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Abstract

We give two characterisations of tracially nuclear C*-algebras. The first is that the finite summand of the
second dual is hyperfinite. The second is in terms of a variant of the weak* uniqueness property. The
necessary condition holds for all tracially nuclear C*-algebras. When the algebra is separable, we prove
the sufficiency.
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1. Introduction

Suppose A is a unital C*-algebra, M is a von Neumann algebra and π, ρ : A→M
are unital ∗-homomorphisms. We say that π and ρ are weak* approximately unitarily
equivalent inM if and only if there are nets {Uλ} and {Vλ} of unitary operators inM
such that, for every a ∈ A,

Uλπ(a)U∗λ → ρ(a) and Vλρ(a)V∗λ → π(a)

in the weak*-topology. In [3], Ding and Hadwin defined theM-rank(T ) of an operator
T in M as the Murray–von Neumann equivalence class of the projection onto the
closure of the range of T .

In [1], Ciuperca, Giordano, Ng and Niu proved that ifA is a separable C*-algebra,
then the following properties are equivalent:

(1) for every separably acting von Neumann algebra M and all representations
π, ρ :A→M, the homomorphism π is weak* approximately unitarily equivalent
to ρ if and only if (M-rank) ◦ π = (M-rank) ◦ ρ;

(2) A is nuclear.
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In this paper we investigate how the Ciuperca–Giordano–Ng–Niu theorem changes
if in statement (1) we restrictM to be a finite von Neumann algebra. The answer turns
out to be the condition thatA is tracially nuclear, a condition defined in [5].

It is known that a C*-algebra is nuclear if and only if, for every Hilbert space H
and every unital ∗-homomorphism π : A→ B(H), the von Neumann algebra π(A)′′

generated by π(A) is hyperfinite [8]. In [5] a unital C*-algebra A was defined to be
tracially nuclear if, for every tracial state τ onA, if πτ is the GNS representation for τ,
then πτ(A)′′ is hyperfinite. Tracially nuclear algebras also play a key role in the theory
of tracially stable C*-algebras [7].

We give two new characterisations of tracially nuclear C*-algebras: the first
(Theorem 2.1) in terms of the second dual of the algebra, and the second (Theorem 4.3)
in terms of weak* approximate equivalence of representations into finite von Neumann
algebras. In one direction, we show (Theorem 3.3) that if A is any tracially nuclear
C*-algebra andM is any finite von Neumann algebra, then the rank condition in [3]
on two representations π, ρ :A→M implies a strong version of weak* approximate
equivalence of π and ρ. When A is separable we prove the converse (Theorem 4.3).
Thus the second characterisation is an analogue of the characterisation of nuclearity
given in [1].

When A is separable, we only need to check πτ(A)′′ is hyperfinite when τ is an
infinite-dimensional factor state, that is, πτ(A)′′ is a II1 factor von Neumann algebra.

Lemma 1.1. Suppose A is a separable unital C*-algebra. Then A is tracially nuclear
if and only if, for every infinite-dimensional factor tracial state τ on A, πτ(A)′′ is
hyperfinite.

Proof. We let N = πτ(A)′′. SinceA is separable, N acts on a separable Hilbert space.
Using the central decomposition, we can write N =

∫ ⊕
Ω

Nω dµ(ω) where each Nω is a

factor von Neumann algebra, and we can write πτ =
∫ ⊕

Ω
πω dµ(ω) and τ =

∫ ⊕
Ω
τω dµ(ω)

with each τω a factor state, each πω = πτω and each πτω(A)′′ = Nω. Since N is
hyperfinite if and only if almost every Nω is hyperfinite, and since every finite-
dimensional factor is hyperfinite, the lemma is proved. �

2. The second dualA##

If R ⊂ B(H) is a finite von Neumann algebra, then we can write H =
∑⊕
γ∈Γ Hγ and

R =
∑⊕
γ∈Γ Rγ, where each Rγ ⊂ B(Hγ) has a faithful normal tracial state τγ. We can

extend each τγ to a tracial state on R by τγ(T ) = τγ(Tγ), where T =
∑⊕
λ∈Γ Tλ. Each τγ

gives a seminorm ‖T‖2,γ = τγ(T ∗T )1/2. It is a simple fact that on bounded subsets of R,
the strong (SOT) and ∗-strong (∗-SOT) operator topologies coincide and are generated
by the family {‖ · ‖2,γ : γ ∈ Γ}. Thus a bounded net {Tn} inR converges in SOT or ∗-SOT
to T ∈ R if and only if, for every γ ∈ Γ,

‖Tn − T‖2,γ → 0.
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Also every von Neumann algebra R can be decomposed uniquely into a direct
sum R = R f ⊕ Ri, where R f is a finite von Neumann algebra and Ri has no finite
direct summands. Equivalently, Ri has no normal tracial states. Relative to this
decomposition, we write Q f ,R = 1 ⊕ 0.

