \text{and similarly} & -\theta \leqslant w(x)(g(x) - h^*(x)) \leqslant \theta. \\ \text{Hence} & \theta \geqslant \max\left(\|f - h^*\|, \|g - h^*\|\right). \end{array}$$

Equality follows from Theorem 2.

LEMMA 4. Suppose f, g and w are continuous. Then \underline{h} and \overline{h} are both continuous.

0

PROOF: By the definition of \underline{h} we may write for y > x,

$$\underline{h}(y) = \max\{\underline{h}(x), \max_{z \in [x,y]} (f(z) \lor g(z) - \theta/w(z))\}.$$
$$\underline{h}(y) - \underline{h}(x) = \max\{0, \max_{z \in [x,y]} (f(z) \lor g(z) - \theta/w(z) - \underline{h}(x))\}$$

Hence

But the fact that $\underline{h}(x) \ge f(x) \lor g(x) - \theta/w(x)$ implies that

$$0 \leq \underline{h}(y) - \underline{h}(x) \leq \max\{0, \max_{z \in [x,y]} \left((f(z) \lor g(z) - \theta/w(z)) - (f(x) \lor g(x) - \theta/w(x)) \right) \}.$$

Since f and g are both continuous, we have $f \vee g - \theta/w$ is also continuous. This establishes the continuity of \underline{h} . Similarly we obtain the continuity of \overline{h} .

THEOREM 5. Let f, g and w be continuous with $\theta > 0$. Then

(11)

$$P = \bigcup_{k=1}^{n} [a_{k}, b_{k}], \quad n \ge 1,$$

$$a \le a_{k} \le b_{k} \le b, \quad \text{for all } k = 1, \dots, n.$$
For $n \ge 2$
and

$$b_{k} < a_{k+1}, \quad k = 1, 2, \dots, n-1,$$
for all $k.$

PROOF: Clearly $m(x,y): [a,b] \times [a,b] \mapsto R$ is a continuous function. Let

$$\Gamma_i = \{\gamma : \gamma = m(x,y), (x,y) \in T_i\}; \qquad i = 1, 2,$$

Define an equivalence relation \sim on $T_i(i = 1, 2)$, by $(x_1, y_1) \sim (x_2, y_2) \iff m(x_1, y_1) = m(x_2, y_2)$, where $(x_1, y_1), (x_2, y_2) \in T_i$. Then the sets

$$T_1^{\gamma} = \{(x, y) \in T_1 : m(x, y) = \gamma\},\ T_2^{\gamma} = \{(x, y) \in T_2 : m(x, y) = \gamma\}.$$

are equivalence classes.

For each $\gamma \in \Gamma = \Gamma_1 \cup \Gamma_2$, let

	$T_{\gamma} = T_1^{\gamma} \cup T_2^{\gamma}.$
Also, let	$a_{\boldsymbol{\gamma}} = \inf\{x: (x,y) \in T_{\boldsymbol{\gamma}}\},$
and	$b_{oldsymbol{\gamma}} = \sup\{y: (x,y)\in T_{oldsymbol{\gamma}}\}.$

Clearly $a_{\gamma} = b_{\gamma}$ if and only if $T_{\gamma} = (x, x)$ for a single point $x \in [a, b]$. Suppose $a_{\gamma} < b_{\gamma}$. We assert that $m(a_{\gamma}, b_{\gamma}) = \gamma$, and so $(a_{\gamma}, b_{\gamma}) \in T_{\gamma}$. Indeed by the definitions

of inf and sup, there are sequences $(x_n, y_n), (u_n, v_n) \in T, n = 1, 2, ...$ such that $x_n \to a_\gamma$ and $v_n \to b_\gamma$. Let us assume without loss of generality that $(x_n, y_n) \in T_1$, so we obtain for all n,

(12)
$$m(x_n, y_n) = (w(x_n) + w(y_n))^{-1}(w(x_n)f(x_n) + w(y_n)g(y_n)) = \gamma,$$

and

(13)
$$\theta = (w(x_n) + w(y_n))^{-1} w(x_n) w(y_n) (f(x_n) - g(y_n)).$$

We now have two cases to consider:

Case 1. There is a subsequence $(u_n, v_n) \in T_1$ such that $v_n \to b_{\gamma}$, and

(14)
$$m(u_n, v_n) = (w(u_n) + w(v_n))^{-1}(w(u_n)f(u_n) + w(v_n)g(v_n)) = \gamma.$$

and,

(15)
$$\theta = (w(u_n) + w(v_n))^{-1} w(u_n) w(v_n) (f(u_n) - g(v_n)).$$

Hence from (12) and (13) we get

or

$$\frac{\theta/w(x_n) + \theta/w(y_n) = f(x_n) - g(y_n),}{f(x_n) - \theta/w(x_n) = g(y_n) + \theta/w(y_n) = \gamma}.$$

Similarly (14) and (15) imply that

Hence,

$$\begin{aligned} f(u_n) - \theta/w(u_n) &= g(v_n) + \theta/w(v_n) = \gamma. \\ f(x_n) - \theta/w(x_n) &= \gamma = g(v_n) + \theta/w(v_n). \end{aligned}$$

Letting $n \to \infty$, we conclude by the continuity of f, g and w that

•

(16)
$$f(a_{\gamma}) - \theta/w(a_{\gamma}) = \gamma = g(b_{\gamma}) + \theta/w(b_{\gamma}),$$

so that

(17)
$$(w(a_{\gamma})+w(b_{\gamma}))^{-1}w(a_{\gamma})w(b_{\gamma})(f(a_{\gamma})-g(b_{\gamma}))=\theta.$$

Thus, $(a_{\gamma}, b_{\gamma}) \in T$. Substituting for θ in (17), using the first part of (16), we conclude that $m(a_{\gamma}, b_{\gamma}) = \gamma$. This proves the assertion for case 1.

Case 2. There is no sequence $(u_n, v_n) \in T_1^{\gamma}$ for which $v_n \to b_{\gamma}$, that is, $v_n \to b_{\gamma}$ if and only if $(u_n, v_n) \in T_2^{\gamma}$. In such a case we can argue that $\theta = \theta_f$ which is contradictory to our assumption. Therefore only case 1 is valid.

Next we show that for $(x, y) \in T, x < y$ we have $[x, y] \cap [a_{\gamma}, b_{\gamma}] \neq \emptyset$ if and only if $m(x, y) = \gamma$. By the definition of θ , we have

(18)
$$f(x) - \theta/w(x) \leq g(y) + \theta/w(y).$$

If $[a_{\gamma}, b_{\gamma}] \cap [x, y] \neq \emptyset$, then it follows from the definition of a_{γ} and b_{γ} that $a_{\gamma} \leq y$ and $b_{\gamma} \geq x$. From (16),(17),(18) and the definition of θ it follows that

(19)
$$f(x) - \theta/w(x) \leq g(b_{\gamma}) + \theta/w(b_{\gamma}) = \gamma$$
$$= f(a_{\gamma}) - \theta/w(a_{\gamma})$$
$$\leq g(y) + \theta/w(y).$$

Since $(x, y) \in T$, (18) holds with equality, and therefore (19) implies that

$$f(x) - \theta/w(x) = g(y) + \theta/w(y) = \gamma,$$

or alternatively $m(x,y) = \gamma$. The converse follows immediately from the definition of a_{γ} and b_{γ} .

By the uniform continuity of f and g we can easily deduce the first part of the theorem, that is, Γ is finite and hence P is a finite union of closed sub-intervals.

THEOREM 6. Let f, g, w, θ and P be as in the previous Theorem. Then

$$\underline{h}(x) = h(x) \quad \text{if and only if } x \in P,$$

with
$$\underline{h}(x) = \overline{h}(x) = m(a_k, b_k) \quad \text{for all } x \in [a_k, b_k] \text{ and all } k,$$

 $m(a_k, b_k) < m(a_{k+1}, b_{k+1}), \quad k = 1, 2, \ldots, n-1.$

where Moreover

$$|w(x)|f(x)-\underline{h}(x)|=w(y)|g(y)-\overline{h}(y)|= heta, \ \ (x,y)\in T_1,$$

and

$$|w(y)|f(y)-\overline{h}(y)|=w(x)|g(x)-\underline{h}(x)|= heta, \hspace{0.2cm} (x,y)\in T_2.$$