If A is a unital C*-algebra, then A## is a von Neumann algebra, and, using the
universal representation, we can assume A ⊂ A## ⊂ B(H) where the weak* topology
on A## coincides with the weak operator topology, so that A′′ =A##. Moreover, for
every von Neumann algebra R and every unital ∗-homomorphism π :A→ R, there is
a weak*-weak* continuous unital ∗-homomorphism π̂ : A## → R such that π̂|A = π.
Moreover, ker π̂, being a weak* closed two-sided ideal inA##, has the form

ker π̂ = (1 − Pπ)A## with Pπ = P2
π = P∗π ∈ Z(A##),

whereZ(M) denotes the centre of a von Neumann algebraM. Thus

A## = PπA
## ⊕ ker π̂.

The following theorem contains our first characterisation of tracially nuclear C*-
algebras.

Theorem 2.1. IfA is a unital C*-algebra, then:

(1) Pπ ≤ Q f ,A## for every unital ∗-homomorphism π : A→M with M a finite von
Neumann algebra;

(2) A is tracially nuclear if and only if (A##) f is a hyperfinite von Neumann algebra.

Proof. (1) Assume, by way of a contradiction, that π̂(1 − Q f ,A## ) , 0. SinceM is finite,
there is a normal tracial state τ onM such that

s = τ(π̂(1 − Q f ,A## )) , 0.

Hence the map γ : (A##)i → C defined by

γ(T ) =
1
s
π̂(0 ⊕ T )

is a faithful normal tracial state on (A##)i, which is a contradiction. Thus

π̂(1 − Q f ,A## ) = 0,

which means that Pπ ≤ Q f ,A## .
(2) Suppose A is tracially nuclear: (A##) f =

∑⊕
λ∈Λ(Rλ, τλ), where τλ is a faithful

normal tracial state on Rλ. ThenA## = (A##) f ⊕ (A##)i =
∑⊕
λ∈Λ Rλ ⊕ (A##)i relative to

H =
∑⊕
λ∈ΛHλ ⊕Hi. ViewingA ⊂A##, we define πλ :A→Rλ by πλ(A) = A|Hλ

. Then
ψλ = τλ ◦ πλ is a tracial state on A and πψλ(A)−weak* = Rλ since A is weak*-dense in
A##. SinceA is tracially nuclear, Rλ must be hyperfinite. Hence, (A]]) f =

∑⊕
λ∈Λ Rλ is

hyperfinite.
Conversely, suppose (A##) f is hyperfinite, and suppose τ is a tracial state on A.

Since πτ(A)′′ has a faithful normal tracial state, it must be finite. Thus Pπτ ≤ Q f ,A## .
This means that PπτA

## is a direct summand of (A##) f , and is therefore hyperfinite.
But this summand is isomorphic to πτ(A)′′. ThusA is tracially nuclear. �
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3. Weak* approximate equivalence in finite von Neumann algebras

SupposeA is a unital C*-algebra, R is a von Neumann algebra and π, ρ :A→R are
unital ∗-homomorphisms. Following [1], π and ρ are weak* approximately equivalent
if there are nets {Uλ} and {Vλ} of unitary operators in R such that, for every A ∈ A,

U∗λπ(A)Uλ
weak*
→ ρ(A) and V∗λρ(A)Vλ

weak*
→ π(A).

As observed in [1], it follows that the convergence above actually occurs in the ∗-strong
operator topology.

Suppose M is a von Neumann algebra and T ∈ M. Following [3], M-rank(T ) is
defined to be the Murray–von Neumann equivalence class inM of the projection onto
the closure of the range of T . In [1] it was shown that if A is a separable nuclear C*-
algebra and M is a von Neumann algebra acting on a separable Hilbert space, then
two unital ∗-homomorphisms π, ρ : A→M are weak* approximately equivalent if
and only if (M-rank) ◦ π = (M-rank) ◦ ρ. Moreover, this property for A is equivalent
to nuclearity.

The following result is from [6]. For completeness we include a short proof.

Lemma 3.1 [6]. Suppose a = a∗ in B(H), 0 ≤ a ≤ 1 and C∗0(a) is the norm-closure of
{p(a) : p ∈ C[z], p(0) = 0}. SupposeM is a finite von Neumann algebra with a centre-
valued trace Φ :M→Z(M), and π, ρ : C∗0(a)→M are *-homomorphisms. Then the
following properties are equivalent:

(1) M-rank π(x) =M-rank ρ(x) for all x ∈ C∗0(a);
(2) Φ ◦ π = Φ ◦ ρ.

Proof. (1)⇒ (2). Observe that we can extend π and ρ to weak*-weak* continuous
*-homomorphisms π̂, ρ̂ : C∗0(a)## →M. Suppose x ∈ C∗0(a) and 0 ≤ x ≤ 1. Suppose
0 < α < 1 and define fα : [0, 1]→ [0, 1] by

f (t) = dist(t, [0, α]).

Since f (0) = 0, we see that f (x) ∈ A and χ(α,1](x) = weak*-limn→∞ f (x)1/n ∈ A##, so

π̂( χ(α,1](x)) and ρ̂( χ(α,1](x))

are the range projections for π( f (x)) and ρ( f (x)), respectively. Since

M-rank π( f (x)) =M-rank ρ( f (x)),

we see that ρ̂( χ(α,1](x)) and π̂( χ(α,1](x)) are Murray–von Neumann equivalent. Hence

Φ(π̂( χ(α,1](x))) = Φ( ρ̂( χ(α,1](x))).

Suppose 0 < α < β < 1. Since χ(α,β] = χ(α,1] − χ(β,1],

Φ(π̂( χ(α,β](x))) = Φ( ρ̂( χ(α,β](x))).
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Thus, for all n ∈ N,

Φ

(
π̂
( n−1∑

k=1

k
n
χ(k/n,(k+1)/n](x)

))
= Φ

(
ρ̂
( n−1∑

k=1

k
n
χ(k/n,(k+1)/n](x)

))
.

For every n ∈ N, ∥∥∥∥∥x −
n−1∑
k=1

k
n
χ(k/n,(k+1)/n](x)

∥∥∥∥∥ ≤ 1/n,

and it follows that

Φ(π(x)) = Φ(π̂(x)) = Φ( ρ̂(x)) = Φ( ρ(x)).

SinceA is the linear span of its positive contractions, Φ ◦ π = Φ ◦ ρ.
(2)⇒ (1). Since Φ, π̂ and ρ̂ are weak*-weak* continuous, Φ ◦ π̂ = Φ ◦ ρ̂. So, for

any x ∈ C∗0(a),
Φ(π̂( χ(0,∞)(|x|))) = Φ( ρ̂( χ(0,∞)(|x|))),

which implies χ(0,∞)(|π(x)|) and χ(0,∞)(|ρ(x)|) are Murray–von Neumann equivalent.
ThusM-rank π(x) =M-rank ρ(x). �

The following lemma is from [3].

Lemma 3.2 [3]. Suppose B =
∑t

m=1Mkm (C) with matrix units ei, j,m, D is a unital C*-
algebra and π, ρ : B → D are unital *-homomorphisms such that π(ei,i,m) ∼ ρ(ei,i,m).
Then there exists a unitary w ∈ D such that π(·) = w∗ρ(·)w.

Theorem 3.3. Suppose A is a unital tracially nuclear C∗-algebra, M is a finite
von Neumann algebra with centre-valued trace Φ and π, ρ : A →M are unital
*-homomorphisms. Then the following properties are equivalent:

(1) M-rank π(a) =M-rank ρ(a) for every a ∈ A;
(2) Φ ◦ π = Φ ◦ ρ;
(3) the representations π and ρ are weak* approximately equivalent;
(4) there is a net {Un} of unitary operators inM such that, for every a ∈ A##,

(a) Unπ(a)U∗n → ρ(a) in the ∗-SOT, and
(b) U∗nρ(a)Un → π(a) in the ∗-SOT.