PROOF: To obtain the first part of the Theorem we start by showing that $\underline{h}(x) = \gamma_k$ for all $x \in [a_k, b_k]$. In (16), let $a_{\gamma} = a_k$, $b_{\gamma} = b_k$ and $\gamma = \gamma_k$. Hence we obtain

$$f(a_k) - \theta/w(a_k) = \gamma_k = g(b_k) + \theta/w(b_k), \qquad k = 1, \ldots, n.$$

If $a \leq z \leq b_k$, then by the definition of θ we have

$$f(z) - heta/w(z) \leqslant g(b_{m{k}}) + heta/w(b_{m{k}}) = \gamma_{m{k}}$$

Since $\theta \ge \theta_g$, it follows that

 $g(z) - heta/w(z) \leqslant g(b_k) + heta/w(b_k) = \gamma_k,$ $f(z) \lor g(z) - heta/w(z) \leqslant \gamma_k.$

From the definition of <u>h</u> we conclude that $\underline{h}(x) \leq \gamma_k$ for all $x \in [a, b_k]$. But then

$$\underline{h}(a_k) \ge f(a_k) - \theta/w(a_k) = \gamma_k.$$

By monotonicity of <u>h</u> it follows that for any $x \in [a_k, b_k]$ we have

$$\underline{h}(x) \ge \underline{h}(a_k) \ge \gamma_k$$

Hence $\underline{h}(x) = \gamma_k$ for all $x \in [a_k, b_k]$.

Similarly we show that $\overline{h}(x) = \gamma_k$ for all $x \in [a_k, b_k]$.

We now prove the second part of the theorem consisting of the last two equations. Let $(x, y) \in T = T_1 \cup T_2$. Assume without loss of generality that $(x, y) \in T_1$. The other case is similar. Since Γ is finite, we must have $m(x, y) = \gamma_k$ for some $k = 1, 2, \ldots, n$, so it follows that $[x, y] \subseteq [a_k, b_k]$. Since <u>h</u> is non-decreasing we have

$$\gamma_{m k} = \underline{h}(a_{m k}) \leqslant \underline{h}(x) \leqslant \underline{h}(y) \leqslant \underline{h}(b_{m k}) = \gamma_{m k},$$

so that $\underline{h}(x) = \gamma_k$ and

$$\begin{split} w(x)|f(x) - \underline{h}(x)| &= w(x)|f(x) - m(x,y)|, \\ &= w(x)|f(x) - (w(x) + w(y))^{-1}(w(x)f(x) + w(y)g(y))|, \\ &= (w(x) + w(y))^{-1}w(x)w(y)|f(x) - g(y)| = \theta. \end{split}$$

Similarly,

$$\begin{split} w(y)|g(y) - \overline{h}(y)| &= w(y)|g(y) - m(x,y)|, \\ &= w(y)|g(y) - (w(x) + w(y))^{-1}(w(x)f(x) + w(y)g(y))|, \\ &= (w(x) + w(y))^{-1}w(x)w(y)|g(y) - f(x)| = \theta. \end{split}$$

LEMMA 7. Suppose that f, g and w are continuous, and that $0 < \theta_f, \theta_g < \theta$.

Then	$\overline{h}(x) > \gamma_k,$	for $x > b_k$,
and	$\underline{h}(x) < \gamma_k,$	for $x < a_k$.