Proof. Clearly, (4)⇒ (3)⇒ (2).
(1)⇔ (2). This is proved in Lemma 3.1.
(2)⇒ (4). Let π̂, ρ̂ : A]] →M be the weak*-weak* continuous extensions of π

and ρ, respectively. Since Φ is weak*-weak* continuous, we see that Φ ◦ π̂ = Φ ◦ ρ̂.
Since M is finite, M can be written as M =

∑⊕
γ∈Γ(Mγ, βγ), where βγ is a faithful

normal tracial state ofMγ. Similarly, we can write (A]]) f =
∑⊕
λ∈Λ(Rλ, τλ) where τλ is

a faithful normal tracial state on Rλ for each λ ∈ Λ. ThusA## =
∑⊕
λ∈Λ(Rλ, τλ) ⊕ (A##)i.

If S ∈ M and T ∈ A##, we write

S =
∑
γ∈Γ

S (γ) and T =
∑
λ∈Λ

T (λ) ⊕ T (i).
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SinceM is finite, we know from Theorem 2.1 that π̂(Q f ,A## ) = ρ̂(Q f ,A## ) = 1. We also
know that π̂ and ρ̂ are continuous in the SOT. Thus if {T j} is a norm-bounded net in
A##, T ∈ A## and T jQ f ,A## → T Q f ,A## in the SOT, then π̂(T j) = π̂(T jQ f ,A## )→ π̂(T )
and ρ̂(T j)→ ρ̂(T ) in the SOT. This means that if ‖T j(λ) − T (λ)‖2,τλ → 0 for every
λ ∈ Λ, then

‖π̂(T j)(γ) − π̂(T )(γ)‖2,βγ → 0 and ‖ρ̂(T j)(γ) − ρ̂(T )(γ)‖2,βγ → 0

for every γ ∈ Γ.
Suppose A ⊂ ball(A##) is finite, L ⊂ Λ is finite and ε > 0. Then there exist a δ > 0

and a finite subset G ⊂ Γ such that, if T ∈ A, S ∈ 2ball(A##) and, for every λ ∈ L, we
have ‖T (λ) − S (λ)‖2,τλ < δ, then∑

γ∈G

[‖π̂(S )(γ) − π̂(T )(γ)‖2,βγ + ‖ρ̂(S )(γ) − ρ̂(T )(γ)‖2,βγ ] < ε/37.

Since A is tracially nuclear, Rλ is hyperfinite for every λ ∈ Λ. Thus, for each λ ∈ L,
there is a finite-dimensional unital C*-subalgebra Bλ ⊂ Rλ such that, for each S ∈ A,
there is a Bλ,S ∈ Bλ such that ‖Bλ,S ‖ ≤ ‖S (λ)‖ and ‖S (λ) − Bλ,S ‖2,τλ < δ. Then B =∑⊕
λ∈L Bλ is a finite-dimensional C*-subalgebra of A##. For each S ∈ A, we define

Bs =
∑⊕
λ∈L Bλ,S ∈ B. It follows that∑

S∈A

∑
γ∈G

[‖π̂(S )(γ) − π̂(BS )(γ)‖2,βγ + ‖ρ̂(S )(γ) − ρ̂(BS )(γ)‖2,βγ ] < ε/37.

From Φ ◦ π̂ = Φ ◦ ρ̂ and Lemma 3.2, there is a unitary operator U = U(A,G,ε) ∈ M such
that, for every W ∈ B,

Uπ̂(W)U∗ = ρ̂(W).

Therefore∑
S∈A

∑
γ∈G

‖Uπ̂(S )U∗(γ) − ρ̂(S )(γ)‖2,βγ

≤
∑
S∈A

∑
γ∈G

[‖U(π̂(S )(γ) − π̂(BS )(γ))U∗‖2,βγ + ‖ρ̂(BS )(γ) − ρ̂(S )(γ)‖2,βγ ]

< ε/37 < ε.

Also∑
S∈A

∑
γ∈G

‖π̂(S )(γ) − U∗ρ̂(S )U(γ)‖2,βγ =
∑
S∈A

∑
γ∈G

‖Uπ̂(S )U∗(γ) − ρ̂(S )(γ)‖2,βγ < ε.

If we order the triples (A,G, ε) by (⊂,⊂, >), we have a net {U(A,G,ε)} of unitary operators
inM such that, for every T ∈ A##,

U(A,G,ε)π̂(T )U∗(A,G,ε) → ρ̂(T ) and U∗(A,G,ε)ρ̂(T )U(A,G,ε) → π̂(T )

in the SOT. �
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4. FWU algebras: a converse

In this section we prove a converse of Theorem 3.3 whenA is separable. We say that
a unital C*-algebra A is an FWU algebra, or that A has the finite weak*-uniqueness
property, if, for every finite von Neumann algebra M with a faithful normal tracial
state τ and every pair π, ρ : A→M of unital ∗-homomorphisms such that, for all
a ∈ A,

M-rank(π(a)) =M-rank( ρ(a)),

there is a net {Ui} of unitary operators inM, such that, for every a ∈ A,

‖Uiπ(a)U∗i − ρ(a)‖2,τ → 0.

Since every finite von Neumann algebra is a direct sum of algebras having a faithful
normal tracial state [8], being an FWU algebra is equivalent to saying that for every
finite von Neumann algebra and every pair π, ρ :A→M of unital ∗-homomorphisms
such that, for all a ∈ A,

M-rank(π(a)) =M-rank( ρ(a)),

it follows that π and ρ are weak* approximately unitarily equivalent.
A key ingredient is a characterisation of hyperfiniteness proved by Connes [2]. If

N is a von Neumann algebra, then the flip automorphism π : N ⊗N → N ⊗N is the
automorphism defined by π(a ⊗ b) = b ⊗ a.

Theorem 4.1 [2]. SupposeN ⊂ B(H) is a II1 factor von Neumann algebra acting on a
separable Hilbert space. Then the following properties are equivalent:

(1) N is hyperfinite;
(2) for n ∈ N, x1, . . . , xn ∈ N and y1, . . . , yn ∈ N

′,∥∥∥∥∥ n∑
k=1

xkyk

∥∥∥∥∥
H

=

∥∥∥∥∥ n∑
k=1

xk ⊗ yk

∥∥∥∥∥
H⊗H

;

(3) the flip automorphism π on N ⊗N is weak* approximately unitarily equivalent
in N ⊗N to the identity representation.

IfN is a von Neumann algebra and the flip automorphism π is weak* approximately
equivalent to the identity, it easily follows that the implementing net {Uλ} of unitaries
simultaneously makes the maps ρ1, ρ2 : N →N ⊗N defined by

ρ1(a) = a ⊗ 1, ρ2(a) = 1 ⊗ a, for every a ∈ N ,

weak* approximately equivalent. Using Connes’ proof, we obtain a stronger statement
which fills in the details of [4, Remark 7]. This says that if M = W∗(X1, . . . , Xm)
is a separably acting factor von Neumann algebra with trace τ, then M is nuclear
whenever the following condition holds. For every ε > 0 there exist a δ > 0 and a
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positive integer N such that, for every factor von Neumann algebra N with trace ρ,
and for all A1, B1 . . . , An, Bn ∈ N , if

|τ(m(X1, . . . , Xm)) − ρ(m(A1, . . . , Am))| < δ

and
|τ(m(X1, . . . , Xm)) − ρ(m(B1, . . . , Bm))| < δ

for all ∗-monomials m with degree(m) ≤ N, then there is a unitary operator U ∈ N such
that

m∑
k=1

‖UAkU∗ − Bk‖
2
2,ρ < ε.

Theorem 4.2. Suppose N ⊂ B(H) is a finite factor von Neumann algebra acting on a
separable Hilbert space H. Define ρ1, ρ2 : N →N ⊗N by

ρ1(a) = a ⊗ 1, ρ2(a) = 1 ⊗ a, for every a ∈ N .

Suppose ρ1 and ρ2 are weak* approximately equivalent in N ⊗ N . Then N is
hyperfinite.

Proof. Let τ be the unique faithful normal tracial state on N . Then τ ⊗ τ is a faithful
normal tracial state on the factor N ⊗ N ⊂ B(H ⊗ H). Suppose ρ1 and ρ2 are weak*
approximately equivalent in N ⊗N . We can choose a net {Uλ} of unitary operators in
N ⊗N such that, for every a ∈ N,

‖U∗λ(a ⊗ 1)Uλ − (1 ⊗ a)‖2,τ⊗τ → 0.