PROOF: Suppose that for some $x > b_k$ we have $\overline{h}(x) = \gamma_k$. Then by the definition of $\overline{h}(x)$, there exists $y \in [x, b]$ such that

$$h(x) = \gamma_k = \min \left(f(y), g(y) \right) + \theta / w(y).$$

We have two cases to consider:

and hence

[10]

0

Case 1. f(y) < g(y), so that

(20)
$$\vec{h}(x) = f(y) + \theta/w(y) = \gamma_k.$$

In such a case we claim that $\theta = u(a_k, b_k)(g(a_k) - f(b_k))$. If not, then we must have $\theta = u(a_k, b_k)(f(a_k) - g(b_k))$. Hence

(21)
$$f(a_k) - \theta/w(a_k) = f(a_k) - u(a_k, b_k)(f(a_k) - g(b_k))/w(a_k) = \gamma_k$$

Combining (20) and (21) results in

$$f(a_k)- heta/w(a_k)=f(y)+ heta/w(y), \ heta=rac{w(a_k)w(y)}{(w(a_k)+w(y))}(f(a_k)-f(y))\leqslant heta_f.$$

This is a contradiction! Therefore our claim holds and we have

$$g(a_k) - \theta/w(a_k) = g(a_k) - (w(a_k) + w(b_k))^{-1}w(b_k)(g(a_k) - f(b_k)),$$

$$= (w(a_k) + w(b_k))^{-1}(w(a_k)g(a_k) + w(b_k)f(b_k)),$$

$$= \gamma_k = f(y) + \theta/w(y),$$

$$g(a_k) - f(y) = (1/w(a_k) + 1/w(y))\theta.$$

$$\theta = u(a_k, y)(g(a_k) - f(y)).$$

or

Hence

or

which implies that $(a_k, y) \in T$, and by Theorem 5 we conclude that $[a_k, y] \subseteq [a_k, b_k]$ which is a contradiction since $a_k \leq b_k < y$. Therefore there is no $x > b_k$, for which $\overline{h}(x) = \gamma_k$, that is, $\overline{h}(x) > \gamma_k$ for $x > b_k$.

Case 2. g(y) < f(y). The same argument applies. This concludes the proof of the first part. The other part is similar.

THEOREM 8. Let f ,g and w be continuous on [a,b]. If $0 < \theta_f$, $\theta_g < \theta$, then

$$\underline{h}(x) < \overline{h}(x)$$
 for all $x \in [a, a_1] \cup \left(\bigcup_{k=1}^{n-1}\right) \cup (b_n, b]$

PROOF: Suppose that for some $t \in (b_k, a_{k+1})$, k = 1, 2, ..., n-1, we have $\underline{h}(t) = \overline{h}(t)$. Then by the definitions of \underline{h} and \overline{h} , there exists $u \in [b_k, t]$, $v \in [t, a_{k+1}]$ such that

(22)
$$\underline{h}(t) = \max(f(u), g(u)) - \theta/w(u),$$
$$= \min(f(v), g(v)) + \theta/w(v) = \overline{h}(t).$$

Notice that if $u < b_k$, then clearly $\underline{h}(x) = \underline{h}(b_k) = \gamma_k$ for all $x \in (b_k, t]$ which contradicts the definition of b_k . Therefore $u \in [b_k, t]$. Similarly we must have $v \in [t, a_{k+1}]$. In (22) suppose f(u) > g(u). We also have two cases here:

[11]

Case 1. f(v) > g(v), so we obtain

$$\underline{h}(t) = f(u) - \theta/w(u) = g(v) + \theta/w(v) = \overline{h}(t),$$

 $\theta = \frac{w(u)w(v)}{(w(u) + w(v))}(f(u) - g(v)), \quad u < v.$

This says that $(u,v) \in T$, or there exists some *i* such that $(u,v) \subseteq [a_i,b_i]$. This is a contradiction, since we have $b_k \leq u \leq t \leq v \leq a_{k+1}$.

Case 2. f(v) < g(v), so we obtain

$$\underline{h}(t) = f(u) - \theta/w(u) = f(v) + \theta/w(v) = \overline{h}(t),$$
$$\theta = \frac{w(u)w(v)}{(w(u) + w(v))}(f(u) - f(v)) \leq \theta_f,$$

contradicting our assumption that $\theta > \theta_f$.

In the cases $t \in [a, a_1]$ or $t \in (b_n, b]$ we follow the same line of argument. Hence, Theorem 8.

References

[1] V.A. Ubhaya, 'Isotone optimization I', J. Approx. Theory 12 (1974), 146-159.

Department of Mathematics Faculty of Science, KAU P.O. Box 9028 Jeddah 21413 Saudi Arabia

ог

[12]