Suppose n ∈ N, x1, . . . , xn ∈ N and y1, . . . , yn ∈ N
′. Since Uλ ∈ N ⊗ N and each

1 ⊗ yk ∈ (N ⊗N)′,

U∗λ
( n∑

k=1

xk ⊗ yk

)
Uλ =

n∑
k=1

U∗λ(xk ⊗ 1)(1 ⊗ yk)Uλ =

n∑
k=1

[U∗λ(xk ⊗ 1)Uλ](1 ⊗ yk)

weak*
→

n∑
k=1

(1 ⊗ xk)(1 ⊗ yk) = 1 ⊗
( n∑

k=1

xkyk

)
.

Since, for every λ, ∥∥∥∥∥U∗λ
( n∑

k=1

xk ⊗ yk

)
Uλ

∥∥∥∥∥ =

∥∥∥∥∥ n∑
k=1

xk ⊗ yk

∥∥∥∥∥,
it follows that ∥∥∥∥∥ n∑

k=1

xkyk

∥∥∥∥∥ ≤ ∥∥∥∥∥ n∑
k=1

xk ⊗ yk

∥∥∥∥∥.
It also follows that, for every a ∈ N ,

‖a ⊗ 1 − Uλ(1 ⊗ a)U∗λ‖2,τ⊗τ = ‖U∗λ(a ⊗ 1)Uλ − (1 ⊗ a)‖2,τ⊗τ → 0.
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Thus

Uλ

[
1 ⊗

( n∑
k=1

xkyk

)]
U∗λ = Uλ

n∑
k=1

(1 ⊗ xk)(1 ⊗ yk)U∗λ =

n∑
k=1

Uλ(1 ⊗ xk)U∗λ(1 ⊗ yk)

weak*
→

n∑
k=1

(xk ⊗ 1)(1 ⊗ yk) =

n∑
k=1

xk ⊗ yk

and ∥∥∥∥∥ n∑
k=1

xk ⊗ yk

∥∥∥∥∥ ≤ ∥∥∥∥∥ n∑
k=1

xkyk

∥∥∥∥∥.
Thus by Connes’ theorem (Theorem 4.1), N is hyperfinite. �

We now prove our converse result.

Theorem 4.3. A separable unital C*-algebra is an FWU algebra if and only if it is
tracially nuclear.

Proof. Suppose A is an FWU algebra. Suppose τ is a factor tracial state on A. Let
N = πτ(A)′′. Since A is separable and πτ has a cyclic vector, N acts on a separable
Hilbert space. If N is finite-dimensional, then N is hyperfinite. Thus we can assume
that N is a II1 factor. Then N ⊂ L2(A, τ) and πτ(A) is ‖ ‖2,τ-dense in N . Define
ρ1, ρ2 : N →N ⊗N by

ρ1(b) = b ⊗ 1, ρ2(b) = 1 ⊗ b, for every b ∈ N .

For k = 1, 2, let σk = ρk ◦ πτ :A→N ⊗N . Since (τ ⊗ τ) ◦ ρ1 = (τ ⊗ τ) ◦ ρ2, we see
that (τ ⊗ τ) ◦ σ1 = (τ ⊗ τ) ◦ σ2. Since A is an FWU algebra, σ1 and σ2 are weak*
approximately unitarily equivalent in N ⊗ N . Thus there is a net {Uλ} of unitary
operators in N ⊗N such that, for every b ∈ πτ(A),

‖U∗λ(b ⊗ 1)Uλ − (1 ⊗ b)‖2,τ⊗τ → 0.

For each λ, the map

b 7→ U∗λ(b ⊗ 1)Uλ − (1 ⊗ b)

is ‖ ‖2,τ⊗τ-continuous and linear on N and has norm at most 2, and πτ(A) is ‖ ‖2,τ⊗τ
dense in N . It follows that, for every b ∈ N ,

‖U∗λ(b ⊗ 1)Uλ − (1 ⊗ b)‖2,τ⊗τ → 0.

Thus, by Theorem 4.2, N is hyperfinite and, from Lemma 1.1, A is tracially nuclear.
The other direction is contained in Theorem 3.3. �
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